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Abstract

This paper describes the design of arithmetic circuits
based on hybrid integrated resonant tunneling diodes
and heterostructure field-effect transistors. The key
components are depth-2 parallel counters consisting of
multiple terminal threshold gates. In particular, we
propose a novel parallel addition scheme by combin-
ing threshold logic and systolic VLSI-algorithms for
bit-level computations. The approach s motivated by
the demand for locally interconnected circuit modules
to solve the wiring problem in nanoelectronic circuits.

1 Introduction

During the last decades the progress in microelectron-
ics primarily results from the scaling of the devices
and the development of information processing systems
such as microprocessors and memories. Today, origi-
nating from the possibility to fabricate semiconductor
heterostructures with atomic layer thickness, there are
tremendous activities in research and development of
devices so small that quantum mechanical effects be-
come relevant for their operation.

In the field of resonant tunneling structures the ex-
perimental research concentrates on different kinds of
three terminal devices. Significant examples are res-
onant hot electron transistors [22], and gated reso-
nant tunneling diodes [19]. In addition, several hy-
brid microelectronic-nanoelectronic devices have been
developed. They are composed of resonant tunneling
diodes (RTD) which are integrated together with het-
erostructure field-effect transistors (HFET) [16]. Dur-
ing the initial phase of nanoelectronics this is a first
way to get some experience with novel circuit architec-

tures of lower complexity until lateral nanostructured
devices are available.

Although at present most of the research is techno-
logically oriented a further preliminary to implement
complete systems with these novel devices is the inves-
tigation of circuit architectures and the development of
a kind of design framework [9]. Recapitulating some
milestones the first example that has demonstrated
how to build a logic circuit with quantum-effect devices
is a 1-bit full adder based on X-NOR gates. It has been
proposed by Capasso in 1989 [3] and reduces the cir-
cuit complexity of the adder by taking advantage from
the multistate behavior of a RTD. Other applications
following this approach are different kinds of multiple-
valued logic gates and resonant tunneling diode mem-
ory cells [15], [23]. The common idea of these circuits
is to decrease the number of devices which are required
to implement a specific logic functionality [20].

Another essential aspect and the principal topic of
this paper is the question if these functionally inte-
grated circuits could be combined with adequate VLSI
algorithms for bit-level computations. The fundamen-
tal relevance of this aspect has been emphasized by
Ancona [1] in context with single electron transistor
circuits for multiplication and Fast Fourier Transform.
Independent of the technological realization and the
operating principles of the different families of nano-
electronic devices, important design principles for an
architectural approach towards nanoelectronics are:

e A regular layout with a small number of different
circuit modules.

e The use of quantum effects to reduce the logic
depth of a circuit.

e Local interconnections on the circuit and the sys-
tem level to solve the wiring problem.



Figure 1: Linear threshold gate

e Concurrent computation and pipelining at the bit-
level to achieve a low latency and a high data
throughput.

Even today most of these principles are a substantial
part of modern CMOS-VLSI and it is obvious that the
problem if quantume-effect devices will be useful has to
be investigated from that point of view, too.

The paper 1s structured as follows: Section 2 de-
scribes the implementation of a linear threshold gate
with RTDs and HFETs. After this on higher level we
utilize the RTD-based threshold gates to design a par-
allel counter, that is a special combinatorial network for
adding multiple operands. In section 3 it will be shown
that parallel counters could be used in several arith-
metic circuits for parallel addition with an increased
logic density. This part of our work bases on the the-
oretical investigations of threshold logic circuits and
applications done by Vassiliadis, Dadda and Swartz-
lander [24], [8], [21]. A disadvantage of these threshold
logic circuits is that regularity and local interconnec-
tions were not explicitly considered from the beginning
as design principles because the algorithms are opti-
mized only with regard to the logic depth. To overcome
this problem we take up the ideas of bit-level systolic
arrays and regular, tree-like structures for carry looka-
head addition [14], [2]. As a result we propose a novel
systolic addition scheme for RTD-based threshold gates
in section 4. To estimate the performance of the pro-
posed circuits the area and time complexity is analyzed
for various operand lengths in section 5.

