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Properties of Hopfield Nets

� Special class of recurrent
network.

� Fully connected; binary units
(+1/�1 or 1/0.)

� The stable states are fixed
point attractors.

� Can act as a content-
addressable memory.

John Hopfield
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Properties of Hopfield Nets (cont.)

� Analogous to spin glass systems (Ising models) in
physics, like magnetic bubble memories.

� Has an energy function.

� We can use physics to analyze a neural net!
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Definition of a Hopfield Net

1. Binary threshold units:

2. Symmetric weight matrix:

Si = {
�1 if neti�0

�1 otherwise

Can also use 0/1 states.

Wij = Wji

Wii = 0
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Definition of a Hopfield Net (cont.)

3. No systematic communication delays between units.

In other words, updating must be asynchronous.

� Could update one at a time, in random order.

� Could update each unit at time t with probability p < 1.

'Update' means recompute Si based on current neti :

neti=�
j

Sjwij
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Storing One Pattern

When is a pattern � stable?

Si = �i = sgn��j wij� j� for all bits i

Suppose wij 	 �i� j :

Si = sgn ��j ��i� j�
� j�
= sgn ��j �i� j

2

�
= sgn ��j �i � since � j

2
=1

= sgn �N�i � where N = pattern size

= �i

For convenience set wij =
1

N
�i� j
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Reversal States Are Also Stable

If � is a stable state, then so is ��.
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Storing Multiple Patterns

wij =
1

N
�
�=1

P

�i
�
� j
�

Is �
�
stable?

�i
�

= sgn ��j wij� j
�

�
= sgn � 1N�j �� �i

�
� j

�
� j
��

= sgn ��i� � 1

N
�
j

�
��

�i
�
� j
�
� j
��

�
� is stable if |noise| < 1.

original pattern noise or crosstalk term

when �=� this is just �i
�
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Stability

� Will units keep flipping state forever?

� No: there are stable states.

� Are we guaranteed to reach a stable state from
any starting point?

� Yes, within a finite number of flips.

� Prove it!
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Lyapunov Function

A Lyapunov function assigns a numerical value to
each possible state of the system.

Also called an energy function.

To prove stability, show that each state transition
reduces the value of the Lyapunov function.

Result: stable states must exist.

� Minimum energy states are stable.

� But local minima may also exist.
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Energy Landscape

unstable

stable
global

minimum

equilibrium

local
minima

attractor
region
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Define an Energy Measure

E = �
1

2
�
i , j

SiS jwij

Update step: Si�sgn��j S jwij�

E�Si=�1� = �
1

2
�
j

Sjwij

E�Si=�1� = �
1

2
�
j

�Sjwij} � ��12 �j ,ki SjSkw jk�

If neti � 0, then E�Si=�1� � E�Si=�1�.

And... If neti�0, state update rule sets Si to �1.

So with every update, the E goes down or stays the same.

Only 2
N possible states, so a stable state must be reached.

neti
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Settling Process
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Energy E = �7 Energy E = �17
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Stable States for +1/-1 Network
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global minimum:
E = � 17

global minimum:
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15

Stable States for 0/1 Network
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always a local
minimum for
0/1 units:
E = 0

global minimum:
E = � 7

local minimum:
E = � 5

local minimum:
E = � 6
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Hopfield with 0/1 Units
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Associative Retrieval:
Learned Patterns

5x5 = 25 units

4 patterns
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Associative Retrieval: Noisy Cues
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Image Retrieval From Partial Cues

130 x 180 binary pixels =
23,400 bit patterns

sparsely connected network

7 stored patterns
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Why No Self-Links?

�1
+50 wii � 0 causes spurious stable states

�1
�50 wii � 0 oscillates; no Lyapunov fn.

�1
bias term is okay

15-486/782: Artificial Neural Networks David S. Touretzky Fall 2006



21

Setting the Weights: A Heuristic

wij = �
�

�i
�
� j
� for i j

Note: this is just an outer product Hebbian learning rule.

wii = 0 simplifies analysis; gives better performance

wii � 0 allowed, but may cause spurious stable states

wii � 0 no Lyapunov function; can cause oscillations
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Stored Patterns Are Energy Minima

Consider the case of one stored memory � .

