
OCTOBER 2012 | VOL. 55 | NO. 10 | COMMUNICATIONS OF THE ACM 99

DOI:10.1145/2347736.2347759

A Fast Solver for a Class
of Linear Systems
By Ioannis Koutis, Gary L. Miller, and Richard Peng

Abstract
The solution of linear systems is a problem of fundamental
theoretical importance but also one with a myriad of applica-
tions in numerical mathematics, engineering, and science.
Linear systems that are generated by real-world applications
frequently fall into special classes. Recent research led to a
fast algorithm for solving symmetric diagonally dominant
(SDD) linear systems. We give an overview of this solver and
survey the underlying notions and tools from algebra, prob-
ability, and graph algorithms. We also discuss some of the
many and diverse applications of SDD solvers.

1. INTRODUCTION
One of the oldest and possibly most important computa-
tional problems is that of finding a solution to a system of
linear equations. There is evidence that humans have been
solving linear systems to facilitate economic activities
since at least the first century AD. With the advent of physi-
cal sciences and engineering, linear systems have been,
for centuries now, a central topic of applied mathematics.
And over the last two decades, the digital revolution has
expanded the use of linear system solvers to applications
of surprising variety.

Many of these new applications typically model enti-
ties and their relationships as networks, also known
as graphs, and use solvers to extract information from
them. The resulting linear systems frequently obey sim-
ple constraints which classifies them as symmetric diag-
onally dominant (SDD).

An example of an area where such systems arise is in
the analysis of social networks. Such networks can be rep-
resented as a set of links connecting people; an example is
shown in Figure 1. A natural question to ask is how “close”
are two persons in the network. Purely graph-based methods
measure either the length of the shortest path or the maxi-
mum number of disjoint paths between the two nodes, but
not both. To take both of these quantities into account we
can view the network as an electric circuit with each connec-
tion corresponding to an electrical wire. Hooking a battery at
the two nodes of interest and measuring the resistance of the
entire network gives a quantity known as the effective resis-
tance, which can be used as a “proximity” measure. Since the
electrical network is not physically available, we cannot mea-
sure the effective resistance. We can, however, compute it by
solving an SDD linear system.

The above example is only one of many instances of infer-
ence on a graphical model. Similar methods are applicable
in a wide range of problems, such as measuring the impor-
tance of specific proteins in protein–protein interaction

networks14; the link prediction problem in social networks13;
or even problems where graphs arise less directly, such as
 segmenting the image shown in Figure 2.

More intricate uses of electrical networks have been dis-
covered in the context of classical graph optimization prob-
lems, with the recent network flow algorithm by Christiano
et al.5 standing out as an algorithmic breakthrough. The
algorithms reduce the problem to not just one network,

This paper is based on two previous works: “Approaching
 Optimality for Solving SDD Linear Systems,” which
 appeared in the Proceedings of FOCS ’10 and “A Nearly-m
log n Time Solver for SDD Linear Systems,” which
 appeared in the Proceedings of FOCS ’11.

Figure 1. Representing a social network as a graph.

Figure 2. Segmentation of medical scans.21

100 COMMUNICATIONS OF THE ACM | OCTOBER 2012 | VOL. 55 | NO. 10

research highlights

require solving an SDD linear system, which is the problem
we are trying to solve in the first place.

Our main contributions are two ideas that allow us to
circumvent this “chicken and egg” problem. The first idea
is to use an upper estimate on the effective resistance for
each edge. The second idea is to compute these estimates
on a modified graph, in which the estimates are sufficiently
good. The modification is in fact quite simple; we find an
LSST of the graph and increase the weight all of its edges.
To compute the upper estimate for the effective resistance
of an edge in the modified graph we only use the edges of
the LSST. A key side effect of this modification is that the
number of non-tree edges in the preconditioner is much
less than the number of edges in the original graph. In this
way we meet the known design conditions and obtain the
faster solver.

2. NETWORKS, SYSTEMS, SOLVERS
Let us consider the problem of finding a voltage setting given
the desired net current flow at each of the vertices. A simple
three-node example of an electric network is depicted in
Figure 3. The inverse of the resistance of wire, also known
as conductance, is a direct analogue to the edge weight in
a graph; because of that we choose to label each wire by
its conductance rather than its resistance. Setting the volt-
ages of the vertices to some values leads to an electrical flow
through the edges. There are two fundamental principles
governing this voltage setting. (a) Kirchhoff’s law, which
states that with the exception of the vertices where current
is injected/extracted, the net flow at each vertex is zero.
(b) Ohm’s law, which states that the current on an edge
equals the voltage difference between its endpoints times
the conductance of the wire.

As an example consider the network given in Figure 3
where we set the voltages at the three vertices to be x1, x2, and
x3 respectively. By Ohm’s law we get that the current flows
along edges 1 → 2 and 1 → 3 are 1 · (x1 − x2) and 2 · (x1 − x3),
respectively. Therefore the amount of current we will need to
inject into vertex 1 to maintain these voltages is:

1 · (x1 − x2) + 2 · (x1 − x3) = 3x1 − x2 − 2x3

Identities for the required current entering/leaving vertices
2 and 3 can also be derived similarly. Therefore, if we want
one unit of current to enter at vertex 1 and leave at vertex
3, the voltages will need to satisfy the following system of
 linear equations:

Using more compact notation, linear systems assume the
form Ax = b where x is a n × 1 column vector of unknowns,

but to a sequence of networks via successive readjustment
of edges. In these algorithms, some of the resulting sys-
tems are significantly harder than “typical” instances, cap-
turing—in some sense—the hardness of the optimization
problems themselves.