2 RTD-based threshold gates

A linear threshold gate is a multiple terminal device
that calculates the weighted sum x of the digital in-
puts g, k = 1,..., N. Afterwards the gate converts
this sum into a digital output y by comparing y with
a given threshold value © (figure 1). Adapting the
weights {wi,...,wn} and the threshold value ©, a
linear threshold gate computes any linear separable
Boolean function of the N inputs. Compared with a

Boolean logic gate, a threshold gate combines an in-
ternal analog computation of the weighted sum with
digital encoded input and output states. The output y
of a threshold gate is given by

1 if x>0

y(x) =sign(x — ©) = (1)
0 if x<©

N
X = wg -z, (2)
k=0

Tk = {0: 1}a (3)
wg = {0,£1,... Fwmas}, (4)
0=1{0,41,...,460 4z} (5)

Recently, a RTD-based threshold gate has been pro-
posed which consists of two serially connected RTDs
and multiple parallel HFETs (figure 2) [5]. Here, the
HFETs enable the weighting of the digital inputs. The
RTDs are used to generate a digital output and to com-
pare the positive and negative weighted inputs with the
threshold value ©. The advantage of this circuit config-
uration is that the complex functions of a linear thresh-
old gate (weighting, summation and comparison) are
implemented with a few number of devices only. In the
following two subsections we give a short summary how
this RTD-based threshold gate works. A more detailed
investigation of the underlying operating principles can

be found in [5], [18] and [17].

2.1 Weighting of the digital inputs

Figure 2b shows that the drain to source current of
the HFETs modulates the peak current of the parallel
RTD. Since this drain to source current depends lin-
early on the transistor width, a weighting of the input
signals is obtained by varying the transistor geometry.
The HFETSs connected in parallel to the top RTD per-
form a positive weighting of the inputs whereas HFETs
in parallel to the bottom RTD are negative weighted
inputs. The threshold value of the gate is an addi-
tional negative weight controlled by the gate voltage
Ve. Thus, the internal signal of the weighted sum x
is represented by the total modulation current at the
output node according Kirchhoff’s current law. If the
threshold gate has M, positive weighted and M,, neg-
ative weighted inputs, the total modulation current is

M, M.,
Al = Zwk~IF(VGk)—ZU)k'IF(VGk)_w® Ir(Ve).
k=1 k=1

(6)
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Figure 2: RTD-based threshold gates (a) and modulation of the RTD-current (b).

Here I is the drain to source current of a HFET with
minimum width. The weight factors wg and we express
the width ratios between the HFETs with weighted
inputs and the HFET with minimum width w = 1.
The inputs zg of the threshold gate are set by the gate
source voltage Vg If the gate voltage Vg exceeds the
threshold voltage of the HFET the current wy - Ip is
added to the RTD current.

2.2 Threshold operation and switching

In the following we assume that the total modulation
current AT is small compared to the peak current of the
RTDs and can be neglected to calculate the bistable
output voltage V,y:. The most characteristic feature
of the circuit in figure 2 is the oscillating bias voltage
Viq on top of the two RTDs. Thus, together with the
nonlinear current-voltage characteristics of the RTDs,
the output behavior of the circuit is either bistable
or monostable. The bistable configuration occurs at
a bias voltage larger than twice the peak voltage and
generates two self-stabilizing digital output states. In
figure 3 the two logic states appear at a bias voltage
of Vaq > 0.8V where the central equilibrium point be-
comes unstable. The equilibrium points are the inter-
section points of the RTD-currents and indicated by
dots. At a larger bias voltage there is a small region
with three stable equilibrium points and two unsta-
ble equilibrium points. If the bias voltage exceeds five
times the peak voltage the circuit becomes monostable
again. In the example chosen here (figure 3, left) the

