Chapter b Eigenvalues and Eigenvectors

29, The powers Ak approach zero s€all jAs] < 1,and they blow up if any |A;] = 1. Peter
Lax gives four striking examples in his book Linear Algebra.

UEISEE IS Rt

Al s 107 B =1 1 = —C |DY#| < 107"

Find the eigenvalues & = ¢ of B and C to show fhat pt=7and C*=—1.

T

54 DIFFERENTIAL EQUATIONS AND et

Wherever you find a system of equations, rather than a single equation, matrix theory has
a part to play. For difference equations, the solution u = A o depended on the powers
of A, For di_'fferential equations, the solution u(t) = e (0) depends on the exponential
of A. To define this exponential, and to understand it, we turm right away to an example:

. \ , du -2 1
Differential equation e Au = [ i fzt\ . 4))

The first step is always to find the eigenvalues (—1 and —3) and the eigenvectors:

A m = (D m and A {_ﬂ — 3 [_ﬂ :

Then several approaches Jead to u(?). Probably the best is to match the general solution
to the initial vector u(@att =0

The general solution is a combination of pure exponential solutions. These at
solutions of the special form ceMx, where A is an eigenvalue of A and x is its eigenvector.:
These pure solutions satisfy the differential equation, since d/dt{ce"x) = Afce¥x)
(They were out introduction to cigenvalues at the start of the chapter) In this 2 by 2:
example, there are two pure exponentials to be combined: '

1 1
1 -1

Solution  u() = ety epetae O BT [

At time zero, when the exponentials ate &0 = 1, u(0) determines 1 and ¢z

Tnitial condition u{0) = 1% “ X2 = E ﬂ [?] = Sc.
. ! : — 2

You regognize S, the matrix of eigenvectors. The constants ¢ = §-1u(0) are the _Safﬂ
as they were for difference equations. Substituting them back into equation (2);
solution is

P R B P

Here is the fundamental formula of this section: §eht §-13(0) solves the diffe entls
equation, just as § AkS—1uy solved the difference equation: :

— —t .:.
u(t) = SeM s u(0) with A= [ ! 3 } and e = [g e_sf]i
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There are two more things to be done with this example. One is to complete the
mathematics, by giving a direct definition of the exporential of a matrix. The other is to
give a physical interpretation of the equation and its solution, It is the kind of differential
equation that has useful applications.

The exponential of a diagonal matrix A is easy; e® just has the #» numbers g
on the diagonal. For a general matrix A, the natural idea is to imitate the power series

e =14x+x2/21 4 x3/31 ..., If we replace x by At and 1 by 7, this sum is an n
by n matrix:

A2 A 3

The series always converges, and its sum e’ has the right properties:

Matrix exponential ¢4 = 4 47 4

(eA.S)(eAZ) — eA(s+f), (eA!)(ekAt) — I, and dit(e}lt) = AeA.f' (6)

From the Jast one, u{f) = 4t 1t(0) solves the differentia] equation, This solution must
be the same as the form Se®' §~14(0) used for computation, To prove directly that those
solutions agree, remember that each power (SAS™'Y* telescopes into A¥ = SAkS—1
(because S~! cancels $). The whole exponential is diagonalized by §:
SAZS71?2 SA3S-Y3
2! + 3!

AN?  (Af?
(A7) 4 (Af)

21 3!

M =T SAS Y 4+

=S(I+Ar+ +) 8§71 = Sebrg-t,

In equation (1), the exponential of A = [‘% _é] has A = [“1 _3]:

-1
1 1}fe 1 1 e g ot ¥
At _ @ At gl = _
e =5et ST = [1 —I] [ e‘3‘J [1 —IJ ) [e"—e*‘ et M|
At = 0 we get ¢® = 1. The infinite series e gives the answer for all ¢, but a series
can be hard to compute. The form SeA's—! gives the same answer when A can be

diagonalized; it requires » independent eigenvectors in S. This simpler form leads to a
combination of n exponentials e x——which is the best solution of all;

5L If A can be diagonalized, A = SAS™!, then dufdt = Au has the solution

u(t) = eu(0) = Set S~y (0). 7
The columns of § are the eigenvectors xy, . .., x, of A, Multiplying gives
el:f
uy = |x; - x, S7tu(0)
e}.,,:
= c1eM'% + - -+ geM'x, = combination of eMx. 8

