Optimization Techniques
Reading: C.M.Bishop NNPR §7

15-486/782: Artificial Neural Networks
Dave Touretzky

Fall 2006

(based on slides by A. Courville, Spring 2002,
and K. Laskowski, Spring 2004)

Lecture Outline

In detail:
1. Gradient Descent (& some extensions)
2. Line Search
3. Conjugate Gradient Search

In passing:

4. Newton’s method
5. Quasi-Newton methods

We will not cover Model Trust Region methods (Scaled Conjugate Gradients,
Levenberg-Marquart).

What is Parameter Optimization?

A fancy name for training: the selection of parameter values, which are optimal
in some desired sense (eg. minimize an objective function you choose over
a dataset you choose). The parameters are the weights and biases of the

network.

In this lecture, we will not address learning of network structure. We assume a
fixed number of layers and a fixed number of hidden units.

In neural networks, training is typically iterative and time-consuming. It is in our
interests to reduce the training time as much as possible.

Linear Optimization

Applicable to networks with exclusively linear units (and therefore can be re-

duced to single layer networks).

In one step:
. . 1 1 . 1
w’{yo wi g Wi, .- “’}“1 z(l) 1(2) N Z(N’)
Wro Wpy Wrp ... Wy z%n 132) z%N)
K R . . . 2 2]
Wio Wii Wko oo Wi :1;51) 1-(,:2) w{l\")
W*. X
w*. X . XT
w*

X

yil) yf) yi*‘“

O O I O
'1 :2 h A\
S R

Y

Y - X7

(X7 (xx7) !

This is linear regression. A good idea to always try first — maybe you don’t need

non-linearities.

Try It In Matlab

>> W
>> X

[1 2 3];
[ones(1,50); rand(2,50)];
>>y = W*x;

>> W_star = (y*x’) * inv(x*x’)
W_star =

1.0000 2.0000 3.0000

>> W_hat = y * pinv(x)
W_hat =

1.0000 2.0000 3.0000

The Parameter Space

r 2 2 2
wey wif o w
Wy = : P
2 2 2
| wih wi% o wiR
c §R(K7J+1)
r 1 1
wgy Wi wf
W; = : P
1 1 1
L wy wi) o wl)
c WU+

Want to think of (and operate on) weight matrices as a single vector:

w = mapping (W1, W2)
e W, W=JU+1D)+KJ+1)

Doesn’t matter what mapping is, as long as we can reverse it when necessary.

Non-linear Optimization

Given a fixed neural network architecture with non-linearities, we seek iterative
algorithms which implement a search in parameter space:
w(™tD — ™ + Aw(™
w e ®RW

At each timestep 7, Aw(™) is chosen to reduce an objective (error) function
E({x,t}; w). For example, for a network with K linear output units, the appro-
priate choice is the sum-of-squares error:

1 N K

B= 33 3 e -

2 =1h=1
where N is the number of patterns.

Approximating Error Surface Behaviour

Holding the dataset {x, t} fixed, consider a second order Taylor series expan-
sion of E(w) about a point w:

B(w) = B(wo)+ (v —wo) b+ _(w — wo) H(w —wo) (1)

where b is the gradient of E|w, and H is the Hessian of E|w,:

OE 2B 2B
. g |: ou? T Bwidwn :|
o = 5 o 5
o PE PE
ouw I wq ;Jufn ow; éuﬁ wo

In a similar way, we can define a first order approximation to the gradient:

VElw = b+4+H(w—wq) (2)

Near a Minimum
How does the error surface behave near a minimum w*?

The gradientb = VE|w, — 0, so the shape of the error surface is uniquely
determined (to second order) by the Hessian:

BE(w) = B(w") + %(w — wTH(w — w*)

©

Gradient Descent Search

Aw = . —VE|_(, (3)

(search) direction

As we’ve seen, the step size 7 is not a function of w(™) and is known in as the
learning rate. In the most basic form of Gradient Descent Search, it’s just a
constant, and you have to set it by hand.

At each timestep 7, Aw is a function of the current true gradient only. The
search history is ignored. As we will see, later algorithms will exploit the search
history.

General Algorithm Structure
STEP 1. + = 0. Initialize w(%). Covered in §7.4.
while (TRUE) {
STEP 2. Compute Aw(T),
Update w(™+1) = w(™) 4+ Aw(.

Update 7 = 7+ 1.

STEP 3. If termination reached (covered in next lecture),
exit and return w* = w(7).