Current SDD solvers are empirically fast for some engi-
neering applications, but they are not able to efficiently solve
most cases of SDD linear systems. Besides these practical
limitations, the fact that existing SDD solvers lack guaran-
tees on arbitrary instances limits their implications to the
theory of algorithms as well.

These factors underline the need for “mathematically
certified” solvers that are provably fast for arbitrary SDD
linear systems, independently of their origin, be it—for
instance—social or protein networks. This paper describes
our state of the art solver for SDD linear systems.

1.1. A glimpse at the solver
The class of SDD linear systems arises in particular in the
study of electrical networks, which provide us with a con-
cept crucial to understanding how our algorithm works:
the effective resistance between two points in a network.
In addition, the connection to networks enables adopting a
second alternative view of our linear system, as a weighted
graph. We give the details in Section 2.

We then move to the algebraic component of our solver.
The approximate solution of linear systems via iterative
methods is a topic not commonly encountered in com-
puter science but thoroughly studied in the context of
numerical linear algebra and scientific computation.
Section 3 explains iterative methods via an analogy with
the computation of the inverse of a real number in a calcu-
lator with a broken division key, where only addition and
multiplication operations are available. This leads us to
preconditioning, a term first used by Alan Turing. In the
graph theoretic context, preconditioning provides a mea-
sure of similarity between graphs. This measure is used to
formalize design conditions sufficient for the construction
of a fast iterative method.

What distinguishes our solver from classical iterative
methods is its combinatorial component and specifically
the use of graph theoretic algorithms. It was understood
before our work that the key to a fast solver is finding a
 subgraph (the preconditioner) which is similar to a given
graph, but has substantially fewer edges.20 Our contribution
is a conceptually simple procedure for constructing good
preconditioners, this is the topic of Section 4.

The base of our preconditioner is a spanning tree of
the input graph, in other words a minimally connected
subgraph. Our algorithm needs a special type of spanning
tree called a low-stretch tree (LSST) which we describe in
Section 4.1. This can be found using very sophisticated but
fast algorithms.

To get a better preconditioner, we perform random sam-
pling: each edge of the input graph is put into the precon-
ditioner with a specified probability. It was known that the
effective resistance between the two endpoints of each edge
provides a good sampling probability for it.18 Unfortunately
the problem of computing the effective resistance seems to

Figure 3. A simple network and linear system.

OCTOBER 2012 | VOL. 55 | NO. 10 | COMMUNICATIONS OF THE ACM 101

also called variables, b is a n × 1 column vector of real num-
bers, and A is an n × n matrix containing the coefficients of
the variables. For example, the above linear system can be
expressed in matrix form as:

 (2.1)

Note that each off-diagonal entry is the negation of the
conductance of the resistor connecting its two vertices,
and each diagonal entry is the sum of the conductances
of all resistors incident to the corresponding vertex.
Since resistive networks can also be viewed as undirected
graphs, this type of matrix is known as a Graph Laplacian
and we will rely on this connection extensively in our
algorithm. SDD matrices are a further generalization of
graph Laplacians. However, an SDD system can be eas-
ily transformed into a Laplacian system (e.g. see Koutis
et al.9) and so we will restrict our attention entirely to
graph Laplacians.

Once we’re able to obtain the voltages at each vertex, we
can also compute the effective resistance between two ver-
tices. Intuitively, this notion can be viewed as thinking of
the entire network as a single electrical component. Then
by Ohm’s law the voltage drop required to send 1 unit of
 current corresponds to the resistance of the component.
In our example, the effective resistance between vertex 1
and 2 is x1 − x3 = 2/5. Formally, this value equals vs − vt from
the solution of the linear system Lv = j, where j is zero
everywhere except in the two entries corresponding to the
nodes s and t, for which we set js = 1 and jt = −1. As we will
see later, this metric is not only used for network analytics,
but also plays a crucial role in our solver itself.

2.1. Solvers and their speed
Despite its long history, the problem of constructing good
solvers is considered far from being solved, especially in
terms of speed. The speed of algorithms is commonly mea-
sured in terms of the input size. In the case of general lin-
ear systems on n variables, the matrix has size n2. However,
matrices are often sparse, that is, most of their entries are
equal to zero. Because of this we can easily “compress” them
to size proportional to the number of non-zeros, denoted by m.
The best case scenario, which remains entirely consistent
with our current understanding, is that linear systems can
be solved with O(m)a operations.

It’s fair to say that Gaussian elimination is the most
well-known method for solving linear systems. It runs in
O(n3) time and it is known as a direct method in that, if
the arithmetic operations are performed exactly then one
gets the exact solution to the system. Although this expo-
nent of 3 has been decreased to as low as 2.37,24 direct
methods in general require storing n2 entries, creating
a natural bottleneck that limits us to systems with a few
thousand variables.

One possible remedy to the space and time limitations of
direct methods are iterative methods. These compute pro-
gressively better approximate solutions by only performing
matrix–vector products and other simpler vector operations.

One of the most important iterative methods is Conjugate
Gradient, discovered by Lanczos, Hestenes, and Stiefel in
the early 1950s. This method works for arbitrary symmetric
positive definite systems, a class that includes SDD systems.
While it requires only O(m) space, it is understood that its
running time—in its original form—can be large.

Strong evidence that iterative methods can combine low
space requirements and very fast running time was pro-
vided by a family of iterative methods known as multigrid.22
Multigrid solvers have an O(m) running time guarantee
albeit for restricted and well-structured systems that arise in
scientific computing.