The constants ¢; that match the initial conditions u(Q) are ¢ = S~y (0).
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This gives a complete analogy with difference equations and SAS g, In both
cases we assumed that A could be diagonalized, since otherwise it has fewer than n
eigenvectors and we have not found enough special solutions. The missing solutions do
exist, but they are more complicated than pure exponentials & x. They involve “gener-
alized eigenvectors” and factors tike teM. (To compute this defective case we can use
the Jordan form in Appendix B, and find ¢’t) The formula u{t) = e* 1 (0) remains
completely correct.

The matrix ¢ is never singular. One proof is to look at its eigenvalues; if A is an
eigenvalue of A, then &M is the corresponding eigenvalue of ¢M—and e¥ can never be
zero. Another approach is to compute the determinant of the )exponential:

det eAr — eh!elq_l‘ s eAﬂr — eh‘ace(Af)' (9)

Quick proof that e#/ is invertible: Just recognize e~ as its inverse.

This invertibility is fundamental for differential equations. If » solutions are
linearly independent at ¢ = 0, they remain linearly independent forever. If the initial
vectors are vy, . . ., Uy, W Call put the solutions e#'v into a matrix:

[etyy - e"“v,&:e"“[m e yh

The determinant of the left-hand side is the Wionskian. It never becomes Zeto, because
it is the product of two nonzero determinants. Both matrices on the right-hand side are
invertible.

Remark  Notall differential equations come o us as a first-order system du/df = Au.
‘We may start from a single equation of higher order, like " —3y" +2y" = 0.To convert
1o a 3 by 3 system, introduce v = y and w = v’ as additional unknowns along with y

itself. Then these two equations comnbine with the original one to give i’ = Au:

v 0 1 01y
] or =140 01 v| = Au.
= 3w —2v 0 -2 3 w

We are back to a first-order system. The problem can be solved two ways. In a course
on differential equations, you would substitute y = € into ¥ - 3y 2y =0

033242 =0 o AG-DG- 2NeM =0, - (10)

The three pure exponential solutions are y = e, y=2¢,andy= 22, No eigenvectors
are involved. In a linear algebra coutse, We find the eigenvalues of Al

- 1 0
det (A — AT} = a1 == anr-0=0 (11)
-2 3—-A
Equations (10) and (11) are the same! The same {lwee exponents appear: A = 0, h=1
and A = 2. This is a general rule which makes the two methods consistent; the growth,
cates of the solutions stay fixed when the equations change form. It scems to us thal
solving the third-order equation is quicker. '

‘The physical significance of dujdt = [f ﬁé] u is easy to explain and at the sam®

time genuinely important. This differential equation describes a process of diffusic
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both -——
ian concentration 0 v w 0
as do '
enesr; So 51 Sy S3
nu
aains Figure 5.1 A model of diffusion between four segments.
is an Divide an infinite pipe into four segments (Figure 5.1). At time ¢ = 0, the middle segments
rex be contain concentrations v(0) and w(0) of a chemical. Af each fime t, the diffusion
rate between two adjacent segments is the difference in concentrations. Within each
0) segment, the concentration remains uniform (zero in the infinite segments). The process
is continuous in time but discrete in space; the unknowns are v(f) and w(¢) in the two
inner segments Sy and S5.
15 _?“.Ie The concentration »(¢) in $; is changing in two ways. There is diffusion into S,
initial and into or out of S,. The net rate of change is dv/dt, and dw/dt is similar:
. dv
Flow rate into 5} 5= (w—v) 40—~
zcause
ide are ) dw
Flow rate into S, Pk O —w)+{w-—w.
= A This law of diffusion exactly matches our example du Jdt = Auw:
>onvert -
with y Lol and du  [-2o+w| [-2 1 "
T lw de  lv—2wl| | 1 2™
The eigenvalues —1 and —3 will govern the solution. They give the rate at which the
concentrations decay, and A; is the more important because only an exceptional set of
starting conditions can lead to “superdecay” at the rate ¢~¥. In fact, those conditions
Lf;ourse must come from the eigenvector (1, —1). If the experiment admits only nonnegative
X concentrations, superdecay is impossible and the limiting rate must be e~". The solution:
{10) that decays at this slower rate corresponds to the eigenvector (1, 1). Therefore the two
ctors coricentrations will become nearly equal (typical for diffusion) as ¢ — oo,
we One more comment on this example: 1t is a discrete approximation, with only two
unknowns, to the continuous diffusion desciibed by this partial differential equation:
2
(11) . du 0%
Heat equation —= .
a or  ax?
La=1, That heat equation is approached by dividing the pipe into smaller and smaller segments,
> growth of length 1/N. The discrete system with N unknowns is governed by
> us that
' iy —2 1 i)
the same