Conditions for Convergence
Under what conditions will we converge to a minimum?
Hard to say. But if we assume a quadratic error surface, we can answer this

if we rotate into the eigenspace of H and move such that w* — 0 (assume we
are doing a post-mortem and know both H and w*).

.

The Eigenspace of H

Since H = HY, its eigenvectors
Hu, = Nu; i€ [1,W] (4)

form a complete orthonormal basis of V. Why?

Because for any pair, u; and uy, j # k,

uJTHuk = Aku]Tuk
(ugHuJ)T = ()\ju%uj)T
= 0 = (Ak — A]) u;{uj

So for A\, #), the eigenvectors are orthogonal. Otherwise, they define a
plane in which all vectors are eigenvectors corresponding to A, = A;, so we
can choose any two orthogonal vectors which span this plane. Then normalize
all u; to have unit length.

Weight Update in the Eigenspace of H

Let’s transform our weight increment from the original coordinate system to the
new coordinates using Eq 5:

Aw) = WD _ ™
W w
= <W* + > %(Tﬂ)uz) - (W* + > O‘Z(T)Ui)
i=1 ;

w
= Z AOZZ(T)UZ‘

i=1
Recall that for Gradient Descent Search,
aw) = —VE|
= —nVE|,x (7)
()
= - o Ny (8)
i=1

where the equality in line 7 holds because we have been assuming a quadratic
error surface, and Eq 8 follows from Eq 6.

The Gradient in the Eigenspace of H

We've successfully constructed a new (more useful) orthonormal basis of our
original space. We can express any original vector w in these new coordinates
as:

W W
wo= w4+ oy & w-w =) au (5)
i=1 i=1
Recalling Eq 2, we compute the gradient of our second order approximation at
w using Eq 5 and simplify with Eq 4:
VElw = H(w—w"
W
= H Z o
i=1
W

= > oy (6)

i=1

Gradient Descent Search Convergence, cont’d...

By inspection from Egs 7 & 8, Aa; = —n\;e;. So, in the new coordinate
system,

a§7+1) = aZ(T)—I-AaZ(T)
= (1-m)a” ©)

Remember that we want to converge to 0 (w* in the original basis). After R
timesteps,

AiinooagR> = Igiinw(l—nAi)RaEO) (10)

=0 (11)

= Iim w) = w* (12)
R—>OO

iff |1—n\| < 1 (13)

Finally (it took 5 slides). We will converge to the minimum

if and only if < 2.

Speed of Convergence

Governed by how long it takes each of the (1 — n);)* to decay to 0, under the
constraint that n < 2/Amaz.

The larger)\;, the closer (1—n2;) is to 0 and so the faster will (1—n);) decay.
Therefore convergence is slowest for the smallest)\;. Specifically, convergence
will be governed by how close the following gets to zero:

2
max (1l —nX;) = max|(1l-— i
X (nA;) X (Nman z)
— 1_2>\min
)\max

So the closer \,,,;,, and Amaz are, the faster we will find the minimum.

The situation becomes even less optimistic when we drop our assumption of a
quadratic error surface. Then H may not only be ill-conditioned, it is generally
different for every point in weight space.

Addressing the Limitations
The rest of this lecture.

Want to find techniques for adapting the step size and for making direction
decisions which are optimal in more than just a local sense.

algorithms
w/ both

algorithms w/
adaptive
step size

algorithms w/
non-local
direction
selection

Gradient
Descent

Also want to try to limit time complexity, storage complexity, and the number of
parameters which must be externally set by hand.

Sadly, can’t do much about local minima.

Gradient Descent Search Pros & Cons

Straightforward, iterative, tractable, locally optimal descent in error — see demo.
But we have four main objections:

1. Cannot avoid local minima, and cannot escape them (but may occasionally
overshoot them).

2. Cannot guarantee a scalable bound on time complexity. Rather, speed to
convergence governed by the condition number of the local Hessian, which

may be changing from point to point.

3. Step size constant, not sensitive to local topology. Furthermore, has to be
carefully set by hand.

4. Search direction only locally optimal.

Avoiding/Escaping Local Minima
The only way to avoid getting trapped in a local minimum is to accidentally step
over it (with a step size or inertia which is locally too high). The likelihood of

this occurring depends on the optimization technique.

Leaving local minima is possible by random perturbation. Simulated Annealing
and Genetic Algorithms are examples, but we won’t cover them in this lecture.

Stochastic Gradient Descent is a form of injecting randomness into Gradient
Descent.

20

Stochastic Gradient Descent

Rather than computing the error gradient for all patterns, could go through the
patterns sequentially, one pattern per iteration.