The solver we will review in this paper is also an iterative
method. It is the culmination of a line of work initiated by
Vaidya,23 which was brought to near-completion with the
breakthrough achievement of Spielman and Teng19: the first
solver that runs in time O(m logc n) for any graph Laplacian,
where c is a large constant. The work discussed here, sum-
marized in the following claim from Koutis et al.,10 provides
a conceptually simpler, faster and more practical algorithm.

Theorem. SDD systems can be solved in Õ(m log n log(1/ε))
time,b where ε is a standard measure of the approximation
error.

3. THE ALGEBRAIC COMPONENT
3.1. Iterative methods: Division-free inversion
Our way towards the faster solver starts with a basic and
 perhaps seemingly unrelated question: is it possible to com-
pute the inverse 1/α of a number α using a calculator with a
broken division key?

To answer the question we can invoke a basic identity
that tells us that when 0 < α < 2, 1/α equals the following infi-
nite sum:

1/α = 1/(1 − (1 − α))
= 1 + (1 − α) + (1 − α)2 + (1 − α)3 + . . . (3.2)

Of course, computing an infinite sum is not possible. But
keeping a number of terms will give us an approximation of
1/α; the more terms we keep the better the approximation.

But how is this related to the problem of solving linear
systems? Matrices borrow several of the usual proper-
ties of scalar numbers. When A is symmetric, its inverse
A−1 also satisfies the identity in 3.2, substituting A for
α, A−1 for 1/α and the identity matrix I for the number 1.
Furthermore, if we want an approximation to x = A−1bc we
can actually avoid entirely taking powers of the matrix; the
ith approximate vector

x(i) = (I + (I – A) + . . . (I – A)i)b

a We use f (n) = O(g (n)) to denote f (n) ≤ c · g(n) when n ≥ n0 for some constants
c and n0.

b The Õ() notation hides a log log n factor.
c If A−1 does not exist, as in the case of Laplacians, we use A−1 to denote the
pseudoinverse as well.

102 COMMUNICATIONS OF THE ACM | OCTOBER 2012 | VOL. 55 | NO. 10

research highlights

3.4. Interpreting similarity
It is interesting to see what this measure of similarity means
in the context of electrical networks, that is when both A and
B are Laplacians. The quadratic form

xT Ax

is equal to the energy dissipation of the network A, when the
voltages at vertices are set to the values in the vector x. Then,
the network B is a k-approximation of the network A when-
ever for all voltage settings, B dissipates energy which is
within a k factor of that dissipated by A.

So, roughly speaking, two networks are similar when
their “energy profiles” are similar. This definition does not
necessarily correspond to intuitive notions of similarity; two
networks may appear to be very different but still be similar.
An example is shown in Figure 4.

3.5. What is a good preconditioner?
Armed with the measure of similarity, we are now ready to
face the central problem in solver design: how do we com-
pute a good preconditioner?

To deal with the question we must first understand what
properties are desirable in a preconditioner. A big unknown
in the total running time is the cost incurred by the limited
division button that evaluates B−1y.

To evaluate B−1y we do not need to compute B−1. We can
instead solve the system Bz = y; the solution z will be equal
to B−1y. Clearly, we would like to solve systems involving
B as quickly as possible. At the same time we would like the
number of iterations to be as small as possible, since each
of them requires at least m operations. Furthermore, a slow
algorithm for computing the preconditioner B would defeat
the purpose of a fast solver. So, we should also be able to find
B quickly. Balancing these three opposing goals makes the
problem quite challenging.

3.6. Recursion and design conditions
In order to solve the linear system fast, we will need a pre-
conditioner B which is an extremely good approximation
of A and can be solved in linear time. Satisfying both these
requirements is too much to hope for. In practice, any good
graph preconditioner B won’t be significantly easier to solve

can be produced with i applications of the following sim-
ple recurrence:

x(0) = 0
x(i+1) = b + (I – A)x (i) for i > 0.

It can be seen that each step involves a matrix–vector
 multiplication by A. This is the simplest among iterative
methods that in general attempt to approximate the solu-
tion of a linear system using only a sum of results from a
series of matrix–vector multiplications.

3.2. Preconditioning
So far, our replacement for the division button is of rather
restricted value, since it only works when 0 < α < 2, and
can converge very slowly when α is close to 0 or 2. One way
to extend our method and to speed up its convergence is
to add a “restricted division” key to our calculator. This
key allows us to “divide” by a fixed scalar b of our choice,
which in the matrix setting corresponds to a matrix–vec-
tor product involving the inverse, B−1 of a matrix B. We can
speed up our algorithm by pressing the “restricted divi-
sion” button after each matrix–vector multiplication by
A, giving the following modified recurrence known as pre-
conditioned Richardson iteration:

x(0) = 0
x(i+1) = B–1 b + (I – B–1 A)x (i) for i > 0.

The matrix B is known as the preconditioner and
instead of solving the system Ax = b, we are essentially
solving the preconditioned system: B−1 Ax = B−1b. It is
worth emphasizing that each step of this method involves
a matrix–vector multiplication by A followed by a “divi-
sion” by the matrix B.

3.3. Measuring similarity between matrices
Looking back at the single variable recurrence, the critical
condition for its convergence is 0 < α < 2. An extension of it
is needed in order to analyze preconditioned iterative meth-
ods involving matrices A and B. For matrices A and B, we say
A ! B when for all vectors x we have

xT Bx ≤ xT Ax.

Unlike the situation with scalars, this ordering is only
“partial”. Even for size 2 diagonal matrices, it is possible
that neither B ! A nor A ! B holds. But when A and B are
symmetric, there will be numbers kmax and kmin such that:

kmin A ! B ! kmax A.