diffusion.
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This is the finite difference matrix with the 1, —2, 1 pattern. 'The right side Ax approaches
the second detivative d*u/dx?, aftet a scaling factor N2 comes from the flow problem.
In the limit as N — ©0, W& veach the feat equation du/dt = 9%y /8x?. Tis solu-
tions are still combinations of pure exponentials, but now there are infinitely many.
Instead of eigenvectors from Ax = Ax, we have eigenfunctions from d2udx® = A
Those are u(x) = sinnax with 2 = 27 Then the solution to the heat equation is

[oe]
u(f) e sinnmx.
n=1
The constants ¢, are determined by the initial condition. The novelty is that the eigen-
vectors are functions u (x), because the problem is continuous and not discrete.

Stability of Differential Equations

Just as for difference equations, the eigenvalues decide how u(t) behaves as £ — ©0.
As long as A can be diagonalized, there will be n pure exponential solutions to the
differential equation, and any specific solution # (f) is some combination

ui(t) = SeM sty = e+t Cpl™ Xy

Stability is governed by those factors eM'. If they all approach zero, then u(z) approaches
zero, if they all stay bounded, then #(2) stays bounded; if one of them blows up, then
except for very special starting conditions the sotution will blow up. Furthermore, the
size of e depends only on the real pat of A J£1s only the real paris of the eigenvalues
that govern stability: If ) = a + ib, then

M = ettt = e (cos bt -+ i sinbt) and {he magpitude is e} = e™.
This decays fora < 0,it1s constant for @ = 0, and it explodes fora > 0. The imaginary
part is producing oscillations, but the amplitude comes from the real part.
EMi  The differential equation du/dt = Au is
stable and e — 0 whenever all Rer; <0,

neutrally stable when allRe); < OandRe} = 0, and

unsfable and e is unbounded if any eigenvalue has Reir; > 0.

Tn some texts the condition Re 2 < Ois called asymptotic stability, because it guarantees
decay for large times £. Our argument depended on having n pure exp onental solutions,
but even if A is not diagonalizable (and there are terms like 1eM) the resulf is still true:
All solutions approach zero if and only if all eigenvalues have Rel) < 0. o

Stability is especially easy to decide for a 2 by 2 system (which is very common in

applications). The equation is

di la b
dt’cdu’
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and we need to know when both eigenvalues of that mairix have negative real parts.
(Note again that the eigenvalues can be complex numbers.) The stability tests are

Reldy <0 The trace a + d must be negative.
Red, <0 The determinant ad — bc must be positive.

When the eigenvalues are real, those tests guarantee them to be negative, Their product
is the determinant; it is positive when the eigenvalues have the same sign. Their sum is
the trace; it is negative when both eigenvalues are negative,

When the eigenvalues are a complex pair x + iy, the tests still succeed. The trace
is their suin 2x (which is < 0) and the determinant is A+ —iv)y =2+ ¥ = 0.
Figure 5.2 shows the one stable quadrant, trace < 0 and determinant > 0. It also shows
the parabolic boundary line between real and complex eigenvatues. The reason for the
parabola is in the quadratic equation for the eigenvalues:

a=ir b | _ ., _
def‘, [ e d- )LJ = A" — {trace)A 4 (det) = 0. (13)

The quadratic formula for A leads to the parabola (trace)? = 4(det):

Arand A, = % [trace -I: 1/(trace)? — 4(det) ]. (14)

Above the parabola, the number under the square root is negative—so A is not real. On

the parabola, the square root is zero and A is repeated. Below the parabola the square

roots are real. Every symmetric matrix has real eigenvalues, since if b = ¢, then
(trace)® — 4(det) = (a + d)? — 4(ad — b?) = (a—d)*+4b% > 0.

