Chapter 2

TREES

2.1 TREE DEFINITIONS

Let G(V, E) be an (undirected), finite or infinite graph. We say that

G is circuit-free if there are no simple circuits in G. G is called a tree if
it is connected and circuit-free.

Theorem 2.1: The following four conditions are equivalent:

(a) G is a tree.

(b) G is circuit-free, but if any new edge is added to G, a circuit is formed.

(c) G contains no self-loops and for every two vertices there is a unique
simple path connecting them.

(d) G is connected, but if any edge is deleted from G, the connectivity of G
is interrupted.

Proof: We shall prove that conditions (a) = (b) = (c) = (d) = (a).

(a) = (b): We assume that G is connected and circuit-free. Let e be
a new edge, that is e ¢ E; the two endpoints of e, a and b, are elements
of V. If a = b, then e forms a self-loop and therefore a circuit exists.
If @ # b, there is a path in G (without e) between a and b; if we add e,
this path with e forms a circuit.

(b) = (c): We assume that G is circuit-free and that no edge can be
added to G without creating a circuit. Let a and b be any two vertices of
G. If there is no path between them, then we can add an edge between a
and b without creating a circuit. Thus, G must be connected. Moreover, if
there are two simple paths, P and P’, between a and b, then there is a circuit
in G. To see this, assume that P = e;, ez, ..., e;and P' = B T ey
en’. Since both paths are simple, one cannot be the beginning of the
other. Let i be the first index for which e; # e, and let v be the first
vertex on e;, €i+1, ..., € which is also on e;’, i1’y «-+y €m . The two
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disjoint subpaths between the branching off vertex and v form a simple
circuitin G.

(c) = (d): We assume the existence of a unique simple path between
every pair of vertices of G. This implies that G is connected. Assume now
that we delete an edge e from G. Since G has no self-loops, e is not a self-
loop. Let a and b be e’s endpoints. If there is now (after the deletion of e)
a path between a and b, then G has more than one simple path between a
and b. )

(d) = (a): We assume that G is connected and that no edge can be
deleted without interrupting the connectivity. If G contains a simple cir-
cuit, any edge on this circuit can be deleted without interrupting the con-
nectivity. Thus, G is circuit-free.

Q.E.D.

There are two more common ways to define a finite tree. These are given
in the following theorem.

Theorem 2.2: Let G(V, E) be a finite graph and n = | V|. The following
three conditions are equivalent:

(a) G is a tree.
(b) G is circuit-free and has n — 1 edges.
(¢) G is connected and has n — 1 edges.

Proof: For n = 1 the theorem is trivial. Assume rn = 2. We shall prove
that conditions (a) = (b) = (¢) = (a).

(a) = (b): Let us prove, by induction on n, that if G is a tree, then its
number of edges is n — 1. This statement is clearly true for n = 1. As-
sume that it is true for all # < m, and let G be a tree with m vertices. Let
us delete from G any edge e. By condition (d) of Theorem 2.1, G is not
connected any more, and clearly is broken into two connected components
each of which is circuit-free and therefore is a tree. By the inductive hy-
pothesis, each component has one edge less than the number of vertices.
Thus, both have m — 2 edges. Add back e, and the number of edges is
m— 1.

(b) = (c): We assume that G is circuit-free and has n — 1 edges. Let us
first show that G has at least two vertices of degree 1. Choose any edge e.
An edge must exist since the number of edges is» — 1 and n = 2. Extend
the edge into a path by adding new edges to its ends if such exist. A new
edge attached at the path's end introduces a new vertex to the path or a
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circuit is closed. Thus, our path remains simple. Since the graph is finite,
this extension must terminate on both sides of e, yielding two vertices of
degree 1. .

Now, the proof that G is connected proceeds by induction on the number
of vertices, n. The statement is obviously true for n = 2. Assume that it is
true forn = m — 1, and let G be a circuit-free graph with m vertices and
m — 1 edges. Eliminate from G a vertex v, of degree 1, and its incident
edge. The resulting graph is still circuit-free and has m — 1 vertices and
m — 2 edges; thus, by the inductive hypothesis it is connected. There-
fore, G is connected too.