We will say that B is a k-approximation of A, where
k = kmax/kmin. In this case, after introducing additional
scaling factors, it can be shown that the preconditioned
Richardson’s iteration gives a good approximation in O(k)
iterations. There are iterative methods with faster conver-
gence rates, and—as we will see—our solver relies on one of
them, known as Chebyshev iteration.

Figure 4. Two similar graphs: A complete graph and a random small
subset of its edges, made heavier.

OCTOBER 2012 | VOL. 55 | NO. 10 | COMMUNICATIONS OF THE ACM 103

promise for a multilevel hierarchy of progressively smaller
graphs. However, as observed by Vaidya,23 when m is almost
the same n, the graph has several “tree-like” parts, and these
can be reduced via a “partial” Gaussian elimination that
runs in O(m) time. So whenever this case appears, it makes
sense to first run partial elimination. This will decrease the
vertex count n, leading to a much smaller instance on which
recursion is applicable.

The multilevel analysis of Spielman and Teng is signifi-
cant not only for its actual algorithmic value but also the
conceptual reduction of the multi-level solver design prob-
lem to a well-defined two-level preconditioning problem,
allowing us now to focus on the combinatorial component
of the solver.

4. THE COMBINATORIAL COMPONENT
Although graph theory has been used to speed up direct
methods, it took a paradigm-shifting idea of Pravin Vaidya
to enter a systematic study of using graph theory for itera-
tive methods. In particular, Vaidya suggested the use of a
spanning tree of the graph A as a building base for the pre-
conditioner B. A spanning tree of a graph is a connected
subgraph without loops. The choice of a tree stems from
the observation that linear systems whose matrix is the
Laplacian of a tree can be solved in O(n) time via Gaussian
elimination. Adding a few edges of A back onto the tree
returns a preconditioner B which can only be better than
the tree, while still being relatively easy to solve. Vaidya’s
idea set forth two questions: (i) What is an appropriate
base tree? (ii) Which off-tree edges should be added into
the preconditioner?

While these questions seem to be interrelated, we can
actually address them separately.

4.1. Low-stretch: The base spanning tree
The goal of finding a preconditioning tree B which is as simi-
lar as possible to the graph A led Vaidya to a natural idea:
use a tree which concentrates the maximum possible weight
from the total weight of the edges in A.

The maximum-weight spanning tree idea led to the first
non-trivial results, but does not suffice for our algorithm.
In fact, the weight measure does not distinguish trees in
 unweighted graphs, where all trees have equal weight.

The key to finding a good tree to use as a building base
is the notion of stretch: For every edge (u, v) of the graph,
there is a unique “detour” path between u and v in a tree
T. The stretch of the edge with respect to T is equal to the
distortion caused by this detour, and in the unweighted
case, it is simply the length of the tree path. This notion
generalizes naturally to the weighted case, which we will
formalize in Section 4.3. The total stretch of a graph A
with respect to a tree T is the sum of the stretches of all the
off-tree edges. A low-stretch tree (LSST) is one for which
we have a good upper bound on the total stretch. So, at a
high level, an LSST has the property that it provides good
(on average) “detours” for edges of the graph. A concrete
example on a larger unweighted graph is given in Figure
6, where the tree on the right has lower total stretch, and
as it turns out is a better base tree to add edges to.

comparing to A. As a result, there is no hope that precondi-
tioned Richardson’s iteration or any other preconditioned
method can lead to fast solvers.

The remedy to the problem is recursion. In a recursive
preconditioned method, the system in the preconditioner B
is not solved exactly but approximately, via a recursive invo-
cation of the same iterative method. We now have to find a
preconditioner for B, and furthermore a preconditioner for
it and so on. This produces a multilevel hierarchy of progres-
sively smaller graphs.

Rohklin, Spielman, and Teng19 analyzed a recursive
iterative method which moves between levels of the hier-
archy as shown in Figure 5; for each visit at level i, the algo-
rithm makes k visits to level i + 1. Every time the algorithm
returns to the ith level it performs matrix–vector multipli-
cations with the graph Ai, and other simpler operations; so
the work is proportional to the number of edges of Ai. To
keep the total work as small as possible, that is O(km), the
graphs in the hierarchy must get smaller sufficiently fast.
In particular, it is sufficient that the graph on level i + 1 is
smaller than the graph on level i by a factor of 1/(2k).

However, the algorithm must converge within the O(km)
time bound. To achieve this, the iterative method analyzed
within this recursive framework is a method known as
Chebyshev iteration. It requires only O(k) iterations, when
B is a k2-approximation of A, as compared to the O(k2) itera-
tions required by Richardson’s iteration. Using this fact
Spielman and Teng arrived at design conditions that are
sufficient for a fast solver.20 It was actually shown that a
good algorithm for preconditioning extends to a good
solver. More specifically, assume that for some fixed value
C and any value of k, we have a fast algorithm that given A,
produces a k2-approximation with n + C · m/k edges. Then
we automatically get a solver that runs in time O(k · m).

Carefully checking the above statement, we realize that
there is a slight discrepancy. If m is close to n and k is large,
then n + C · m/k will be bigger than m, which contradicts our

Figure 5. The sequence of calls of a recursive iterative method.
The matrix is fixed at each level.

104 COMMUNICATIONS OF THE ACM | OCTOBER 2012 | VOL. 55 | NO. 10

research highlights

subsequent progress, which used LSSTs as a base for building
even more intricate preconditioners. In fact, LSSTs are indis-
pensable components of all nearly-linear time SDD system
solvers. It is worth pointing out that while LSSTs were origi-
nally conceived as potentially good two-level preconditioners,
their full power in the context of multilevel solvers was not
realized until our work, which we describe in Section 4.3.