AW(T) = ns‘—VEn|W(7.)

In contrast to the batch version, this offers the possibility of escaping from local
minima.

Likely to be more efficient for datasets with high redundancy.
Note that value of s may be different than for the 7 in the batch version.

Strictly speaking, it’s stochastic only if you choose the patterns randomly.

21

Adding Momentum

(14)

pn=0.0 pn=20.1 pn=0.2

Generally leads to significant improvements in speed of convergence. See
demo.

Escape from local minima possible.

Yet another parameter to set manually.

23

Using Learning Rate Schedules

In practice, error vs epoch curves exhibit distinct regions where some definite
statements about the suitability of the learning rate can be made.

E

epoch
Once you are familiar with how your neural network is training you will be able
to guess at several learning rates, which you will want to kick in at specific

times.

You’ll see this in an upcoming homework assignment.

22

Line Search
Let’s try to do something about the step size.
At every timestep 7, run a small subalgorithm:

1. Choose a search direction as in gradient descent:

d(T) — _VE‘W(T)

2. Minimize the error along the search direction:
A = argminy g Ew™ 4 xd()
NOTE: This is a one-dimensional problem!

3. Return the weight update:
Aw(™ = A . g™

24

Minimizing Error in 1 Dimension

E(\) Az, E(\s) L

™

A2, BE(X2)

A

2a. Pick 3 values A\; = 0 < A2 < A3 such that E()\,) is smallest. Enter inner loop:
2b. Fit points to a parabola E; = aA? 4 b\; + ¢, 1<i<3 (linear regression).
2c. Compute * = 72%, the parabola’s minimum; evaluate E(*).

2d. If E(*) ~ E()\2), return * and exit.
2e. Else replace {\2, E(\2)} by {*; E(A*)} and goto 2b.

25

How good are | Search Directions?

Gradient Descent, large n Gradient Descent, small n Line Search

In Gradient Descent Search, we may be oscillating back and forth such that the
angle between successive directions is almost 180 degrees. But we have the
opportunity, by keeping n small, to follow the optimal path to the minimum.

27

A Bird’s Eye View of Line Search

T
T
\/ ///

TOP VIEW TOP VIEW SIDE VIEW
CONTOURS NEGATIVE GRADIENT ELEVATION

As we move in a straight line, the gradient beneath our feet keeps changing
(we’re on a curved surface). Line search will stop us when the component of the
gradient parallel to our direction of travel is zero. Consequence: successive
directions in Line Search are perpendicular.

26

Orthogonal Search Directions, cont’d...

In Line Search, by contrast, we are stuck with successive directions that are
at exactly 90 degrees to each other, always (see demo). This is an immutable
fact, regardless of the topology.

This means that, even for a 2-dimensional quadratic error surface, we will take
many steps to converge.

The picture is far messier when we consider a WW-dimensional parameter space

with W large (ALVINN W = 4000). Throw away the quadratic assumption,
and things get messier still.

28

Line Search Pros & Cons
1. No parameters to set by hand, yay!
2. Successive search directions are orthogonal. Don’t quite know whether this
is a blessing or a curse. Seems better than Gradient Descent Search, but still
somehow unsatisfactory. Could take a long time to converge.
3. Line search requires that we evaluate £ (\) many times per iteration. Each

time we have to do a full forward propagation of the training set through our
neural network.

29

Conjugate Gradient Search

daw da®

/'/ /

At 7 = 2, we would really like to take direction d(2* instead. This would avoid
us having to repeat progress already made during step 1 on the next step.

31

What Can We Do About the | Directions

dw d®

/ /

N /e
N7
27 1 NES
27/ P ARS
7 TAN

/1N
!
!
T
T

4@

Note that, at each step, we choose a direction which ends up undoing the
progress we made on the previous step. We’'ll have to make it up again later.

30

Conjugate Gradients, Theory Part 1

At w(T'H),

T

(-VElyein) dP =0 (15)
Once we choose the next direction d("+1) and begin a line search step, our
position along that direction will be w(7+1) 4 xd("+1) and our gradient at that
position will be VE| | (r41) 4 yq(r+1)-

To a first order approximation,

VE|y+1) 4 rac+D = VE|G@a+1)
+ (WO D 4 gD W(T+1>>T ‘H
= VE|, (+1 + xd0TDTH (16)

32

Conjugate Gradients, Theory Part 2

We want to have chosen our next direction d("t1) such that, to a first order
approximation, our gradient along this direction will remain orthogonal to the
previous direction d(7):

_ T
(_VElw(T+1)+)\d(T+l)> d” = o (17)

We can substitute Eq 16 into Eq 17
T
~ (VE| g4 + 27D TH) dD = o
(—VE|W(T+1)>Td(T) _ OO T = o
drtDTHa(D = o (18)
where the first term on the second line cancels due to Eq 15.
Pairs of directions d("t1) and d(™) for which Eq 18 holds are called mutually
conjugate. They are orthogonal in the (rotated) space where H is the identity.

