
Lecture 30. Other Eigenvalue Algorithms 

There is more to the computation of eigenvalues than the QR algorithm. In 
this lecture we briefly mention three famous alternatives for real symmetric 
eigenvalue problems: the Jaeobi algorithrn, for full rnatriees, and the bisection 
and divide-and-eonquer algorithrIls, for tridiagonal matrices. 

Jacobi 
One of the oldest ideas for computing eigenvalues of matrices is the Jacobi al-
gorithm, introduced by Jacobi in 1845. This method has attracted attention 
throughout the computer era, especially since the advent of parallel comput-
ing, though it has never quite managed to displace the competition. 

The idea is 3.'3 follmvs. For llwtrices of clinlension 5 or larger, we know that 
eigenvalues can only be obtained iteration (Lecture 25). Hmvever, slnaller 
matrices than this can be handled in one step. \Vhy not diagonalize a small 
submatrix of .4, then another, and so OIl, hoping eventually to converge to a 
diagonalization of the full matrix? 

The idea has been t.ried wit.h 4 X 4 ,"bmatrice" but. t.he standard ap-
proach is based on 2 X 2 submatrices. A 2 X 2 real symmetric matrix can be 
diagonalized in the form 

(30.1 ) 
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where J is orthogonal. Now there are several ways to choose J. One could 
take it to be a 2 x 2 Householder reflection of the form 

F = [-c s]. 
,) c 

(30.2) 

where -5 = sinO and c = cosO for some O. Kate that detF = -1. the hallmark 
of a reflection. Alternatively, one can llse not a reflection but a 

(30.3) 

with detJ = l. This is the standard approach for the Jacobi algorithm. It 
can be shown that the diagonalization (30.1) is accomplished if 0 satisfies 

2d 
tan(20) = --, 

b- a (30A) 

and the matrix J based on this choice is called a Jacobi rotation. (It has the 
same form as a Givens rotation (Exercise 10.4); the only difference is that 0 
is chosen to make JT AJ diagonal rather than JT A triangular.) 

Nmv let A E :nmxm be symmetric. The Jacobi algorithm consists of the 
iterative application of transforrnations (30.1) based 011 rnatrices defined by 
(30.3) and (30A). The matrix J is now enlarged to an Tn X Tn matrix that is 
the identity in all but four entries, where it has the form (30.3). Applying./1' 
on the left modifies two rows of A, and applying J on the right modifies two 
colurnns. At each step a sYIIllnetric pair of zeros is introduced into the rnatrix, 
but previous zeros are destroyed. Just as with the QR algorithm, however, 
the usual effect is that the magnitudes of these nonzeros shrink steadily. 

Which off-diagonal entries ai, should be zeroed at each step? The ap-
proach naturally fitted to hand computation is to pick the largest off-diagonal 
entry at each step. Analysis of eonvergenee then becornes a triviality, for one 
can show that the sum of the squares of the entries decreases 
by at least the factor 1 - 2/(m2 - m) at each step (Exercise 30.3). After 
O(rn2 ) steps, each requiring O(rn) operations, the sum of squares must drop 
by a constant factor, and convergence to accuracy fmachine is assured after 

log(Emachine)) operations. In fact, it is known that the convergence is 
better than this, ultimately quadratic rather than linear, so the actual opera-
tion count is O(m3 1og(llog(fmachine)I)) (Exercise 25.2). 

On a cOlnputer, the off-diagonal entries are generally eliminated in a cyclic 
manner that avoids the O(rn2 ) search for the largest. For example, if the 
m(m - 1) /2 superdiagonal entries are eliminated in the simplest row-wise 

beginning \vith au, ... , then rapid a.'3Yll1ptotic convergence is again 
guaranteed. After one sweep of 2 x 2 operations involving all ofthe rn( m-l) /2 
pairs of off-diagonal entries, the ha.'3 generally ilnproved better 
than a constant factor, and the convergence is ultilnatel:y quadratic. 