4.2. Sparsification
Spielman and Teng’s19 main contribution was a “tour de
force” algorithm for finding a preconditioner that’s the
LSST plus a small number of edges. It took many by surprise
as it yielded the first nearly-linear time SDD solver.

Describing the algorithm is out of the scope of this arti-
cle, but it is worth noting its two enhancements over previ-
ous approaches. First, instead of just adding off-tree edges
from A back onto the tree, the algorithm re-weights them.
The tree edges may themselves be re-weighted in the final
preconditioner B. Second, the procedure for adding edges in
B is not deterministic but randomized, as it contains a pro-
cess for sampling edges from A.

However the major conceptual and technical contribution
of Spielman and Teng that formed the cornerstone of their
solver was a sparsification algorithm. They showed that every
graph A has a 2-approximation B which has O(n logc n) edges for
some large constant c. The graph B is called the sparsifier and,
of course, it can be used as a preconditioner when A is dense.

After the first sparsification result, progress towards faster
SDD solvers took a detour through the study of spectral spar-
sification as a stand-alone problem. Works by Batson, Kolla,
Makarychev, Saberi, Spielman, Srivastava, and Teng led to
nearly-optimal spectral sparsifiers, albeit at the cost of much
higher running time. These results were motivated by the
work of Spielman and Srivastava,18 who gave an extremely
simple algorithm for finding spectral sparsifiers with only
O(n log n) edges. Their algorithm, as well as the Spielman–
Teng spectral sparsification algorithm builds upon a frame-
work established by Benczur and Karger for sampling and
re-weighting a graph.

The framework requires positive numbers te assigned
to each edge, corresponding to the relative probabilities
of sampling them. It calculates the sum of these numbers,

 and proceeds for O(t log n) rounds. In each round one
new edge is added to the sparsifier B. The edge is picked ran-
domly with replacement among the m edges of A, but not in
a “fair” way. An edge e is picked with relative probability te,
which equates to a probability of pe = te/t. Once an edge is
picked, it is added to B with weight scaled down by a factor
of O(te log n). Furthermore, if an edge is picked twice or more
during this process, each new copy is added as a parallel
edge, making B potentially a multi-graph.

Algorithms for the computation of LSSTs were first stud-
ied in an unrelated context,2 where it was shown that any
graph contains a spanning tree with total stretch O(m1+ε); the
tree can be found in O(m log n) time. The total stretch was
lowered to O(m log2 n) in Elkin et al.,6 and further to Õ(m log
n) in Abraham and Neiman,1 giving the following theorem.

Theorem. Every graph has a spanning tree of total stretch
Õ(m log n). The tree can be found in Õ(m log n) time.

Boman and Hendrickson first introduced LSSTs as
stand alone preconditioners in 2001. This was a catalyst to

Figure 6. Two possible spanning trees of the unweighted square grid,
shown with red edges.

 Trees for the grid: a quantitative example
The two spanning trees of the 8 × 8 grid shown in
Figure 6 can guide our understanding of the general

 grid.

In the tree on the left, for each vertical edge beyond
 column , at least horizontal edges are needed
to travel between its endpoints; that means that its
stretch is at least . So the n/2 edges in the right half
of the square grid contribute a total stretch of n1.5.

In the tree on the right, all edges along the middle
row and column still have stretch . However,
the middle row and column only have edges
and so they contribute only O(n) to the total stretch.
Recall that all we need is a low total stretch, so a small
number of high-stretch edges is permitted. Having
accounted for the edges in the middle row and col-
umn, the argument can then be repeated on the four
smaller subgraphs of size n/4 formed by removing the
middle row and column. These pieces have trees that
are constructed similarly, leading to the recurrence

TotalStretch(n) = 4 × TotalStretch(n/4) + O(n).

Its solution is TotalStretch(n) = O(n log n).
A generalization of this type of “accounting”, that
keeps the number of high stretch edges small, forms
the basis of the current state-of-the-art algorithms.1

Understanding re-weighting
While it may appear complicated, the re-weighting
choice is quite natural. The reasoning is that the
“expected value” of B should be A itself on an edge-
to-edge basis. In other words, the average of many B’s
output by the algorithm should be A itself.

OCTOBER 2012 | VOL. 55 | NO. 10 | COMMUNICATIONS OF THE ACM 105

to weR′e.d Therefore, t is the total stretch of the off-tree
edges with respect to the tree. Then, using the low-stretch
spanning tree of the Theorem in Section 4.1, we can upper
bound t by O(m log n). Recall that the number of samples
will be t log n and so it appears that we do not gain much
from the sampling process unless the graph A has a very
special tree.

Our key idea is to make a special graph Ã out of A. We do
so by scaling up, by a factor of k, the weights of edges of a
low-stretch spanning tree in A. For an edge that’s not part
of the tree, its weight does not change, while the tree path
connecting its endpoints is now heavier by a factor of k. So
the stretch decreases by a factor of k and the total stretch of
these edges becomes t = O((m log n)/k). Now, consider what
happens if we sample the off-tree edges in Ã. The output
B will be a 2-approximation of Ã. On the other hand, the
graph Ã is a k-approximation to A, and by transitivity B is
2k-approximation to A. Also, the number of non-tree edges
sampled will be O(t log n) = O((m log2 n) /k). Adding in the
n − 1 tree edges gives a total of n + O((m log2 n) /k) edges in B.
Recall that the two-level design conditions stated in Section
3.6 require a k2-approximation with n + C · m/k edges in order
to obtain a running time of O(k · m). So by setting k to O(log 4 n),
we meet the conditions with k = O(log2 n) and arrive at our
first result:

Theorem9. SDD systems can be solved in Õ(m log2 n
log(1/ε)) time, where ε is a standard measure of the approx-
imation error.