(c) = (a): Assume that G is connected and has n — 1 edges. If G con-
tains circuits, we can eliminate edges (without eliminating vertices) and
maintain the connectivity. When this process terminates, the resulting
graph is a tree, and, by (a) = (b), has n — 1 edges. Thus, no edge can be
eliminated and G is circuit-free.

Q.E.D.

Let us call a vertex whose degree is 1, a leaf. A corollary of Theorem 2.2
and the statement proved in the (b) = (c) part of its proof is the following
corollary:

Corollary 2.1: A finite tree, with more than one vertex, has at least two
leaves.

2.2 MINIMUM SPANNING TREE

A graph G'(V', E') is called a subgraph of a graph G(V, E), if
V' € Vand E' € E. Clearly, an arbitrary choice of V' < V and E'c E
may not yield a subgraph, simply because it may not be a graph; that is,
some of the endpoints of edges in E’ may not be in V.

Assume G(V, E) is a finite, connected (undirected) graph and each edge
e € E has a known length I(e) > 0. Assume we want to find a connected
subgraph G’(V, E’) whose length, L. I(e), is minimum; or, in other
words, we want to remove from G a subset of edges whose total length is
maximum, and which leaves it still connected. It is clear that such a sub-
graph is a tree. For G’ is assumed to be connected, and since its length
is minimum, none of its edges can be removed without destroying its
connectivity. By Theorem 2.1 (see part (d)) G’ is a tree. A subgraph of G,
which contains all of its vertices and is a tree is called a spanning tree of G.
Thus, our problem is that of finding a minimum-length spanning tree of G.
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There are many known algorithms for the minimum spanning tree
problem, but they all hinge on the following theorem:

Theorem 2.3: Let U C V and e be of minimum length among the edges
with one endpoint in U and the other endpoint in ¥V — U. There exists a
minimum spanning tree T such that e is in T

Proof: Let T, be a minimum spanning tree. If e is not in Ty, add e to Ty.
By Theorem 2.1 (part (b)) a circuit is formed. This circuit contains e and
at least one more edge u <y, whereu € Uandv € V — U. Now, l(e) =<
I(e’), since e is of minimum length among the edges connecting U with
V — U. We can delete ¢’ from Ty, + e. The resulting subgraph is still
connected and by Theorem 2.2 is a tree, since it has the right number of
edges. Also, the length of this new tree, which contains e, is less than or
equal to that of T,. Thus, it is optimal.
Q.E.D.
Let G(V, E) be the given graph, where V = {1, 2, ..., n}. We assume
that there are no parallel edges, for all but the shortest can be eliminated.
Thus, let I(i, j) be l(e) if there is an edge i—j, and infinity otherwise.
The following algorithm is due to Prim [1]:

Me—1,T—@and U — {1}.

(2) LetI(t, u) = Min,ev—u {I(z, v)}.

(3) T — T U {e} where e is the edge which corresponds to the length
I(t, u).

4) U~UU {u}.

(5) IfU =V, stop.

(6) Foreveryv € V — U, I(t, v) — Min{l(t, v), I(u. v)}.

(7) Go to Step (2).

(Clearly t = 1 throughout. We used ¢ instead of 1 to emphasize that
I(t, v) may not be the original I(1, v) after Step (6) has been applied.)

The algorithm follows directly the hint supplied by Theorem 2.3. The
“vertex'* t represents the subset U of vertices, and for v € V — U I(¢, v) is
the length of a shortest edge from a vertex in U to v. This is affected by
Step (6). Thus, in Step (2), a shortest edge connecting U and V — U is
chosen.

Although each choice of an edge is “plausible”, it is still necessary to
prove that in the end, T is 2 minimum spanning tree.

Let a subgraph G'(V', E') be called an induced subgraph if E' con-
tains all the edges of E whose endpoints are in V'; in this case we say that
;' is induced by V'.
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First observe, that each time we reach Step (5), T is the edge set of a
spanning tree of the subraph induced by U. This is easily proved by induc-
tion on the number of times we reach Step (5). We start with U = {1} and
T = @ which is clearly a spanning tree of the subgraph induced by {1}.
After the first application of Steps (2), (3) and (4), we have two vertices in
U and an edge in T which connects them. Each time we apply Steps (2),
(3) and (4) we add an edge from a vertex of the previous U to a new vertex.
Thus the new T is connected too. Also, the number of edges is one less
than the number of vertices. Thus, by Theorem 2.2 (part (c)), T is a span-
ning tree.