For complex eigenvalues, b and ¢ have opposite signs and are sufficiently large,

determinant [
b

AL =Ag
| + and
', T2 =4D
' both Re A< 0 both Red > 0 K
\‘ stable unstable S

*

> ¢+
s, complex | eigenvalues S

both A < 0 ™, " both A >0
real and stable ‘s, »* real and nnstable

.
., -
\~ -

-
- -

— trace T

det < 0 gives A; < 0 and Ay > 0: real and unstable

Figure 5.2 Stability and instability regions for a 2 by 2 matrix.
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Example 2

Example 3

One from each guadrant: only #2 is stable:

b3 [5Gl [

On the boundaries of the second quadrant, the equation is neutrally stable. On the hori-
zontal axis, one eigenvalue is zero (because the determinant is A1h = 0). Onthe vertical
axis above the origin, both eigenvalues are purely imaginary (because the trace is Zero).
Crossing those axes are the two ways that stability is lost.

The n by n case is more difficult. A test forRe ; < 0came from Routh and Hurwitz,
who found a series of inequalities on the entries a;;. I do not think this approach is much
good for a large matrix; the computer can probably find the eigenvalues with more
certainty than it can test these inequalities. Lyapunov’s idea was to find a weighting
matrix W so that the weighted length |Wu(f)[ is always decreasing. If there exists
such a W, then ||Wu|| will decrease steadily to zero, and after a few ups and downs
must get there too (stability). The real value of Lyapunov’s method is for a nonlineayr
equation——then stability can be proved without knowing a formula for w(1).

dufdt = [? —él u sends u(f) around a circle, starting from #(0) = (1, 0).

Since trace = 0 and det = 1, we have purely imaginary eigenvalues:
[_’; :ﬂ —=32+1=0 so A=-+iand —i

The eigenvectors are (1, —i) and (1, i), and the solution 1s

u(t) = %e” [Hj] 4+ %e_i’ [lt]

That is correct but not beautiful. By substituting cos# 31 sins for e and e, real
numbers will reappear: The circling solution is u(f) = (cost, sinf).
Starting from a different u(0) = {(a, b), the solution () ends up as

acost — bsint cost -sint | |a
ult) = {bcost%—as'mt] . [sinr cost} [b} (13
There we have something important! The last matrix is multiplying u(0), so it must be
the exponential e*'. (Remember that u (£} = e*u(0).) That matrix of cosines and sines

is our leading example of an orthogonal matrix. The columns have length 1, their inner
product is Zero, and we have a confirmation of a wonderful fact:

L If A is skew-symmetric (AT = —A) then e? is an orthegonal matrix. 1

AT = —A gives a conservative system. No enegy is lost in damping or diffusion:

)T =e,  and e u (@l = uOll.
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That last equation expresses an essential property of otthogonal matrices. When they
multiply a vector, the length is not changed. The vector 1(0) is just rotated, and that [
describes the solution to di /dt = Au: It goes around in a circle. ¥ oo
In this very unusual case, e can also be recognized directly from the infinite series. NI
ori- Note that 4 = [? ‘é] has A? = —7, and use this in the series for et A :
ical ) , v l L
10). 1_1;_;_... _;_'_t_%... L.
A (An? ( 2 6 ]
I+At+(—)_+(_6l+'“: - 2 i |
uch P
lote _ Jcost —sint : |
ting | sint  cost ! T (
tists ‘ X i
18 U Example 4 The diffusion equation is stable: A — [“f Hé] has A = -1 and A = —3, W ‘ |
near il lh |
S
Example 5  If we close off the infinite segments, nothing can escape: e r
{1
du -1 1 dvfdt = w—u S|
—-— = u or : At
dr 1 -1 dw/dt =v—w,. S
ol i
This is a continuous Markoy process. Instead of moving every year, the particles move i i f
every instant. Their total number v - w is constant. That comes from adding the two {J } [
equations on the right-hand side: the derivative of v + w is zero, A
A discrete Markov matrix has its column sums equal 1o A = 1. A continuous i M ;
Markov matrix, for differential equations, has its column sums equal t0 Ay = 0. A is o }‘5“ .‘
a discrete Markov matrix if and only if B = A - J is a continuous Markov matrix, The if I i
steady state for both is the eigenvector for Aygy. It is multiplied by 1* = 1 in difference S
equations and by e” = 1 in differential equations, and it doesn’t move. BN I
real In the example, the steady state has v = . i 21’ ‘} :
. BRI
10 o
Example 6 In nuclear engineering, a reactor is called critical when it is neutrally stable; the fission J*}'I ?
balances the decay. Slower fission makes it stable, or subcritical, and eventually it runs a
(15) dow. Unstable fission is a bomb,
isthe . Second-Order Equations
sines '
inmer The laws of diffusion led to a first-order system du/dt = Au. So do a lot of other
applications, in chemistry, in biology, and elsewhere, but the most important law of :
physics does not. Itis Newton’s law ¥ = ma, and the acceleration a is a second derivative. i
Inertial terms produce second-order equations (we have to solve d2y /d1* = Au instead
of du/dt = Au), and the goal is to understand how this switch to second derivatives i
alters the solution.* It is optional in linear algebra, but not in physics. ;
* Fourth derivatives are also possible, in the bending of beams, but nature seems to resist going !
higher than four.
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The comparison will be perfect if we keep the same A:

du -2 1

Two initial conditions get the system started—the “displacement” u (0} and the “velocity”
' (0). To match these conditions, there will be Zn pure exponential solutions.

Suppose we use @ rather than 1, and write these special solutions as i = éolx.
Substituting this exponential into the differential equation, it must satisfy
& e et 2
ﬁ(e x) = A(€?x), or —@'x = Ax. (an

The vector x must be an eigenvector of A, exactly as before. The corresponding eigen-
value is now —a?; so the frequency @ is connected to the decay rate A by the law
o = ). Every special solution e"x of the first-order equation leads to two special
solutions e“x of the second-order equation, and the two exponents are © = 4/ A,
This breaks down only when A = 0, which has just one square root; if the eigenvector is
x, the two special solutions are x and 7x. o

For a genuine diffusion matrix, the eigenvalues A are all pegative and the frequencies
@ are all real: Pure diffusion is converted into pure oscillation. The factors 2" produce
neutral stability, the solution neither grows or decays, and the total energy stays precisely

constant. It just keeps passing around the system. The general solution fo d*ujdr® = Au,
if A has negative eigenvalues Ay, ..., Ay and if w; = /—A;, is

() = (c1e'™ + dye ™ xg + -+ (™ + dpe™ )%, (18)

As always, the constants are found from the initial conditions. This is easier to do (at the
expense of one extra formula) by switching from oscillating exponentials to the more

familiar sine and cosine:

u(t) = (a; cos wjt + b; sin o )xy + -+ + (@, cos wyt + by sin o, t)x,. {am

Qand

The initial displacement 1 (0) is easy to keep separate: f = 0 means that sinwt =
cos wt = 1, leaving only

a = S 'u(0).

u(0) = axy + -+ AuXn, or  u(0) = Sa, or

Then differentiating u () and setting 1 = 0, the b’s are determined by the initial velocity:
w' (0} = Byeoyxy + -+ DuoaXa. Substituting the a’s and b’s into the formulz for u(t),

the equation is solved.

The matrix A = _% _é has b= — L and Ay = —3.The frequencies are w; = 1

/3. Tf the system starts from rest, u'(0) =0, the terms in b sin et will disappear:
p B

andw, =
. 1 i 1 1 1
Solation from u(0) = 0 () = 5 cos? 3y + 5 cos /3t 1l

Physically, two masses are connected to each other and to stationary walls by threi
identical springs (Figure 5.3). The first mass is held at v(0) = 1, the second mass is held
at w(0) = 0, and at ¢ = 0 we let go. Their motion u(f) becomes an average of two pute

oscillations, corresponding to the two eigenvectors. In the first mode x; = (1, 1), &