LECTURE 30. OTHER EIGENVALUE ALGORITHMS 227 

The Jacobi method is attractive because it deals only with pairs of rows 
and columns at a time, making it easily parallclizable (Exercise 30.4). The 
rnatrix is not tridiagonalized in advanee; the Jaeobi rotations \vo111d destroy 
that structure. Convergence for matrices of dimension m -<: 1000 is typically 
achieved in fewer than ten s\veeps, and the final cornponentwise aecuracy is 
generally even bet.t.er t.han can be achieved by t.he QR algorit.hm. Cnfortu-
nately, even 011 parallel IIlaehines, the Jacobi algorithrIl is not usually as fast 3...') 

tridiagonalization followed by the QR or divide-and-conquer algorithm (dis-
cussed below), though it usually comes within a fact.or of 10 (Exercise 30.2). 

Bisection 
Our next. eigenvalue algorit.hm, the method of bisection, is of great. practical 
importance. After a symmetric matrix has been tridiagonalized, this is the 
standard next step if one does not want all of the eigenvalues but just a. subset 
of them. For example, bisection can find the largest 10% of the eigenvalues, 
or t.he smallest. thirt.y eigenvalues, or all t.he eigenvalues in the int.erval [1,2]. 
ante the desired eigenvalues are fonnd, the eorresponding eigenvectors ean be 
obt.ained by one step of inverse iteration (Algorit.hrn 27.2). 

The starting point is elementary. Since the eigenvalues of a real syrIlrnetric 
rnatrix are real, we ean find them by searching the real line for roots of the 
polynomial p(x) = det(A - xI). This sounds like a bad idea, for did we not 
mention in Lectures 15 and 25 that polynomial rootfinding is a highly unstable 
procedure for finding eigenvalues? The difference is that those rernarks per-
t.ained to t.he idea of finding roots from t.he polynomial coefficients. Now, t.he 
idea is to find the roots by evaluating p(x) at various points x, without ever 
looking at its coefficients, and applying the usual bisection process for nonlin-
ear functions. This could be done, for example, by Gaussian elimination with 
pivoting (Exercise 21.1), and the resulting algorithm would be highly stable. 

This much sounds useful enough, but not very exciting. \Vhat gives the 
bisection method its pmver and its appeal are SOlIle additional properties of 
eigenvalues and determinants that are not immediately obvious. 

Given a symrIletric nlatrix .4 E lRmxm , let .4(1), ... , .4(m) denote its prin-
cipal (i.e., upper-left) square submatrices of dimensions 1, ... , m. It can be 
shown that the eigenvalues of these matrices interlace. Before defining this 
property, let us first sharpen it by assuming that A is tridiagonal and ,rre-
ducible in the sense that all of its off-diagonal entries are nomero: 

A 

aj bj 

b, a, b, 
b, U3 bj cF O. (30.5) 
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A(l) • 
A(2) • • 
A(3) • • I • 
A(4) • • I • I • 

Figure 30.1. Illustration of the strict eigenvalue intedace property (30.6) for 
the principal submatrices {A (j)} of an ir-reducible tridiagonal real symmetric 
rnatri:" A. The eigenvalnes of A (k) intedace those of A (k+1). The bisection 
algorithm takes advantage of this property. 

(If there are zeros OIl the off-diagonal, then the eigenvalue problerIl can be 
deflated, as in Algorithm 28.2.) By Exerci,e 25.1, the eigenvalue, of A(l,) are 
distinct; let them be denoted by .\Ik) < < ... < The crucial prop-
erty that makes bisection pCHverful is that these eigenvalues strictly interlace, 
satisfying the inequalities 

(30.6) 

for k = 1,2, ... ,m - 1 and j = 1,2, ... , k - 1. Thi, behavior is sketched in 
Figure 30.1. 

It is the interlacing property that makes it possible to count the exact 
number of eigenvalues of a matrix in a specified interval. For example, consider 
the 4 x 4 tridiagonal matrix 

A 

From the numbers 

1 
1 

1 
o 
1 

1 
2 1 
1 -1 

we know that A (1) has no negative eigenvalues, A (2) has one negative eigen-
value, A (3) has one negative eigenvalue, and A (4) has two negative eigenvalues. 
In general, for any symmetric tridiagonal A E un.x", , the number of negative 
eigerwaluf8 is equal to the nu:rnher of sign change8 in the sequence 

(30.7) 

,vhich is knovvn a.'3 a Sturm 8equence. (This prescription vvorks even if zero 
determinants are encountered along the \vay, if we define a change ll to 
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mean a transition from + or 0 to - or from - or 0 to + but not from + or 
- to 0.) By shifting A by a multiple of the identity, we can determine the 
Humber of eigenvalues in any interval [(1., b): it is the IlllInber of eigenvalues in 
(-(X), b) minus the number in (-oc, a). 