Now, let us proceed by induction to prove that if the old T is a sub-
graph of some minimum spanning tree of G then so is the new one. The
proof is similar to that of Theorem 2.3. Let T, be a minimum spanning
tree of G which contains T as a subgraph, and assume e is the next edge
chosen in Step (2) to connect between a vertex of Uand V — U. If e is not
in T, add it to Ty to form T, + e. It contains a circuit in which there is
one more edge, e’, connecting a vertex of U with a vertex of V — U. By
Step (2), I(e) < I(e'), and if we delete e ' from T + e, we get an minimum
spanning tree which contains both T, as a subgraph, and e, proving that
the new T is a subgraph of some minimum spanning tree. Thus, in the end
T is 2 minimum spanning tree of G.

The complexity of the algorithm is O(| V|2); Step (2) requires at most
|V| — 1 comparisons and is repeated | V| — 1 times, yielding O(| V|?).
Step (6) requires one comparison for each edge; thus, the total time spent
onitis O(|E|).

It is possible to improve the algorithm and the interested reader is ad-
vised to read the Cheriton and Tarjan paper [2]. We do not pursue this
here because an understanding of advanced data structures is necessary.
The faster algorithms do not use any graph theory beyond the level of this
section.

The analogous problem for diagraphs, namely, that of finding a subset
of the edges E' whose total length is minimum among those for which
(V, E') is a strongly connected subgraph, is much harder. In fact, even the
case where l(e) = 1 for all edges is hard. This will be discussed in Chap-
ter 10.

2.3 CAYLEY’'S THEOREM

In a later section we shall consider the question of the number of span-
ning trees in a given graph. Here we consider the more restricted, and yet
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interesting problem, of the number of trees one can define on a given set of
vertices, V = {1, 2, ..., n}.

For n = 3, there are 3 possible trees, as shown in Figure 2.1. Clearly,
for n = 2 there is only one tree. The reader can verify, by exhausting all
the cases, that for » = 4 the number of trees is 16. The following theorem
is due to Cayley [3]:

Theorem 2.4: The number of spanning trees for n distinct vertices is n"~2

The proof to be presented is due to Priifer [4]. (For a survey of various
proofs see Moon [5].)

Proof: Assume V = {1, 2, ..., n}. Let us display a one-to-one corre-
spondence between the set of the spanning trees and the n"~? words of
length n — 2 over the alphabet {1, 2, ..., n}. The algorithm for finding
the word which corresponds to a given tree is as follows:

(1)i-—1.

(2) Among all leaves of the current tree let j be the least one (i.e., its name
is the least integer). Eliminate j and its incident edge e from the tree.
The ith letter of the word is the other endpoint of e.

(3) Ifi = n — 2, stop.

(4) Increment ¢ and go to step 2.

For example, assume that n = 6 and the tree is as shown in Figure 2.2.
On the first turn of Step (2), j = 2 and the other endpoint of its incident
edge is 4. Thus, 4 is the first letter of the word. The new tree is as shown in
Figure 2.3. On the second turn, j = 3 and the second letter is 1. On the
third, j = 1 and the third letter is 6. On the fourth, j = 5 and the fourth
letter is 4. Now i = 4 and the algorithm halts. The resulting word is 4164
(and the current tree consists of one edge connecting 4 and 6).

On

Figure 2.1
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Figure 2.2
H—0—C0—0O—~
Figure 2.3

By Corollary 2.1, Step (2) can always be performed, and therefore for
every tree a word of length n — 2 is produced. It remains to be shown that
no word is produced by two different trees and that every word is generated
from some tree. We shall achieve both ends by showing that the mapping
has an inverse; i.e., for every word there is a unique tree which produces it.