peak voltage and the peak current of the RTDs are
Vp = 0.4V and I, = 5mA with a peak to valley ratio
of PVR = 5.5. To understand the switching into a
logic high or low state it is important to notice that
metastable transition point where the output behavior
changes from monostability to bistability is very sen-
sitive to the small modulation current A7. Using this
sensitivity i1s an area efficient way to implement the
comparison function of a threshold gate because the
sign of the modulation current is equivalent to the sign
of the weighted sum. The logic state high (low) corre-
sponds to a positive (negative) sign of the modulation
current. Thus, after the bias voltage has produced a
bistable output and a short relaxation phase has fin-
ished the circuit converts the internal weighted sum
(i.e. the modulation current) into a digital output:

0.95V if AI> 0
Vour = sign(AJ) = (7)
0.06V if A< 0

Since we will later design a multilayer network and
operate the threshold gates in a pipelined way the os-
cillating bias voltage enables a clocking of the thresh-
old gate to synchronize these networks. Due to the
fact that the output of a layer is available only at the
time when the bias voltage is larger than twice the
peak voltage this dynamic circuit technique requires
two overlapping clocking schemes.

To investigate how the amplitude of the oscillating
bias voltage influences the circuit operation the right
part of figure 3 illustrates the multistable output be-
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Figure 3: Monostable-bistable behavior of two serially connected RTDs.

havior obtained from a nonlinear circuit analysis of the
RTD-pair. The six transition points where the stabil-
ity of the output changes are marked by dots. Stable
equilibrium points are indicated by solid lines while the
unstable equilibrium points are indicated by dashed
lines. If the electrical parameters of an RTD are given
this allows to maximize the noise margin, that is the
difference between the high and low state, by adapt-
ing the bias voltage. In larger circuits with a multi-
layer architecture the noise margin and the location of
the logic states are important to switch the gates of
the HFETs in the subsequent layer. If we choose the
RTD-parameters mentioned above an appropriate bias
voltage has to be about 2.5V, to obtain a noise margin

of about 0.9V.

Switching a logic gate by means of a monostable-
bistable transition in a symmetric configuration of two
tunneling diodes is a well-known technique in nonlinear
dynamic circuits and has been investigate first by Goto
in 1960 [10]. Since field-effect transistors to implement
the terminals of the gate were not available at that
time this circuit architecture has not played an impor-
tant role in microelectronics. Today, the technological
development and the more profound understanding of
nonlinear phenomena are the reason for the comeback
of these circuit configurations in nanoelectronics. A
similar configuration of RTDs and HFETSs is used in a
high speed and low power static memory cell by Texas

Instruments [23]. Very recently, a high frequency RTD-
Schottky gate with the same operating principle as our
RTD-threshold gate has been demonstrated to operate
at a maximum frequency of 12GHz [11]. Therefore,
these RTD-circuits might be potential candidates for
future high speed signal processing.

3 Parallel counters for circuits
with reduced logic depth

The implementation of arithmetic functions, especially
parallel addition schemes, is one possible application of
RTD-based threshold gates. In this section we describe
four different kinds of parallel adders and analyze how
they are designed. The basic components of the adders
are generalized parallel counters. A parallel counter is
a combinatorial network that receives n digital inputs
and computes the number of active inputs, that is the
number of ones (figure 4). The reason for designing
arithmetic circuits with parallel counters is that they
lead to a very efficient implementation of addition and
multiplication schemes with a reduced logic depth [8],
[6]. Regarding the notation, a k._1, ..., ko|lm general-
ized counter receives r columns of k;,{ = {0,...,r—1}
digital inputs and computes a digital output of word
length m [21]. Each input row k; is weighted by 2'.
Figure 4 shows three parallel counters with a differ-
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Figure 4: Different configurations of parallel counters.

ent number of inputs and outputs . As depicted, a 3|2
counter is equivalent to a full adder.