One more observation completes the description ofthe bisection algorithm: 
for a tridiagonal matrix, the determinants of the matrices {A (k)} are related by 
a three-term recurrence relation. Expanding det(A(k)) by minors with respect 
to its entries bk - 1 and ak in row k gives, frmll (30.5), 

(30.S) 

Introducing the shift by xl and writing p(k)(X) = det(A(k) - xI), we get 

(30.9) 

If we define p( -1) (x) = 0 and p(O) (x) = 1, then this recurrence is valid for all 
k = 1,2, ... ,nL 

By applying (30.9) for a sneeession ofvalll€s of;1: and eaunting sign changes 
along the way, the bisection algorithm locates eigenvalues in arbitrarily small 
intervals. The cost is O( rn) flops for each evaluation of the sequence, hence 
O(rnlog(Emachine)) flops in total to find an eigenvalue to relative accuracy 
fmachinco If a SITwll number of eigenvalues are needed, this is a distinct im-
provement over the O(m,2) operation eouut for the QR algorithrn. On a IIlUl-

tiprocessor computer, multiple eigenvalues can be found independently on 
separate processors. 

Divide-and-Conquer 

The divide-and-conquer algoritlun, based on a recursive subdivision of a sym-
metric tridiagonal eigenvalue problem into problems of smaller dimension, 
represents the most important advance in matrix eigenvalue algorithms since 
the 1960s. First introduced by Cuppen in 1981, this method is more than 
twice as fast as the QR algorithm if eigenvectors as well as eigenvalues arc 
required. 

We shall give just. t.he essent.ial idea, omit.t.ing all details. But t.he reader 
is warned that in this area, the details are partielllarly important, for the 
algorithm is not fully stable unless they are gotten right-a rnatter that wa..') 
not well understood for a decade after Cuppen's original paper. 

Let T E lR.mxm with rn 2' 2 be symmetric, tridiagonal, and irreducible in 
the sense of having only nonzeros on the off-diagonal. (Otherwise, the problem 
can be deflated.) Then for any n in the range 1 <::: n < m, T can be split into 
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submatrices as follows: 

Tl 
T [J 

II 
[J [J 

f-----1-----j + 
,6 II 

T2 

(30.10) 

Here T, is the upper-left n x n principal submatrix of T, T2 is the lower-right 
(rn- n) X (rn- n) principal submatrix, and /J = tn+ 1,n = tn •n+1 # O. The only 
difference between T, and f', is that, the Imver-right entry tnn has been replaced 
by tnn - ,8, and the only difference between T2 and T2 is that the upper-left 
entry tn+ 1 ,n+ 1 h&') been replaced by tn+ 1 ,n+ 1 - 16. These IIlodifieations of tvw 
entries are introduced to rnake the rightmost rnatrix of (30.10) have rank one. 

Here is hmv (30.10) might be expressed in words. A tridiagonal rnatri:J; can 
be written as the sum of a 2 x 2 block-diagonal matrix with tTidiagonal blocks 
and a rank-one correction. 

The divide-and-eonquer algorithm proeeeds as follows. Split the matrix 
T as in (30.10) with n "" m/2. Suppose the eigenvalues of T, and T2 are 
kIlCHVIl. Since the eorreetion matrix is of rank one, a. nonlinear but rapid 
calculation can be used to get from the eigenvalues of T, and T2 to those of T 
itself. l\'ow reeurse on this idea, finding the eigenvalues of T, and T2 by further 
subdivisions with rank-one corrections, and so OIl. In this rnanner an rn x rn 
eigenvalue problem is reduced to a set of 1 x 1 eigenvalue probleITls together 
"\vith a collection of rank-one c01'l'ections. (In practice, for ITlaximal efficiency, 
it is customary to switch to the QR algorithm when the submatrices are of 
sufficiently small dimension rather than to carry the recursion all the way.) 