Let w = a,a; ... a,—, be a word over V. If T is a tree for which the
algorithm produces w then the degree of vertex k, d(k), in T, is equal to
the number of times k appears in w, plus 1. This follows from the observa-
tion that when each, but the last, of the edges incident to k is deleted, k is
written as a letter of w; the last edge may never be deleted, if k is one of
the two vertices remaining in the tree, or if it is deleted, k is now the re-
moved leaf, and the adjacent vertex, not k, is the written letter. Thus, if
w is produced by the algorithm, for some tree, then the degrees of the
vertices in the tree must be as stated.

For example, if w = 4164 then d(1) = 2,d(2) = 1, d3)=1,d4) =3,
d(5) = 1 and d(6) = 2 in a tree which produced w.

Given this data, apply the following algorithm:

(1) i — 1.

(2) Let j be the least vertex for which d(j) = 1. Construct an edge j—a.
d(j) — 0Oand d(a;) — d(a) — 1.

(3) If i = n — 2, construct an edge between the two vertices whose degree
is 1 and stop.

(4) Increment i and go to step 2.

It is easy to see that this algorithm picks the same vertex j as the original
algorithm, and constructs a tree (the proof is by induction). Also, each step

L i e T Sl Sy
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of the reconstruction is forced, therefore it is the only tree which yields w,
and for every word this algorithm produces a tree.

In our example, for i = 1, j = 2 and since @, = 4 we connect 2—4, as
shown in Figure 2.4. Now, d(1) = 2, d(2) = 0, d3) = 1, d(4) = 2,
d(5) = 1and d(6) = 2. Fori = 2,j = 3 and since a; = 1 we connect
3—1, as shown in Figure 2.5. Now d(1) = 1,d(2) = 0,d(3) = 0, d(4) =
2,d(5) = 1and d(6) = 2. Fori = 3,j = 1 and since a; = 6 we connect
1—6 as shown in Figure 2.6. Now, d(1) = d(2) = d(3) = 0,d(4) = 2 and
d(5) = d(6) = 1. Finally, { = 4, j = 5 and since a, = 4 we connect 5—4,
as shown in Figure 2.7. Now, d(1) = d(2) = d(3) = d(5) = 0 and d(4) =
d(6) = 1. By step 3, we connect 4—6 and stop. The resulting graph is as
in Figure 2.2.

Q.E.D.

A similar problem, stated and solved by Lempel and Welch [6], is that
of finding the number of ways m labeled (distinct) edges can be joined by
unlabeled endpoints to form a tree. Their proof is along the lines of Priifer’s
proof of Cayley’s theorem and is therefore constructive, in the sense that
one can use the inverse transformation to generate all the trees after the
words are generated. However, a much simpler proof was pointed out to
me by A. Pnueli and is the subject of Problem 2.5.

O—6© O ©® & 6

G—© O0—6 6 6
G—® G—0— &

O—>O—CF O—~C0O—06

Figure 2.7
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2.4 DIRECTED TREE DEFINITIONS

A digraph G(V, E) is said to have a root r if r € V and every vertex
v € V is reachable from r; i.e., there is a directed path which starts in r
and ends in v.

A digraph (finite or infinite) is called a directed tree if it has a root and
its underlying undirected graph is a tree.

Theorem 2.5: Assume G is a digraph. The following five conditions are
equivalent:

(a) G is a directed tree.

(b) G has a root from which there is a unique directed path to every vertex.

(¢) G has a root r for which di(r) = 0 and for every other vertex v,
di(v) = 1.

(d) G has a root and the deletion of any edge (but no vertices) interrupts
this condition.

(e) The underlying undirected graph of G is connected and G has one
vertex r for which d..(r) = 0, while for every other vertex v, di,(v) = 1.

Proof: We prove that (a) = (b) = (¢) = (d) = (e) = (a).

(a) = (b): We assume that G has a root, say r, and its underlying un-
directed graph G' is a tree. Thus, by Theorem 2.1, part (c), there is a
unique simple path from r to every vertex in G'; also, G' is circuit-free.
Thus, a directed path from r to a vertex v, in G, must be simple and
unique.