33

Can Computation of H Be Avoided?

H is costly to compute, and so we would like to avoid its evaluation at every
step. Under a quadratic error surface assumption, it can be shown that Eq 20
reduces to the Polak-Ribiere formula:

(VEIW<T+1>)T (VElyet1) — VEl)

B 7
(VEly») VE|

(21)

w(T)

There are several competing expressions; this one is believed to generalize
better to non-quadratic error surfaces.

35

Constructing the Next Conjugate Direction
Note that the new direction is a linear combination of the current negative gra-
dient and the previous search direction:

drt) — —VE\W(T+1)+5(T)d(T) (19)

We can solve for 3(7) by first taking the transpose of Eq 19 and then multiplying
by Hd(") and imposing Eq 18:

AT THA®) = (VE| +1))T HA™ + 3D d® THA™
This yields

T
(VE|yrn) HAD
d® T HA(™)

B (20)

34

The Conjugate Gradient Search Algorithm
Just like the inner-loop subalgorithm for Line Search. Prior to incrementing 7:
1a. Compute —V E|_ (-+1) (one back propagation).
1b. For 7 = 1, set (1) = 0. Else evaluate 3(") using Eq 21.
1c. Evaluate d("*1) using Eq 19.
1d. Update - = 7 + 1.

Check out the demo.

36

How Does Conjugate Gradient Search Stack Up?
If we had a quadratic error surface, we would need to perform at most W
weight updates before reaching the minimum. 2-D toy problems will be solved
two steps.

Need to store previous search direction (O(W) storage). But this isn’t so bad.

Require multiple evaluations of the error (forward propagations through the
neural network) during line error minimization.

We need an accurate line error minimization routine since we are using our
position to set up a conjugate system. In Line Search this wasn’t so important.

Still no chance of leaving poor local minima.

37

Newton’s Method: Caveats

1. The error surface isn’t really quadratic; algorithm must be applied iteratively
like everything else.

2. Computation of H~1 is O(W3).

3. Points 1 and 2 together should make you cringe. In ALVINN, with 4000
parameters, that's 6.4 x 1010 computations per iteration.

4. Additionally, if H isn’t positive definite, the algorithm could fail to find a
minimum.

39

Newton’s Method

For a quadratic error surface, our 1st order approximation to the gradient (Eq
2) is the true gradient. Expanding about w* and noting that the gradient at w*
is 0:

VE|lw = H(w-—w" (22)
Eq 22 can be solved directly
wh = w— H_1VE|W
and the corresponding weight update,
Aw = —-H VE|y

is called the Newton step.

38

Quasi-Newton Methods

AIM: Since exact computation of H~1 is so expensive, let’s find an approxi-
mation G(7) which is cheaper to compute and simultaneously ensure that it is
positive definite.

At = 1, initialize G(1) = L.

At each timestep T, generate a new G, The G(M) are a sequence of in-
creasingly better approximations to H L

Then apply the Newton step weight update. Use line minimization just to make
sure we’re not taken outside of the range of validity of our quadratic approxi-
mation:

Av®) = AOaOva

40

Technique Performance Comparison

Computing a(+1) using BFGS Taken from www.mathworks . com Neural Networks Toolbox User Guide.
The Broyden-Fletcher-Goldfarb-Shanno procedure is the most well-known quasi- '
Newton method of H—1 approximation: \
p = WD _ @ S
v = VE| 1) — VElyo g’ A
p GOy “\“. .
ua = — - —— e
plv vIG(y _ :
T (GO VTG -
(r4+1) — @) L PP (T T =t e
G = G4 Ty Tame T (vI'Gv) uu

gdx = Variable Rate Gradient Descent, cgb = Conjugate Gradient Search with
restarts, scg = Scaled Conjugate Gradient Search, rp = Resilient Backprop, Im
= Levenberg-Marquart

41 42

What We’ve Covered

algorithms w/
non-local
direction
selection

algorithms w/
adaptive

step size Conjugate

Gradient

Line Search

Gradient Descent
with Variable
Learning Rate

Gradient Descent
with Momentum

Gradient
Descent

43