In this process there is one key mathematical point. If the eigenvalues of 
T, and T2 are known, how can those of T be found? To answer this, suppose 
that diagonali,ations 

have been computed. Then from (30.10) it follows that we have 

(30.11) 

with ZT = (qf, qT), where qi is the last row of Q, and qf is the first row of 
Q2' Since this equation is a similarity transformation, we have reduced the 
mathematical problem to the problem of finding the eigenvalues of a diagonal 
lnatrix plus a rank-one correction. 
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Figure 30.2. Plot of the function f(A) of (30.12) for a problem of dimension 4. 
The poles of f(A) are the eigenvalues {d j } of D, and the roots of f(A) (solid 
dots) are the eigenvalue" of D + W1j)T The rapid determination of these roots 
is the basis of each recursive step of the divide-and-eonquer algorithm. 

To show how this is done, we simplify notation as follows. Suppose we wish 
to find the eigenvalues of D + ww'l', ,,,here D E lllrnxrn is a diagonal matrix 
"\vith distinet diagonal entries {d j } and LV E lR1n is a vector. (The choice of a. 
plus sign corresponds to ,8 > 0 above; for ,8 < 0 we would consider D - wwT ) 

,Ve can assume Wj # 0 for all j, for ot.herwise, the problem is reducible. Then 
the eigenvalues of D + ww'· are the roots of the rational function 

m 

f(A) = 1+ L d A' 
j=l ] 

(30.12) 

as illustrated in Figure 30.2. This assertion can be justified by noting that if 
(D + wwT)q = Aq for some q # 0, then (D - AI)q + w(wTq) = 0, implying 
q + (D - AI)-lW(WTq) = 0, that is, wTq + wT(D - AI)-lW(wTq) = O. This 
amounts to the equation f(A)(wTq) = 0, in which wTq must be nonzero, for 
otherwise q would be an eigenvector of D, hence nomero in only one position, 
implying wT q # 0 a!'ter all. \Ve conclude that if q is an eigenvector of D + wwT 

with eigenvalue A, then f(A) must be 0, and the converse follows because the 
form of .f(A) guarantees that it has exactly m 'eros. The equation f(A) = 0 
is known as the secular equation. 

At each recursive step of the divide-and-conquer algorithm, the roots of 
(30.12) are found by a rapid iterative process related to Newton's method. 
Only 0(1) iterations are required for each root (or O(log(llog( fmachine) I)) it-
erations if fmachine is viewed &'3 a variable), llwking the operation count O(rn) 
flops per root for an m x m matrix, or O( m') flops all together. If we imagine 
a recursion in which a matrix of dimension m is split exactly in half at each 
step, the total operation count for finding eigenvalues of a tridiagonal matrix 
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by the divide-and-conquer algorithm become" 

( , (m)2 (m)2 (m)2 (m)2) o m +2:2 +4 4 +8 8 +···+m m ' (30.13) 

a series which converges to O(m2 ) (not O(m2 10gm)) thanks to the squares in 
the denOITlinatol's. Thus the operation count would appeal' to be of the SaIne 
order O(m2 ) as for the QR algorithm. 

So far, it is not clear '''hy the divide-and-collquer algorithm is advanta-
geous. Since the reduction of a full matrix to tridiagonal form ("Phase 1" 
in the terminology of Lecture 25) require" 4m3/3 flops (26.2), it would "cern 
that any improvement in the O(m') operation count for diagonalization of 
that tridiagonal matrix ("Phase 2") i" hardly important. However, the eco-
nomies change if one is computing eigenvectors a.s ,veIl a..<; eigenvalues. Nmv, 
Phase 1 requires 8m' /3 flops but Phase 2 also requires O( m 3 ) flops-for the 
QR algorithm, '" 6m'- The divide-and-conquer algorithm reduce" this fig-
ure, ultimately because its nonlinear iterations involve just the scalar fUllction 
(30.12), not the orthogonal matrices Qj, whereas the QR algorithm must ma-
nipulate matrices Qj at every iterative step. 