The design of a parallel counter with a depth-2 lin-
ear threshold network is relatively simple because each
output bit s;,7 = {0,...,m— 1} is a periodic symmet-
ric function. The characteristic feature of a periodic
symmetric function is that the output of the function
depends only on the weighted sum x of the n inputs.
As illustrated in figure 5 the output s;(x) consists of
a periodic sequence of high and low intervals. Each
interval of s;(x) has an equal length 27, For example,
the linear threshold network of a 7|3 counter can be

described by

so(x) = [+ [B]+[5]+1[7]
si(x) = [2,4]+][6] (3)
s2(x) = [

Here high intervals of the sum x are defined by

[a] = 1 if x=a
Wb = 1 it a<x<b )
[af] = 1 if a<y

where a and b are the boundaries of the intervals. Thus,
the corresponding threshold network has to detect the
boundaries of the high intervals and to perform an OR,
operation afterwards. This is achieved by a suitable
selection of the threshold values ©; in the first layer
of the network. In the case of a 7|3 counter the first
layer comprises seven gates having the threshold values
{1,2,3,4,5,6,7}. To compute the OR operation in the
second layer of the network we use three-valued weights
w; = {0,+1} only. Other linear threshold networks,
such as the Kautz-network [12] or Telescopic Sums [24]
are not regarded here since they are more difficult to
implement within the proposed circuits.

so| [ [0 [0 [ [0 [0
St L1 1 [ ]
S, [ 1 [1
]

Figure 5: Periodical dependency of the output bits s;.

In the following, 2, 3|3 counters are frequently used
to group the input operands of an adder into blocks of
2-bits at a time. The intention is to improve the delay
in parallel addition schemes. The two most significant
bits (MSB) of the 2, 3|3 counter are weighted by w; = 2
while the two least significant bits and the incoming
carry are weighted by w; = 1. Apart from the different
weighting of the input operands a 2, 3|3 counter and a
7|3 counter have the same input capacity of Xmaez = 7
and therefore the same output behavior.

Concerning the implementation costs of a parallel
counter important features are the number of gates,
the depth of the network, the magnitude of the weights
and the fan-in. While the delay time directly follows
from the logic depth of the network, the area of the cir-
cuits depends on the number of linear threshold gates
as well as on the magnitude of the weights. In this con-
text one has to make a compromise between networks
with a very small depth and the boundary conditions
of an implementation. The most critical conditions are
a reliable operation of the gate and the limitation of
the dynamic power dissipation. The dynamic power
dissipation is primarily affected by a large fan-in (i.e.
many inputs and large weights) because a large num-
ber of inputs increases the total input capacity of the
RTD-based threshold gate. In addition, if the number
of internal states of the weighted sum y increases the
gates becomes more prone to fluctuations and param-
eter variations. Consequently, linear threshold gates
with small weights and small fan-in are basically of in-
terest. Based on SPICE circuit simulations we expect
that an upper boundary for the input capacity of a
parallel counter is xmar = 12 [18].

3.1 Ripple carry addition

The most simple algorithm for adding two n-bit num-
bers in parallel is a ripple carry adder. It consists of
n serially connected 3|2 counters (i.e. full adders) and
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Figure 6: Ripple carry adder with 3|2 counters (left) and 2, 3|3 counters (right).

has a logic depth of d = n + 1. To decrease the de-
lay time T which is directly proportional to the logic
depth d (under the assumption that the wiring delay
can be neglected if the cells are locally interconnected)
Cotofana has proposed a d-bit serial adder [6] where
the operands are grouped into blocks of length §. Us-
ing parallel counters the advantage is a speed up of the
carry propagation since the carry of a §-bit block is
available after a delay of one. Figure 6 shows a ripple
carry and a d-bit adder with 2-bit grouping for 8-bit un-
signed numbers. The §-bit adder is composed of 2, 3|3
counters. In both adders the carries are propagating
along the diagonal lines. The 4-bit serial adder has
a logic depth of d = [n/d] + 1 and thus for an 8-bit
adder with 2-bit grouping the delay is reduced from
d =9 to d=25. To obtain a correct timing additional
delay elements, indicated by the white squares, have
to be inserted. Since there are only local interconnec-
tions the ripple carry adder and the 4-bit adder are in
convenience with the design principles discussed in the
introduction. However, the linear dependency of the
time complexity from the operand length is an obvious
disadvantage. It should be emphasized that we have
considered the logic depth of each adder explicitly in
the computation graphs to obtain a realistic estimation
of the performance. In many theoretical investigations
of VLSI algorithms the delay of a single cell is defined
as dee;p = 1 and thus the final evaluation is only based
on the asymptotic behavior of the algorithm. Often
this makes it difficult to compare different algorithms
for operand lengths up to 64-bit being relevant for prac-
tical applications.

