

Quantum Mechanics

- Electrons in molecules obey Schroedinger wave equation

$$
-\frac{\hbar^{2}}{2 \mathrm{~m}} \frac{\mathrm{~d}^{2}}{\mathrm{dx}^{2}} y(\mathrm{x})+\mathrm{V}(\mathrm{x}) y(\mathrm{x})=\mathrm{E} y(\mathrm{x})
$$

- Electrons exist as standing waves in molecules, called orbitals
- Electrons can tunnel under barriers

\qquad
\square

Band structure

- As the box gets larger, the spacing between energy levels gets smaller, forming a continuum of states in the limit of infinite system

Orbitals: Linear combinations of atomic orbitals

$$
\mathrm{Y}_{\mathrm{a}}=\mathrm{a}^{\mathrm{N}} \mathrm{c}_{\mathrm{i}}^{2} f_{\mathrm{i}}
$$

- N atomic orbitals, ϕ_{i}, lead to N molecular orbitals
- Most of the time, bonds are formed from combining one orbital

Lewis Dot Structures

- Each atom contributes its valence electrons to the structure: - H: 1 C: 4 N: 5 O:6 F: 7
- Atoms want to achieve "rare gas" configuration
- H: 2 electrons Li --- Ne: 8 electrons
- Lewis structure for $\mathrm{C}_{2} \mathrm{H}_{6}$
- Lewis structure for $\mathrm{C}_{2} \mathrm{H}_{4}$
- Lewis structure for $\mathrm{C}_{2} \mathrm{H}_{2}$

Electronegativity

- Ability of an atom to attract electrons to itself, when participating in a covalent bond
- Periodic trends
- Increases from left to right across periodic table
- Decreases as you move down the periodic table

H 2.1

$$
\begin{array}{llll}
\mathrm{C} 2.5 & \mathrm{~N} 3.0 & \mathrm{O} 3.5 & \mathrm{~F} 4.0 \\
& & \mathrm{~S} 2.5 &
\end{array}
$$

Electron Donors and Acceptors

- Hammett constants measure ability of a group to donate electrons to or accept electrons from a pi system
- Electronegative elements like negative charges on themselves and so tend to withdraw (accept) electrons
- Decrease the pi density
- Raise electron affinity (Lower the LUMO)
- Electropositive elements like positive charges on themselves, and so tend to donate electrons
- Increase the pi density
- Lower ionization potential (Raise the HOMO) LumO

For a metal, the HOMO and LUMO are
degenerate, so the ionization potential
electronic affinity $=$ work function

UMO
Lowest unoccupied
molecular orbital molecular orbital
$\xlongequal[+1]{+}$ номо Highest occupied
molecular orbital

Energy Level Diagrams

- Acceptor will take electron into its LUMO
-Donor will lose electron from its HOMO

Mechanism for Rectification

Tunneling

- In classical mechanics, a particle can not enter a region with a potential energy greater than its total energy (would imply negative kinetic energy)
- In quantum mechanics, a particle's wavefunction
oscillates in classically allowed regions
decays exponentially in a classically forbidden region
$\frac{\hbar^{2}}{2 \mathrm{~m}} \frac{\mathrm{~d}^{2}}{\mathrm{dx}^{2}} y(\mathrm{x})+\mathrm{V}(\mathrm{x}) y(\mathrm{x})=\mathrm{E} y(\mathrm{x})$
$\frac{\mathrm{d}^{2}}{\mathrm{dx}^{2}} y(\mathrm{x})=\frac{2 \mathrm{~m}}{\hbar^{2}} \mathrm{C}^{\mathrm{E}}(\mathrm{x})-$ E
$\mathrm{E}>\mathrm{V}(\mathrm{x}) \frac{\mathrm{d}^{2}}{\mathrm{dx}^{2}} y(\mathrm{x})=($ negative \# $) y(\mathrm{x})$ p $y(\mathrm{x})=\mathrm{e}^{\mathrm{icx}}$
$\mathrm{E}<\mathrm{V}(\mathrm{x}) \frac{\mathrm{d}^{2}}{\mathrm{dx}^{2}} y(\mathrm{x})=\left(\right.$ positive \#) $y(\mathrm{x})$ p $y(\mathrm{x})=\mathrm{e}^{-\mathrm{cx}}$

Electron Transfer