'_ 1 T [
(16)
L
— LT W ) 09 HA 09— =75).999
:ity”
“x. | L i
1 1
N
Figure 5.3 The slow and fast modes of oscillation,
geI-
,15.1“; masses move together and the spring in the middle is never stretched (Figure 5.3a). The
,’—Ei; frequency w; = 1is the same as for a single spring and a single mass. In the faster mode
. is. ¥y = (1, —1) with frequency /3, the masses move oppositely but with equat speeds. The
° general solution is a combination of these two normal modes. Our particular solution is
ies half of each.
;C co As time goes on, the motion is “almost periodic.” If the ratio @) /w; had been a
- | fraction like 2/3, the masses would eventually return to u(0) = (1, 0) and begin again.
IS: Y A combination of sin 27 and sin 3¢ would have a period of 2. But +/3 is irrational. The
" best we can say is that the masses will come arbitrarily close to (1,0) and also (0, 1).
Like a billiard ball bouncing forever on a perfectly smooth tabie, the total energy is fixed.
(18) Sooner or later the masses come near any state with this energy.

Again we cannot leave the problem without drawing a parallel to the continuous
it the case. As the discrete masses and springs merge into a solid rod, the “second differences”
nore given by the 1, —2, 1 matrix A turn into second derivatives, This limit is described by

the celebrated wave equation 3u /31> = 2, /8x2,
(19}
) and Problem Set 5.4
1. Following the first example in this section, find the eigenvalues and eigenvectors,
and the exponential e, for
' -1 1
sity: A“[ I %1}‘
u(t), : . )
® 2. For the previous matrix, write the general solution to du/dt = Awu, and the specific
-1 solution that matches 4 (0) = (3, 1). What is the steady state as t — co? (This is a
a continuous Markov process; A = 0in a differential equation corresponds to &, = 1
pear

in a difference equation, since ¢% = 1)

3. Suppose the time direction is reversed to give the matrix — A;

du 1 —1° . 3
—d? = [_1 l} i with Uy = [1}

Find u(z) and show that it blows up instead of decaying as t — oo, (Diffusion is
irreversible, and the heat equation cannot run backward.)
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|

|

|
‘ 4. 1f P is a projection matrix, show from the infinite series that
1 el ~ 14+ 1.718P.

5, A diagonal matrix like A = [(1) g] satisfies the usual rule e A4+ = eA e, because

L _ the rule holds for each diagonal entry.
(2) Explain why eA¢+7) = e*e4T, using the forinula e = Se S
(b) Show that e?*? = e%e® is not true for matrices, from the example

- 0 0 - 0 ’—'1 . - A B
A= [1 O] B= [0 0} (use series for ¢ and e ).

6. The higher order equation y” +y = 0 can be written as a first-order system by
introducing the velocity ¥’ as another unknowin:

£)-B1- 1)

If this is du/dt = Au, what is the 2 by 2 matrix A? Find its eigenvalues and eigen-
vectors, and compute the solution ‘that starts from y(0) = 2, y'(0) = 0.

7. Convert ¥* = 0 to a first-order system dufdt = Au:

d Iy _Doto Ly
ar )0 [0 oj by
This 2 by 2 matrix A has only one eigenvector and cannot be diagonalized. Compute
Aty (0) starting from y(0) =3,

oA from the sexies [+ Af+- - - and write the solution e
¥ (0) = 4. Check that your (¥, y') satisfies y” = 0.

8. Suppose the rabbit population r and the wolf population w are govetned by

d«
E%:étrﬁ?.w
dw —rdw
dar )

(a) Is this system stable, neutrally stable, or unstable?
(b) If initially » = 300 and w = 200}, what ate the populations at time £7

(c) After along time, what is the proportion of tabbits to wolves?

‘ 9. Decide the stability of u’ = Aw for the following matrices:
- 2 3%, I 2
_ (@ A_[4 5]. (b)Ar:{S _1].

(c)A:H _;] (d)A:{j j]

10. Decide on the stability or instability of dv/dr = w, dw/dt
that decays?

trace and determinant, at what time ¢ do the following matrices chang
genvalues, and unstable

= . Is there a solution

11. From their
between stable with real eigenvalues, stable with complex i

1 —1 0 4—1¢ t —1
T P S i N
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12. Find the eigenvalues and eigenveciors for |-

0 30 e
d 5
EE=A,~,¢= ~3 0 4|
g 0 —4 0 i

Why do you know, without computing, that e will be an orthogonal mafrix and
N * = u? 4 u2 + 13 will be constant?