3.2 Carry lookahead addition

To decrease the delay time for 16 or 32-bit operands the
carry propagation could be accelerated by means of a

carry look ahead computation or by operating an 8-
bit adder in a pipelined way. For example, a pipelined
addition scheme of 32-bit numbers splits the operands
into 4 blocks of 8-bits before the blocks are added suc-
cessively. Obviously, such a bit-level pipelining enables
a high data throughput of larger operands without an
significant increase of area. The second way is a carry
lookahead adder where the gates are connected in a
regular way as proposed by Brent and Kung [2]. The
basic idea is an algorithm with a binary tree structure
to compute the group generate and propagate carries
G;; and F; ; according to the recursive equations

Gij=Gir+ Pir-Groij (10)
Pi=PF Pi_1; (11)

for
i>k>j+1. (12)

The derivation of these equation is straightforward: Di-
viding a block comprising the bits from position j to i
into a MSB-group from & to ¢ and a LSB-group from j
to k — 1 the complete group generates a carry if either
the MSB-group generates a carry or the LSB generates
a carry. This LSB-carry is afterwards propagated by
the MSB-group (figure 8). The complete block prop-
agates a carry if both the LSB-group and the MSB-
group propagate an incoming carry. At the final level
of the binary tree

6 =Gi—1p (13)

and
pi = Pi,i (14)

are computed before one obtains the sum bit

si = pi D (15)
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Figure 7: Brent and Kung CLA adder with boolean gates (left) and a threshold logic version (right).

At the first level the group generate carry G;; and
group propagate carry F;; are given by

Gii=ai-b (16)

and

Pi=a;db (17)

The first step is now to implement this algorithm
with linear threshold gates instead of Boolean gates as
used in the original version of Brent and Kung. Both,
the original algorithm and the threshold logic version
are illustrated in figure 7. The advantage of the thresh-
old logic version is that the logic depth of a single
(G j, P; j)-cell is reduced from deey = 2 to deeny = 1
because the group propagate and generate carries can
be computed with two linear threshold gates with a
delay of dg, ; = dp, ; = 1:

Gij = Gig+Pig Grovj
(18)
= sign(2Gik+ Pig + Gr—1j — 2)

Gik » Pik Gk, s Praj

Figure 8: Computation of the group propagate and
generate carries

and
P = Pg-Pe_1
(19)
= sign(Pig + Pro1,;—2)
if
i>k>j+1. (20)

The maximum weight and the maximum threshold
value are Wyae = Omaz = 2. At the first level of the
CLA-tree the group carries are computed with a delay
of dg,; = dp,; = 2 directly from the operands according
to (16) and (17). Although this CLA addition scheme

leads to a regular layout there are three disadvantages:

e The binary tree structure includes several non-
local interconnections and is therefore not systolic
following the rigorous definition of a systolic VLSI
algorithm in [13]. The effect of non-local intercon-
nections is an increase of the delay time due to the
signal propagation on the wire. Often this propa-
gation time is not considered when estimating the
time complexity of an VLSI algorithm. Assum-
ing the realistic model that the propagation time
on a wire is at least linear in the distance the de-
lay of the Brent and Kung adder increases from
O(log, n) to O(n) as well as the theoretical lower
bound for addition from O(log, n) to O(y/n) [4].

o After the carry of the MSB has been computed a
second binary tree 1s used to compute the carries
of intermediate positions which are required for
the final sum (figure 7, left, ¢ > 9).
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e If a pipelined operation is intended one has to feed
back the MSB-carry of a block to the LSB of the
following block. Obviously, the wire of the feed
back line is as long as the complete adder and
would violate our demand for a local interconnec-
tion. Apart from that, one has to introduce an ex-
tra delay before presenting the subsequent block
of operands to consider because the propagation
time that is required to compute the MSB-carry.
Thus, the distance between two successive compu-
tations increases and limits the data throughput.