An operation count reveab the following. The O(m3 ) part of the divide-
and-conquer computation i" the multiplication by Qj and Qj in (30.11). The 
total operation eaunt, surIlrned over all steps of the reeul'sion, is 4nl,3/3 flops, 
a great improvement over'" 6m3 flops. Adding in the 8m3 /3 flops for Phase 1 
gives an irnprov€rnent froIll :::::::: 9nl,3 to 4m,3. 

Aetually, the divide-and-conquer algorithm usually does even better than 
this , for a reason that is not elernentary. For most matrices A, many of the 
vectors z and matrices Q j that arise in (30.11) turn out to be numerically 
sparse in the sense that many of their entries have relative magnitudes less 
than rnaehine precision. This sparsity allmvs a process of n'll:rnericaZ deflation, 
,,,hereby successive tridiagonal eigenvalue problems are redueed to uneoupled 
problems of srnaller dirnensions. In typical ca.-ses this reduees the Pha.-se 2 
operation count to an order less than rn" flops, reducing the operation count 
for Phases 1 and 2 combined to 8m3 /3. For eigenvalues alone, (30.13) becomes 
an overestimate and the Phase 2 operation count is reduced to an order lower 
than rn' flops. The root of this fascinating phenomenon of deflation, which 
we shall not discuss further, is the fact that most of the eigenvectors of most 
tridiagonalrnatrices are "exponentially locali7,ed'l (Exercise 30.7)-a fact that 
has been related by physicists to the phenomenon that glass is transparent. 

\Ve have spoken a.'3 if there is a single divide-and-conquer algoritlun, but in 
fact, there are many variants. More complicated rank-one updates are often 
used for stability reasons, and rank-two updates are also sometimes used. 
Varions methods are employed for finding the roots of f(),), and for large 
m, the fastest way to carry out the multiplications by (Jj is via multi pole 
expansions rather than the obvious algorithnl. A implementation 
of a divide-and-conquer algorithm can be found in the LAPACK library. 
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Exercises 

30.1. Derive the fonnula (30.4), and give a precise geometric interpretation 
of the t.ransformat.ion (30.1) based on t.his choice of e. 
30.2. How many flops are required for one step (30.1) of the Jacobi algorithm'! 
How many flops for m(m - 1) /2 sllch steps, i.e., one sweep? How does the 
operation count for one sweep compare with the total operation count for 
tridiagonalizing a real symmetric matrix and finding its eigenvalues the 
QR algori thm? 

30.3. Show that if the largest. off-diagonal ent.ry is annihilat.ed at. each st.ep of 
the Jacobi algorithm, then the sum of the squares of the off-diagonal ent.ries 
decreases by at. least. t.he fact.or 1 - 2/(rn' -m) at. each st.ep. 

30.4. Suppose rn is even and your computer has rn/2 processors. Explain 
how rn/2 transformations (30.1) can be carried out in parallel if they involve 
the disjoint row/column pairs (1,2), (3,4), (5, 6), ... , (rn - 1, rn). 

30.5. \Vrite a program to find the eigenvalues of an rn x m real synlmetric 
matrix by the Jacobi algorithm with the standard row-wise ordering, plotting 
the SUln of the squares of the off-diagonal entries on a log scale &'3 a function of 
the number of sweeps. Apply your program to random matrices of dimensions 
20, 40, and 80. 

30.6. How rnany eigenvalues does 

1 1 0 0 

A 
1 1 1 0 
0 1 2 1 
0 0 1 3 

have in the interval [1,21 '! Work out the answer on paper by bisection, making 
use of the recurrence (30.9). 

30.7. Construct a random real symmetric tridiagonal matrix T of dimension 
100 and comput.e it.s eigenvalue decomposit.ion, T = QDQT Plot. a few of 
the eigenvect.ors on a log scale (the absolute values of a few columns of Q) 
and observe t.he phenomenon of localization. "Vhat proport.ion of t.he 10,000 
entries of Q are greater than 10-10 in rnagnitude? \\That is the answer if 
instead of a randorn matrix, T is the discrete Laplacian v,rith entries 1, -2, 1 ? 