As it turned out, the low-stretch spanning tree is not only a
good base tree, but also tells us which off-tree edges should
go to the preconditioner. Our faster, O(m log n) time algo-
rithm will come via an even better understanding of the
properties of the tree.

4.4. The final push: Low-stretch spine
Assume that we are given a graph A, found its LSST TA, and
based on it, computed the preconditioner B. Then the O(m
log2 n) time solver algorithm dictates that we recursively do
the same with B. But do we really have to scrap TA and find
another LSST TB? After all, it may be the case that TA is a LSST
of B, or close to being one.

Spielman and Srivastava found the probabilities that give
sparsifiers with the fewest number of edges with the help of
some experimentation. Amazingly, the answer turned out to
be related to the effective resistance of the edge, specifically
te = weRe. With hindsight, it is interesting to reflect about the
natural meaning of effective resistance. If there is a wire of
resistance re = 1/we, between i and j, the effective resistance
Re will in general be smaller than re because most probably
there will be other network connections to accommodate
the flow; this is known as Rayleigh’s monotonicity theorem.
The extreme case weRe = 1 occurs only when there is no other
route between i and j except the wire joining them. In this
 situation, the edge (i, j) is crucial for the network. On the
other hand if weRe is very small, there must be significant
alternative network connections between (i, j). Therefore,
the product weRe as a measure of the importance of a wire.
Using tools from modern matrix theory,15 Spielman and
Srivastava proved that this algorithm does return a good
spectral sparsifier with high probability. Combining with
the fact that yields the overall number of
edges: O(n log n).

Despite being a major improvement in the theory of graph
sparsification, the algorithm of Spielman and Srivastava did
not accelerate the SDD solver as current methods for quickly
computing effective resistances require the solution of lin-
ear systems. The guarantee of O(n log n) edges is also hard
to connect with the n + C · m/k edges needed by the design
condition. However, it is fair to say that their result cleared
the way to our contribution to the problem.

4.3. Which off-tree edges?
If we cannot effectively compute effective resistances, can
we at least approximate them quickly, even poorly? A closer
look at the matrix concentration bounds allows us to relax
this goal a bit further: the sampling algorithm described in
Section 4.2 can be shown to work with any choice of te, as
long as te ≥ weRe. The observant reader may notice that the
expected number of times e is picked is O(te log n), so increas-
ing te only results in more copies of e being picked without
affecting the expectations of all other edges.

The intuition that the low-stretch spanning tree must
be part of the preconditioner leads us to taking tree-based
estimates for the effective resistances Re. In particular,
for an off-tree edge e we let be the sum of the resistances
along the unique path between the endpoints of e in the
tree, as shown in Figure 7. By Rayleigh’s monotonicity
theorem, we know that this estimate will be higher than
the actual Re. This leads to the tree-based sampling prob-
ability for an off-tree edge e being proportional to .
Furthermore, if we keep the entire tree in B, we can modify
the sampling algorithm presented in Section 4.2 to only
sample off tree edges. Then the total number of off-tree
(multi) edges sampled in B is O(t log n) where t is the sum
of all tes, which in turn. This brings us to the question: how
big is t?

This question leads us back to the discussion of
 low-stretch spanning tree and the definition of stretch
for the general weighted case: if we view the length of an
edge e as the inverse of its weight, then its stretch equals

Figure 7. The effective resistance R¢e of the blue off-tree edge in the
red tree is 1/4 + 1/5 + 1/2 = 0.95. Its stretch weR¢e is (1/4 + 1/5 + 1/2)/
(1/2) = 1.9.

4

5
2

2

d An alternate view is that the stretch of e is the weighted length of the tree
path between e’s end points divided by e’s own length.

106 COMMUNICATIONS OF THE ACM | OCTOBER 2012 | VOL. 55 | NO. 10

research highlights

Figure 8 is that it progressively makes the tree heavier, while
removing off-tree ones.

Since our initial graph A cannot be expected to be spine-
heavy, we make a spine-heavy graph Ã out of A, by scaling-up
its LSST by an O(log2 n) factor. Now Ã is an O(log2 n)-approxi-
mation to A and we can solve it in O(m) time. Using it as pre-
conditioner for A completes the O(m log n) time solver. So,
we have arrived at our destination.

Theorem10. SDD systems can be solved in õ(m log n log(1/ε))
time, where ε is a standard measure of the approximation
error.

5. EXTENSIONS
5.1. Parallelization
Several algorithms in numerical linear algebra have paral-
lel versions that are work-efficient. A parallel algorithm is
called work-efficient if it performs roughly the same work
as its best sequential algorithm for the same problem, while
allowing the use of parallel processing.

The first steps towards studying the parallelism potential
of SDD solvers were taken in Blelloch et al.,3 which presented
a nearly (up to log factors) work-efficient algorithm, running
in O(m1/3) parallel time. Informally, this means that up to m2/3
parallel processes can be used to accelerate the algorithm,
a non-trivial potential for parallelism.

5.2. Implementation
The most complicated component of our solver is the algorithm
for computing a LSST. It is however expected that a conceptu-
ally simpler algorithm for this problem is to be discovered,
leading to a fast and “clean” implementation, and quite likely
the removal of the log log n factors from the running time.

In a practical implementation, it would be a good idea to
substitute the recursive preconditioned Chebyshev iteration
by a recursive preconditioned Conjugate Gradient (PCG) iter-
ation. It is known that, in two-level methods, PCG is essen-
tially able to automatically optimize the performance of the
preconditioner. It is expected that the same should be true
for some multilevel variant of PCG, but this is yet to be proven.