4 Systolic addition scheme

To solve the problems arousing from the non-local in-
terconnections in the CLA-tree our task is now to im-
plement the carry propagation tree and to maintain
a local and regular design. Therefore, we propose a
novel, purely systolic addition scheme that combines

e a threshold logic implementation of a carry looka-
head tree,

e a J-bit adder consisting of 2, 3|3-counters to com-
pute the final sum and

e a pipelined operation based on an 8-bit block with-
out a long carry feedback wiring.

The systolic 8-bit CLA/J-Bit Adder comprises two
parts (figure 9). The bottom part is a depth-3 CLA-
tree that computes the carry of the MSB by means
of the group generate and propagate carries. In con-
trast to the previous section here we have grouped the
operands at the first level into 2-bit blocks and start
with computing the group carries G;;_1 and F;;_;
[7]. A group generate carry G;;_1 is produced if the
weighted sum of the 4 inputs exceeds a threshold value
of ©® = 4. In a similar way a group carry is propagated
if the weighted sum exceeds a threshold value of © = 3

and one obtains
G;i-1 = sign(2a; + 2b; + a;_1 + bi_1 — 4) (21)
P = sign(?ai + 2b; + aj_1 + b1 — 3) (22)

The 2-bit grouping of the operands saves the first
stage because G; ;1 and F; ;1 are computed from the
input operands. In contrast to this in the Boolean logic
version (; ; and F;; have to be computed first. Since
we have limited the word length to 8-bit the binary
CLA-tree does not include any non-local interconnec-
tions and is therefore a purely systolic algorithm.

The top part of the adder computes the sum bits
with a delay of d = 5 by 2-bit grouping using 2, 3|3
parallel counters. To operate this 8-bit adder in a
pipelined fashion both parts are connected at the third
level where the MSB-carry is used as LSB-carry for the
next 8-bit block. Because the MSB carry is available
exactly at the same time when the LSB of the next 8-bit
block enters the first 2,3|3 counter no extra delay has
to be introduced between two subsequent blocks. Fur-
thermore, the top part of the CLA-tree where the inter-
mediate carries are computed is removed. Therefore,
the pipelined operation can be done very efficiently and
a high data throughput is achieved.

Up to now we have not mentioned how the different
blocks used in the addition schemes are designed with
threshold gates. Based on the threshold logic equations
above the upper half of figure 10 shows the (G} ;, P; ;)-
cells of the CLA-tree and the delay elements. A delay
element is a single threshold gate with one input and
w1 = ©1 = 1. The bottom of half figure 10 contains
the parallel counters. The 2|1 counter is used in the
last stage of the Brent and Kung adder to compute
the final sum. While the 3|2 counter belongs to the
conventional ripple carry adder, the 2, 3|3 counters are
used in the systolic adder and the ripple carry adder
with 2-bit grouping. If the operands are grouped into
2-bit blocks 4 delay elements are required to obtain a
right timing, otherwise 2 delay elements are sufficient.
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Inputs with weights w; = 1 and w; = —1 are indicated
by black and white dots. Due to the condition to use
threshold gates with small fan-in the maximum weight
and threshold value are w4, = 2 and ©,,,, = 6.

5 Comparison

In this section we compare the proposed addition
schemes in regard to the delay time, the number of
linear threshold gates and the area for operand lengths
of 8, 16,32 and 64 bits. It is assumed that the four
adders could be implemented with the proposed RTD-
based threshold gates. The area of an adder is approx-
imately given by the product of the total number of
linear threshold gates and the area of a single thresh-
old gate

A= Nrrg-Arre. (23)

This assumption can be justified because most of the
area of a single linear threshold gate is covered by the
two serial resonant tunneling diodes. Neglecting the
area of the HFETs does not produce a large error if
the threshold gates have small weights.