13. Yor the skew-symmetric equation

du 0 c —b i
h =Ai = | —¢ 0 a ity 1,
f b —a 0 iy

(a) write out u}, uj, u3 and confirm that winy + iy + whuy = 0,
(b) deduce that the length u? + 2 + 43 is a constan.
{c) find the eigenvalues of 4.

The solution will rotate around the axis w = (g, b, c), because Au is the “cross

product” & x w—which is perpendicular to » and w.
14. What are the eigenvalues A and frequencies w, and the general solution, of the :
following equation? e
NI
du -5 4 il ]
FTEI  R s il
15. Solve the second-order equation !
du -5 1 . 1 , ol 1
TE [»1 _s|¥ with w(0) = [0 and u'(0) = O}' gl

16. In most applications the second-order equation looks like Mu” + Ky — 0, with
a mass matrix multiplying the second derivatives. Substitute the pure exponentia) (i
1 = ¢™x and find the “generalized eigenvalue problem” that must be solved for L
the frequency e and the vector x.

17. With a friction matrix F in the equation u” -+ Fu' — Au = 0, substitute a pute
exponential i = ¢Mx and find a quadratic eigenvalue problem for ).

18. For equation (16) in the text, with ¢ = 1 and /3, find the motion if the first mass
ishitatr = 0; u(0) = (0, 0) and »'(0) = (1, 0).

19. Every 2 by 2 matrix with trace zero can be written ag

a b+e
A_[b—c —a ]

Show that its eigenvalues are real exactly when a? + p? > 2,

20. By back-substitution or by computing eigenvectors, solve

1 21 1
=10 3 6|y with u(0)y = {0/,
1

L
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21, Find }’s and x’s so that u = & x solves
du T4 3
dr {01 "

Yt g, starts from u{0) = (5, =2)7

What combination u = c1e™’x + cz¢
22. Solve Problem 21 for u(f) = (y(2), z(£)) by pack-substitution:

d
First solve ;i—i = z, starting from z(0) = —2.

d
Then solve ?i)t_) = 4y + 3z, starting from y{(0) = 5.

The solution for y will be a combination of e and e’
= 5y + 4y into a vector equation for u(f) = (@), Y )

' 23. Find A to change y”

| - ]

What are the eigenvalues of A7 Find them also by substituting y =¢
equation y” = 5y +4y.

M jnto the scalar

24. A dooris opened between rooms that hold v(0) = 30 people and w(0) = 10 people,

The movement between rooms is proportional to the difference v —w:

i d—zh—w v and dw =v—1W
L T atr
Show that the total v + w is constant (40 people). Find the matrix in dufdt = Au,

t =17

and its eigenvalues and eigenvectors. What are v and w at

25, Reverse the diffusion of people in Problem 24 to du/dt = —Au:

by

A
S —=v—Ww and S =W =,
dt dt

' LI The total » + w still remains constant. How are the A’s changed now th
' changed to —A? But show that v(z) grows to infinity from »(0) = 30.
C + Dt. Convert to a matrix equation:

at A is

The solution to y" = 0 is a straight line y =

4yl _10 1 y] . H“ A,{y«n]
T L),} = [0 0] L’, has the solution ¥ =e YO

d. Pind A? and compute e™ =1I+At+
), ¥ (0)) to check the straight line y(f) =

26

+

This matrix A cannot be diagonalize
1422 - - Multiply your e times {(y(0
y(0) + ¥'(0)z.

27. Substitute y = ¢* into 3"
trouble; we need a second solution after e

#bl= o]l

= 3, 3 and only one line of eigenveciors. Trouble her

= 6y’ — 9y to show that A = 3 is a repeated root. This is
3 The matrix equation is '

Show that this matrix has A
t00. Show that the second solution is y = te”.
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28. Figure out how to write my” + by 4 ky =0 as a vector equation Mu' = Ay,

29. (a) Find two familiar functions that solve the equation d*y/df? = —y. Which one
starts with y(0) = 1 and y'(0) = 07
(b) This second-order equation y” = -y produces a vector equation u’ = Au:

g IR 1R

Put y{z) from part (a) into u(r) = (¥. ¥). This solves Problem 6 again.