We expect that, eventually, the best implementations of
SDD solvers will combine ideas from this work and other
existing graph-based techniques,8 or entirely new ideas.
Such ideas will certainly be needed to achieve—if possible—
a “fully parallel”, O(log n) time, work-efficient SDD solver.

6. THE LAPLACIAN PARADIGM
Solvers for SDD systems are increasingly viewed as an algo-
rithmic primitive; a fundamental subroutine that can be
used to design many other efficient algorithms. Indeed,
since the Spielman–Teng breakthrough, the availability
of fast SDD solvers has sparked what has been dubbed the
Laplacian paradigm: an entire class of new algorithms span-
ning various areas. Because it is impossible to do justice
to each one of these topics, we will present some unifying
themes and only point to some representative examples of
applications.

Perhaps the most direct example of using the solver as a
primitive is the computation of eigenvectors. It was shown

What the O(m log2 n) algorithm9 missed is the observation
that we can keep sampling based on the same tree, gradually
generating all levels of the multilevel hierarchy, until what is
left is the tree itself. This justifies thinking of a low-stretch
spanning tree as a graph spine, and is depicted in Figure 8.

When the sparsifier B is viewed as a graph, it is possible
for some of its edges to have high stretch. However, a more
careful reexamination of the sampling algorithm shows that
these edges are the result of an edge being sampled many
times. From this perspective, these heavy edges are in fact
many multi-edges, each with low stretch. Therefore, if we
process these multi-edges separately, the tree TA will be a
low-stretch spanning tree in B, and the higher edge count
is still bounded by the number of rounds made by the sam-
pling algorithm. This allows us to use TA as a low-stretch
spanning tree and sample the off-tree edges in B accord-
ing to it. Note that with this modification, it’s possible for
us to observe a temporary “slow down” in the reduction of
the overall edge count; the preconditioner of B may have the
same number of off-tree edges as B itself. However the total
number of multi-edges will decrease at a rate that meets the
design conditions. This reuse of the tree for generating spar-
sifiers is a crucial deviation from prior works.

But this doesn’t fully explain the faster solver algorithm.
To achieve it we need an extra trick. Assume for a moment
that our graph A is what we call spine-heavy; that is, it has
a tree of total stretch equal to O(m/log n). Then by an argu-
ment analogous to the one using a standard low stretch
spanning tree, we can show that B actually satisfies the two-
level preconditioning requirement for an even lower value of k,
namely a fixed constant. This, in combination with spine-
based sampling allows us to solve spine-heavy graphs in lin-
ear time. A more global view of this algorithm, as shown in

Figure 8. Low-stretch spanning tree as a spine. The “cloud” of off-tree
edges becomes progressively sparser.

OCTOBER 2012 | VOL. 55 | NO. 10 | COMMUNICATIONS OF THE ACM 107

in Spielman and Teng20 that O(log n) iterations of solves pro-
duce a good approximation to a basic eigenvector of a graph.
More closely related to preconditioned iterative methods is
a solver for elliptic finite element linear systems.4 This work
showed that such systems can be preconditioned with graph
Laplacians and so they can be solved in nearly linear time.

A more general framework stems from one of the most
powerful discoveries in combinatorial optimization: inte-
rior point algorithms. It was shown by Daitch and Spielman17
that interior point algorithms allow us to reduce a broad
class of graph problems to solving a small number of SDD
linear systems. This led to the best known running times for
problems such as minimum cost flow and loss generalized
flow. These problems are extensions of the maximum flow
problem, which in its simplest version asks for the maxi-
mum number of edge disjoint routes (or “flow”) between two
nodes s and t. Further work in this direction led to the first
improvement in 20 years on the approximate maximum flow
problem.5 The max-flow result is in turn directly applicable
to graph partitioning, that is the separation of a graph to two
well connected pieces; the fastest known algorithm for this
problem repeatedly applies the fast max-flow algorithm.16

It is also worth noting that the solver presented in
Blelloch et al.3 readily gives—for all the above problems—
parallel algorithms that are essentially able to split evenly
the computational work and yield speedups even when only
a small number of processors is available. This is a rare fea-
ture among previous algorithms for these problems.

Solver-based algorithms have already entered practice, par-
ticularly in the area of computer vision, where graphs are used
to encode the neighboring relation between pixels. Several tasks
in image processing, such as image denoising, gradient inpaint-
ing, or colorization of grayscale images, are posed as optimiza-
tion problems for which the best known algorithms solve SDD
systems.11, 12 Linear systems in vision are often “planar”, a class
of SDD systems for which an O(m) time algorithm is known.7

Given the prevalence of massive graphs in modern prob-
lems, it is expected that the list of applications, both theoreti-
cal and practical, will continue expanding in the future. We
believe that our solver will accelerate research in this area and
will move many of these algorithms into the practical realm.

Acknowledgments
This work is partially supported by NSF grant number CCF-
1018463. I. Koutis is supported by NSF CAREER award CCF-
1149048. Part of this work was done while I. Koutis was at CMU.
R. Peng is supported by a Microsoft Research Fellowship.

 1. Abraham, I., Neiman, O. Using petal
decompositions to build a low stretch
spanning tree. In Proceedings of
the 44th Symposium on Theory of
Computing (STOC ’12, 2012), ACM,
New York, NY, 395–406.

 2. Alon, N., Karp, R., Peleg, D., West, D. A
graph-theoretic game and its application
to the k-server problem. SIAM J.
Comput. 24(1) (1995), 78–100.