The total delay time T' of an adder is the product
of the number of steps S that are required to finish
the computation and the delay time #7717 of a single
threshold gate. In the case of an addition scheme with-

out pipelining the number of steps S is equal to the
logic depth d of the circuit. In the pipelined addition
scheme S is the difference between the input of the first
block and the time when the last sum bit of final block
has been computed. With reference to section 2 the
delay time ¢17¢ is equivalent to the inverse clocking
frequency 1/ fv,,, that is the frequency of the oscillat-
ing bias voltage:

T=5 trrg=— (24)
ded
To estimate the performance in a technological inde-
pendent way we measure the delay time in terms of
the number of steps S and the area in terms of the
total number Nyppg of linear threshold gates.

Since there is always an area-time trade off which
has to be minimized when implementing an arbitrary
VLSI algorithm, we have estimated the AT-product
according to

AT = (NLTG 'ALTG) . (S ~tLTg) X NLTG . S (25)

The results of the comparisons are summarized in the
tables 1-3.

When comparing the AT-products for the different
adders, one obtains the expected results that the Brent
and Kung adder and our systolic addition scheme are



[ n [ RCA [ 2Bit [ BK [ SY |

8 9 5 7 7
16 17 91 10 8
32 33 171 12| 10
64 65 33| 14| 14

Table 1: Delay S.

[n] RCA] 2Bit]| BK] SY|
8 783 345 728 798
16 5185 2097 | 3040 | 1168
32 36993 14433 8832 | 1780
64 | 278785 | 106689 | 24192 | 3388

Table 2: Area-Time complexity Nprqg d.

advantageous for operand lengths larger than 16-bit.
Due to the more complicated overhead the carry looka-
head schemes loose this advantage for 8-bit operands
where the ripple carry adder with 2-bit grouping should
be preferred due to the smaller AT-product.

The reason for the good performance of our systolic
addition scheme is that the distance between two suc-
cessive computations is one clock cycle only. There-
fore, a pipelined operation of an 8-bit adder is very
efficient and limits the increase of the number of thresh-
old gates for large operands. Compared with the sim-
ple ripple carry adder the AT-product of the systolic
adder is about two order of magnitudes better for 64-bit
operands. This is a strong indication that optimizing
the logic design of future nanoelectronic circuits on the
gate level enables an increase of performance.

6 Conclusions

In this paper we have investigated several algorithms
for parallel addition based on linear threshold gates
with small input capacity. We have shown that the
increased functionality of hybrid integrated nanoelec-
tronic devices could be transfered to the circuit level.
Using depth-2 parallel counters as basic circuits mod-
ules and adapting existing VLSI algorithms for carry
lookahead addition, a novel systolic algorithm for 8-
bit pipelined addition has been proposed. In addition,
the implementation of a ripple carry adder and a tree-
like carry lookahead adder with linear threshold gates
has been analyzed. For a quantitative comparison in a
technological independent way we have estimated the
area and time complexity of the different algorithms.
To overcome the serious interconnection problem, fun-
damental design principles such as modularity and lo-
cal communication between different circuit modules
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[ n [ RCA [ 2Bit | BK [ SY |
8 87 69 104 | 114
16 305 233 304 | 146
32 | 1121 849 736 | 178
64 | 4289 | 3233 | 1728 | 242

Table 3: Number of the linear threshold gates Npr¢.

These terms are used in the tables:

n Operand length.

RCA  Ripple Carry Adder.

2-Bit  Ripple Carry Adder with 2,3|3 counters.

BK Brent and Kung adder, threshold logic version.
SY Systolic adder with CLA-tree and 2, 3|3 counters.

have been considered as a guideline to design nano-
electronic circuits.
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