(b) = (c): Here we assume that G has a root, say r, and a unique
directed path from it to every vertex v First, let us show that d,,(r) = 0.
Assume there is an edge u — 7. There is a directed path from r to u, and it
can be continued, via e, back to . Thus, in addition to the empty path
from r to itself (containing no edges), there is one more, in contradiction
of the assumption of the path uniqueness. Now, we have to show that if
v # r then di,(v) = 1. Clearly, d;,(v) > 0 for it must be reachable from r.
If d,,(v) > 1, then there are at least two edges, say v; = v and v, Loy
Since there is a directed path P, from r to v,, and a directed path P, from
r to v,, by adding e, to P, and e, to P, we get two different paths from
r to v. (This proof is valid even if v, = v,.)

(¢) = (d): This proof is trivial, for the deletion on any edge u = v will
make v unreachable from r.

AW el
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(d) = (e): We assume that G has a root, say r, and the deletion of any
edge interrupts this condition. First di(r) = 0, for any edge entering r
could be deleted without interrupting the condition that r is a root. For
every other vertex v, di,(v) > 0, for it is reachable from r. If d,.(v) > 1, let
vi = v and v, = v be two edges entering v. Let P be a simple directed path
from r to v. It cannot use both e; and e;. The one which is not used in P
can be deleted without interrupting the fact that r is a root. Thus, d;,(v) = 1.

(e) = (a): We assume that the underlying undirected graph of G, G ', is
connected, di,(r) = 0 and for v # r, di.(v) = 1. First let us prove that r is
a root. Let P' be a simple path connecting r and v in G'. This must corre-
spond to a directed path P from r to v in G, for if any of the edges points
in the wrong direction it would either imply that d..(r) > 0 or that for
some 4, din(u) > 1. Finally, G' must be circuit-free, for a simple circuit
in G' must correspond to a simple directed circuit in G (again using
dif(r) = 0 and di(v) = 1 for v # r), and at least one of its vertices, u,
must have d(u) > 1, since the vertices of the circuit are reachable from r.

Q.E.D.

In case of finite digraphs one more useful definition of a directed tree is
possible:

Theorem 2.6: A finite digraph G is a directed tree if and only if its under-
lying undirected graph, G', is circuit-free, one of its vertices, r, satisfies
di(r) = 0, and for all other vertices v, di,(v) = 1.

Proof: The “only if”" part follows directly from the definition of a directed
tree and Theorem 2.5, part (c).

To prove the “if” part we first observe that the number of edges is
n — 1. Thus, by Theorem 2.2, (b) = (c), G' is connected. Thus, by
Theorem 2.5, (e¢) = (a), G is a directed tree.

Q.E.D.

Let us say that a digraph is arbitrated (Berge [7] calls it quasi strongly
connected) if for every two vertices v, and v, there is a vertex v, called an
arbiter of v, and v, such that there are directed paths from v to v, and
from v to v,. There are infinite digraphs which are arbitrated but do not
have a root. For example, see the digraph of Figure 2.8. However, for
finite digraphs the following theorem holds:
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Theorem 2.7: If a finite digraph is arbitrated then it has a root.

Proof: Let G(V, E) be a finite arbitrated digraph, where Vi= {1,200
n}. Let us prove, by induction, that every set {1,2, ..., m}, where m < n,
has an arbiter; i.e., a vertex a,, such that every 1 < { = m is reachable
from a,,. By definition, a, exists. Assume a,,— exists. Let a,, be the arbiter
of a,,—, and m. Since a,,— is reachable from a,,and every 1 =i = m — 1
is reachable from @,,—, every 1 =i <= m — 1 is also reachable from a,,.
Q.E.D.
Thus, for finite digraphs, the condition that it has a root, as in Theorem
2.5 part a, b, c and d, can be replaced by it being arbitrated.

2.5 THE INFINITY LEMMA
The following is known as Konig’s Infinity Lemma [8]:

Theorem 2.8: If G is an infinite digraph, with a root r and finite out-

degrees for all its vertices, then G has an infinite directed path, starting
inr.

Before we present the proof let us point out the necessity of the finiteness
of the out-degrees of the vertices. For if we allow a single vertex to be of
infinite out-degree, the conclusion does not follow. Consider the digraph of
Figure 2.9. The root is connected to vertices v, vi4 v, ..., where v/* is
the second vertex on a directed path of length k. It is clear that the tree is
infinite, and yet it has no infinite path. Furthermore, the replacement of
the condition of finite degrees by the condition that for every k the tree has
a path of length k, does not work either, as the same example shows.