 3. Blelloch, G.E., Gupta, A., Koutis, I.,
Miller, G.L., Peng, R., Tangwongsan, K.
Near linear-work parallel SDD solvers,
low-diameter decomposition, and low-

stretch subgraphs. In Proceedings
of the 23rd ACM Symposium on
Parallelism in Algorithms and
Architectures (SPAA ’11, 2011), ACM,
New York, NY, 13–22.

 4. Boman, E.G., Hendrickson, B., Vavasis,
S.A. Solving elliptic finite element
systems in near-linear time with
support preconditioners. SIAM J.
Numer. Anal. 46(6) (2008), 3264–3284.

 5. Christiano, P., Kelner, J.A., Ma̧dry, A.,
Spielman, D., Teng, S.-H. Electrical
flows, Laplacian systems, and faster
approximation of maximum flow in

References

© 2012 ACM 0001-0782/12/10 $15.00

undirected graphs. In Proceedings of
the 43rd ACM Symposium on Theory of
Computing (STOC), 2011.

 6. Elkin, M., Emek, Y., Spielman, D.A.,
Teng, D.A. Lower-stretch spanning
trees. In Proceedings of the 37th
Annual ACM Symposium on Theory of
Computing (STOC), 494–503, 2005.

 7. Koutis, I., Miller, G.L. A linear work,
O(n1/6) time, parallel algorithm for
solving planar Laplacians. In Proc.
18th ACM–SIAM Symposium on
Discrete Algorithms (SODA), 2007.

 8. Koutis, I., Miller, G.L. Graph
partitioning into isolated, high
conductance clusters: Theory,
computation and applications to
preconditioning. In Symposiun on
Parallel Algorithms and Architectures
(SPAA), 2008.

 9. Koutis, I., Miller, G.L., Peng, R.
Approaching optimality for solving
SDD systems. In Proceedings of the
51st Annual IEEE Symposium on
Foundations of Computer Science,
FOCS, IEEE Computer Society, 2010.

 10. Koutis, I., Miller, G.L., Peng, R.
A near-m log n solver for SDD linear
systems. In Proceedings of the
52nd Annual IEEE Symposium on
Foundations of Computer Science,
FOCS, IEEE Computer Society, 2011.

 11. Koutis, I., Miller, G.L., Tolliver, D.
Combinatorial preconditioners and
multilevel solvers for problems
in computer vision and image
processing. Comput. Vision Image
Understand. 115(12) (2011),
1638–1646.

 12. Krishnan, D., Szeliski, R. Multigrid
and multilevel preconditioners for
computational photography. ACM
Trans. Graph. 30(6) (2011), 177.

 13. Liben-Nowell, D., Kleinberg, J.M. The
link-prediction problem for social
networks. JASIST 58(7) (2007),
1019–1031.

 14. Missiuro, P.V., Liu, K., Zou, L.,
Ross, B.C., Zhao, G., Liu, J.S., Ge, H.
Information flow analysis of
interactome networks. PLoS Comput.
Biol. 5(4) (2009), e1000350.

 15. Rudelson, M., Vershynin, R. Sampling
from large matrices: An approach
through geometric functional
analysis. J. ACM 54(4), (2007), 21.

 16. Sherman, J. Breaking the
multicommodity flow barrier for
O(n)-approximations to sparsest
cut. In Proceedings of the 2009
50th Annual IEEE Symposium on
Foundations of Computer Science
(FOCS ’09, 2009), IEEE Computer
Society, Washington, DC, USA,
363–372.

 17. Spielman, D.A., Daitch, S.I. Faster
approximate lossy generalized flow
via interior point algorithms. In
Proceedings of the 40th Annual ACM
Symposium on Theory of Computing
(STOC), May 2008.

 18. Spielman, D.A., Srivastava, N.
Graph sparsification by effective
resistances. In Proceedings of the
40th Annual ACM Symposium on
Theory of Computing (STOC), 2008,
563–568.

 19. Spielman, D.A., Teng, S.-H. Nearly-
linear time algorithms for graph
partitioning, graph sparsification,
and solving linear systems. In
Proceedings of the 36th Annual ACM
Symposium on Theory of Computing
(STOC), June 2004, 81–90.

 20. Spielman, D.A., Teng, S.-H.
Nearly-linear time algorithms
for preconditioning and solving
symmetric, diagonally dominant
linear systems. CoRR, abs/cs/
0607105, 2006.

 21. Tolliver, D.A., Koutis, I., Ishikawa, H.,
Schuman, J.S., Miller, G.L. Automatic
multiple retinal layer segmentation
in spectral domain oct scans via
spectral rounding. In ARVO Annual
Meeting, May 2008.

22. Trottenberg, U., Schuller, A.,
Oosterlee, C. Multigrid, 1st edn,
Academic Press, London, 2000.

 23. Vaidya, P.M. Solving linear equations
with symmetric diagonally dominant
matrices by constructing good
preconditioners. A Talk Based on
this Manuscript was Presented at
the IMA Workshop on Graph Theory
and Sparse Matrix Computation,
October 1991.

 24. Vassilevska Williams, V. Breaking the
Coppersmith-Winograd barrier. In
Proceedings of the 44th Symposium
on Theory of Computing, STOC ’12,
2012.

Ioannis Koutis (ioannis.koutis@upr.edu),
Computer Science Department, University
of Puerto Rico-Rio Piedras.

Gary L. Miller (glmiller@cs.cmu.edu),
Computer Science Department, Carnegie
Mellon University.

Richard Peng (yangp@cs.cmu.edu),
Computer Science Department, Carnegie
Mellon University.