30. A particular solution to du/di=Au — b is u p=A71b, if A is invertible. The
solutions to du/dt = Au give u,,. Find the complete solution i, + u, to
du du 2 0 8
3L If ¢ is not an eigenvalue of A, substifute u — 'y and find v to solve du/dt =

Au—e“b. This u = ¢“v is a particular solution. How does it break.down when ¢
is an eigenvalue?

32. Find a matrix A to illustrate each of the unstable regions in Figare 5.2:

(@) A <Oand iy > 0.
b) Ay > 0and Az = 0.
(¢) Complex A's with real part a > 0.

Problems 33-41 are about the matrix exponential e4?,

33. Write five terms of the infinite series for e**. Take the ¢ derivative of each term.
Show that you have four terms of Ae?’. Conclusion: e44(0) solves i’ = Au.

&

" 34, The matrix B = [ 0 —[1, J has B2 = 0, Find e®' from a (short) infinite series. Check

that the derivative of ¢! is BeB',

35. Starting from #(0), the solution at time 7" is eATy (0). Go an additional time ¢ to
reach e (A" (0)). This solution at time ¢ + 7 can also be written as
Conclusion: e** times 47 equals

36 Wiite A = [§ 3| in the form SAS™1. Find ¢4 from SeM s

37. If A? = A, show that the infinite serics produces e’ = I -+ (¢ — 1)A. For 4 =
[§ 4] in Problem 36, this gives e =

38. Generally e?e? is different from ePeA. They are both different from ¢4+ 8, Check
this using Problems 36-37 and 34:

SIS e P |

39, Write A = [5 ;} as SAS L. Multiply Se®* S~ to find the matrix exponential e4f.
Check ¢ = I when ¢ = 0.
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40, Put A = [Z‘) 31 info the infinite series to find e’ First compute A%

oo 8ol 4] e )

41. Give two reasons why the matrix exponential e is never singulat:

a) Write its inverse.
(b) Write its eigenvalues, If Ax = Ax then edly = x.

42. Find a solution x (), y(z) of the fixst system that gets large as t — o<, To avoid this
instability a scientist thought of exchanging the two equations!

dx/dt = Ox —4y becomes dy/di = —2x +2y

dyfdt = —2x +2y dx/di = 0x —4y.
Now the matrix [—02 fi] is stable. It has A < 0. Comment on this craziness.

43. From this general solution to du/dt = Au, find the matrix A:

2 1
u(®) = cye” [J.—I— cre™ L]

55 COMPLEX MATRIGES

It is no longer possible to work only with real vectors and real matrices. In the first
half of this book, when the basic problem was Ax = b, the solution was real when A
and b were real. Complex numbers could have been permitted, but would have
contributed nothing new. Now we cannot avoid them. A real matrix has real coefficients
in det (A — AT), but the eigenvalues (as in rotations) may be complex. :
~ We now introduce the space C* of vectors with n complex componen(s.
Addition and matrix multiplication follow the same rules as before. Length is com-
puted differently. The old way, the vector in C? with components (1, i) would have zero
length: 12 + i% = 0, not good. The correct length squared is 1?2+l =2. -

This change to [ix})? = b|* + -+ + [xa|* forces a whole series of other changes
The inper product, the transpose, the definitions of symmelric and orthogonal matrices,
all need to be modified for complex numbers. The new definitions coincide with the old
when the vectors and matrices are real. We have listed these changes in a table at the e
of the section, and we explain them as we go.

That table virtually amounts to a dictionary for translating real into complex. We
hope it will be useful to the reader. We particularly want to find out about symumnetric
matrices and Hermitian matrices: Where are their eigenvalues, and what is special
about their eigenvectors? For practical purposes, those are the most important guestio
in the theory of eigenvalues. We call attention in advance to the answers:

1. Every symmetric matrix (and Hermitian matrix) has real eigenvalues.
2, Its eigenvectors can be chosen to be orthonormal.

Strangely, to prove that the eigenvalues are real we begin with the opposite possibili
and that takes us to complex numbers, complex vectors, and complex matrices.