Proof: First let us restrict our attention to a directed tree T which is an
infinite subgraph of G. T’s root is r. All vertices of distance 1 away from r
in G are also of distance 1 away from r in T. In general, if a vertex v is of
distance ! away from r in G it is also of distance [ away from r in T'; all
the edges entering v in G are now dropped, except one which connects a
vertex of distance | — 1 to v. It is sufficient to show that in T there is an
infinite directed path from r. Clearly, since T is a subgraph of G, all its
vertices are of finite outdegrees too.

In T, r has infinitely many descendants (vertices reachable from r). Since
r is of finite out-degree, at least one of its sons (the vertices reachable via
one edge), say ri, must have infinitely many descendants. One of 7,'s sons
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has infinitely many descendants, too, and so we continue to construct an
infinite directed pathr, ry, ra, ....
Q.E.D.

In spite of the simplicity of the theorem, it is useful. For example, if we
conduct a search on a directed tree of finite degrees (where a bound on the
degree may not be known) for which it is known that it has no infinite
directed paths, then the theorem ensures us that the tree is finite and our
search will terminate.

An interesting application of Theorem 2.8 was made by Wang [9]. Con-
sider the problem of tiling the plane with square tiles, all of the same size
(Wang calls the tiles ‘““dominoes’). There is a finite number of tile families.
The sides of the tiles are labeled by letters of an alphabet, and all the tiles
of one family have the same labels, thus are indistinguishable. Tiles may
not be rotated or reflected, and the labels are specified for their north
side, south side, and so on. There is an infinite supply of tiles of each
family. The tiles may be put one next to another, the sides converging only
if these two sides have the same labels. For example, if the tile families are
as shown in Figure 2.10, then we can construct the ‘‘torus” shown in
Figure 2.11. Now, by repeating this torus infinitely many times horizontally
and vertically, we can tile the whole plane.

Wang proved that if it is possible to tile the upper right quadrant of the
plane with a given finite set of tile families, then it is possible to tile the
whole plane. The reader should realize that a southwest shift of the upper-
right tiled quadrant cannot be used to cover the whole plane. In fact, if
the number of tile families is not restricted to be finite, one can find sets
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of families for which the upper-right quadrant is tileable, while the whole
plane is not.

Consider the following directed tree T The root r is connected to ver-
tices, each representing one of the tile families, i.e., a square 1 X 1 tiled with
the tile of that family. For every k, each one of the legitimate ways of tiling
a (2k + 1) X (2k + 1) square is represented by a vertex in T its father is
the vertex which represents the tiling of a (2k — 1) X (2k — 1) square,
identical to the center part of the square represented by the son.

Now, if the upper-right quadrant is tilable, then T has infinitely many
vertices. Since the number of families is finite, the out-degree of each ver-
tex is finite (although, may not be bounded). By Theorem 2.8, there is an
infinite directed path in T. Such a path describes a way to tile the whole
plane.

2.6 THE NUMBER OF SPANNING TREES

A subgraph H of a finite digraph G is called a directed spanning tree of
G if H is a directed tree which includes all the vertices of G. If r is the root
of H, then it is clearly a root of G. Also, if r is a root of G, then a spanning
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directed tree H of G exists with root . This is simply observed by con-
structing H, edge by edge, starting from r and adding each time an edge of
G from a vertex already reachable from r in H to one which is not reachable
yet.

We shall now describe a method of Tutte [10] for computing the number
of spanning directed trees of a given digraph with a given specified root.
(For historical details, see reference 11.)

Let us define the in-degree matrix D of a digraph G(V, E), where V =
{1,2, ..., n}, as follows:

di@) ifi =},
D@ j) =
=k if i # j, where k is the number of edges in G from
itoj.

Lemma 2.1: A finite digraph G(V, E), with no self-loops is a directed tree
with root ~ if and only if its in-degree matrix D has the following two
properties:

1] ifi =r,
(1) D@ i) =
1 ifi #r.

(2) The minor, resulting from erasing the rth row and column from D and
computing the determinant, is 1.

Proof: Assume that G(V, E) is a directed tree with root r. By Theorem
2.5, part ¢, D satisfies property (1). Now, renumber the vertices in such a
way that 1 is the root and if i — j then { < j. This can be achieved by
numbering the vertices of unit distance from 1 as 2, 3, .... Next number
the vertices of distance two, three, etc. The new in-degree matrix is deri-
vable from the previous one by performing some permutation on the rows,
and the same permutation on the columns. Since such a permutation does
not change the determinant, the two minors are the same. The new in-
degree matrix D' satisfies the following properties:

D'(1,1)=0,
D'Gi=1 for i=2,3,...,n,
D'Gj)=0 if i>j
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Thus, the minor, resulting from the erasure of the first row and the first
column from D' and-computing the determinant, is 1.

Now assume that D satisfies properties (1) and (2). By property (1) and
Theorem 2.6, if G is not a directed tree then its underlying undirected
graph contains a simple circuit. The vertex r cannot be one of the vertices
of the circuit, for this would imply that either di(r) > 0 or for some other
vertex v di(v) > 1, contrary to property (1). The circuit must be of the
form:

fp=iy= oot =iy

where [ is the length of the circuit, and no vertex appears on it twice. Also,
there may be other edges out of #;, i2, ..., i1, but none can enter, Thus,
each of the columns of D, corresponding to one on this vertices, has exactly
one +1 (on the main diagonal of D) and one —1 and all the other entries
are 0. Also, each of the rows of this submatrix is either all zeros, or there
is one +1 and one —1. The sum of these columns is therefore a zero
column, and thus, the minor is 0. This contradicts property ).

Q.E.D.

As a side result of our proof, we have the additional property that the
minor of a graph whose in-degree matrix satisfies property (1) is O if the
graph is not a directed tree with root r.

Theorem 2.9: The number of directed spanning trees with root r of 2 di-
graph with no self-loops is given by the minor of its in-degree matrix which
results from the erasure of the rth row and column.

The proof of this theorem follows immediately from Lemma 2.1, the
comment following it, and the linearity of the determinant function with
respect to its columns. Let us demonstrate this by the following example.
Consider the graph shown in Figure 2.12. Its in-degree matrix D is as fol-
lows:
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Figure 2.12

Assume that we want to compute the number of directed spanning trees
with root 2. We erase the second row and column. The resulting deter-
minant is

Now let us decompose this determinant into columns which represent
one edge in every column. First, the 2 X 2 determinant can be written as

2 0 —1
= | 1 —2
-1 0 3

We have returned the second row of D except its second entry, which
must be made equal to 1 (in this case its value did not change). All other
entries in the second column are changed into zero. Next, we decompose
each column, except the second, into columns which consist of a single +1
and a single —1, as follows:




+( 0 1 -1+ 0 1 -1

—1 0 1 —1 0 1

These six determinants correspond to the following selections of sets of
edges, respectively: {e;, €2}, {es, €4}, {e3, es}, {es, €2}, {es, es}, {es, €s}.
After erasing the second row and column, this corresponds to

2 -1 1 -1 10 1 0
= + +
-1 3 0 1 0 1 0 1
1 -1 1 0 1 0
+ + +
-1 1 -1 1 -1 1

Each of these six determinants corresponds to a selection of n — 1 edges
of the original graph. By Lemma 2.1, the resulting subgraph is a directed
tree with root 2 if and only if the corresponding determinant is equal to
one. Otherwise, it is zero, Thus, we get the number of directed trees with 2
as a root. Clearly, in our case, the only set which does not yield a directed
tree is {es, e} and indeed

Q.E.D.
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Let us now consider the question of the number of spanning trees of a
given undirected graph G(V, E). Consider the digraph G'(V, E') defined
as follows: For every edge u — v in G define the two edges u = v and
v = u in G'. Let r be a vertex. There is a one-one correspondence between
the set of spanning trees of G and the set of directed spanning trees of G’
with root r: Let T be a spanning tree of G. If the edge u — v is in T and if
u is closer than v to r in T then pick e’ for T'; if v is closer, pick e". Also,
given T', it is easy to find the corresponding 7' by simply ignoring the
directions; i.e., the existence of either e’ or e” in T implies that e is in T.
Thus, we can compute the number of spanning trees of G by writing the
in-degree matrix of G', and computing the minor with respect to r. Clearly,
the choice of r cannot make any difference. Now, the in-degree matrix of
G' is given by

dG@) inGifi =}
DG j) = —k where k is the number of edges connecting i and j
in G.

This matrix is called the degree matrix of G. Hence, we have the following
theorem:

Theorem 2.10: The number of spanning trees of an undirected graph with
no self-loops is equal to any of the minors of its degree matrix which re-
sults from the erasure of a row and a corresponding column.

We can now use Theorem 2.10 to describe another proof of Cayley's
Theorem (2.4). The number of spanning trees that can be constructed with
vertices 1, 2, ..., n is equal to the number of spanning trees of the com-
plete graph of n vertices; that is, the graph G(V, E) with V = {1, 2,
..., n} and for every i # j there is one edge i—j. Its degree matrix is

After erasing one row and the corresponding column, the matrix looks
the same, except that it is now (n — 1) X (» — 1). We can now add to any
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column (or row) a linear combination of the others, without changing its
determinant. First subtract the first column from every other. We get:

n—1 —n —n ... —n]|
= n 0 0
=1 0 n 0

L. =1 0 0 n |

1 0 0 ... 0]
-1 n 0 0
=1 0 0

ERE

Clearly, the determinant of this matrix is n"~2

2.7 OPTIMUM BRANCHINGS AND DIRECTED
SPANNING TREES

A subgraph B(V, E') of a finite digraph G(V, E) is called a branching
if it is circuit-free and di.(v) = 1 for every v € V. Clearly, if for only one
vertex r, di.(r) = 0 and for all the rest of the vertices, v, di(v) = 1 then,
by Theorem 2.6, the branching is a directed tree with root r.

Let each edge e have a cost c(e). Our problem is to find a branching
B(V, E") for which the sum of the edge costs, L. c(e), is maximum. This
problem was solved independently by a number of authors [12, 13, 14]. We
shall follow here Karp’s paper [15]. First, we will show how to find a
maximum branching. Then, we shall point out the simple modification for
finding a minimum branching and a minimum spanning tree.

Let us call an edge u = v, of G, critical if

(i) c(e) > 0 and ,
(ii) for all other edges u’ = v, c(e) = c(e’).
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Let H be a set of critical edges, where for each vertex one entering critical
edge is chosen, if any exist. The graph (V, H) is called critical.

Lemma 2.2: If a critical graph (V, H) is circuit-free then it is a maximum
branching.

Proof; Clearly (V, H) is a branching if it is circuit-free. If vertex v has no
positive edges entering it in G and if B is a branching, then either B has
no edge entering v, or if it has one, we can drop it without reducing B’s
total cost. Clearly, H contains no edge which enters v either. If vertex v has
positive edges which enter it in G, then the one in H is of maximum cost,
and therefore no branching can do better here either. Since H is at least
as good as B in each vertex, (V, H) is a maximum branching.

Q.E.D.

If a critical graph contains circuits then it is not a branching. Let us
study some of its properties.

Lemma 2.3: Each vertex in a critical graph is on at most one circuit.

Proof: If a vertex v is on two directed circuits then there must be a vertex
u for which di(#) = 2; a contradiction. Such a vertex can be found by
tracing backwards on one of the circuits which passes through v.

Q.E.D.

Let B(V, E’) be a branching and u = v an edge not in B. Then e is
eligible relative to B if the set

E” =E' U {e} — {e’'|e’ € E' and it enters v}
yields a branching (V, E").

Lemma 2.4: Let B(V, E’) be a branching and e € E — E'. u — v is
eligible relative to B if and only if there is no directed path in B from
vtowu.

Proof: If there is a directed path from v to u in B, then when we add e
a directed circuit is formed. The deletion of the edge entering v in B, if
any, cannot open this circuit. Thus, e is not eligible.

If there is no directed path from v to u in B, then the addition of e
cannot close a directed circuit. However, the resulting edge set may not