Show that Si = �i (for all i) is an energy minimum.

wij = �i� j for i j

E = �
1

2
�
i.j

SiSjwij

= �
1

2
�
ij

SiSj ��i� j�

When Si = �i and Sj = � j , all terms are positive,

so E is minimal. Any state change would increase E.
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Memory Capacity

How many patterns can we store in a net of N units?

� Each pattern is a vector of length N.

� Assume vectors are random (uncorrelated).

Hopfield: capacity C is ~ 0.15 N.

Tighter bound:

100 neurons can reliably store about 8 patterns.

N

4lnN
� C �

N

2lnN
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Types of Stable States

1. Retrieval states: �
�

2. Reversed states: ��
�

3. Mixture states: any linear combination
of an odd number of patterns.

�
mix

= sgn �±�1 ± �
2
± �

3�

4. 'Spinglass' states: local minima not derivable
from finite mixtures of patterns �.

Types 3 & 4 are spurious states. Spinglass states
occur when too many patterns are stored.

mixture states
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An Aside: Optimization by
Simulated Annealing

Simulated annealing is a stochastic search technique
introduced by Kirkpatrick, Gelatt, & Vecchi in 1983.

Define some cost function C
we want to minimize.

Try to make moves that lower C.

But accept moves that raise C with some probability
that depends on a �temperature� parameter T.

Can escape from local minima!

Start out at high T; �anneal� by slowly lowering T.

Scott
Kirkpatrick

26

Chip Layout by Simulated Annealing

Illustrations from Sechen (1988), inspired by
Kirkpatrick, Gelatt, & Vecchi's work:

place
components

define
channels

generate
pinouts

route
pinouts
to chip
edge
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Back to Neural Networks

Energy gap �Ei = E �Si=�1� � E�Si=�1�

= ��
j

Sjwij = �net j

= change in E when Si turns on.

Hopfield: Si � sgn �neti� always decreases E.

What if we were to allow E to increase occasionally?
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The Boltzmann Machine

Hinton and Sejnowski combined two great ideas:

Spin glass neural net models (Hopfield)

Simulated annealing search (Kirkpatrick et al.)

Geoff Hinton Terry Sejnowski
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The Boltzmann Machine

The Boltzmann Machine is a stochastic Hopfield net
that avoids local minima through simulated annealing.

P[Si=�1] =
1

1�e
�Ei /T

=
1

1�e
�neti /T

where T is the temperature.

Ludwig Boltzmann, pioneer of
statistical mechanics
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Stochastic Units

P [Si=�1 ] =
1

1�e
�neti /T

If neti = 0, unit fluctuates randomly.

For large �neti�, unit is mostly on (or mostly off).

We can use this randomness to jump out of local minima!

net
i

low T

high T
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How to Make a Stochastic Unit

Calculate the net input neti

Calculate the probability that the unit is on:

P[Si=�1] =
1

1�e
�neti /T

Pick a random number r.

Turn unit on if P�r
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Boltzmann Distribution of
Energy States

Given states xa , xb with energies E �xa �,E �xb�, the ratio

of their probabilities at equilibrium at temperature T
is given by the Boltzmann distribution:

P �xa �

P �xb�
=

exp ��E �xa �/T �

exp ��E �xb�/T �

States with equal energy are equally probable.
From the above equation we can derive P �xa �:

P �xa � =
exp ��E �xa �/T �

�
x

exp ��E �x�/T �
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Stochastic Search at
Moderate Temperature

Can bounce
out of local
minima

Can get trapped
in global minima
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Boltzmann Machine Stochastic Search

Start at high temperature.

P[Si=1] is close to 0.5. Units fluctuate a lot.

Gradually cool to lower temperatures.

Units fluctuate less as P moves closer to 1 or 0.

Hope to get trapped in the global minimum.

At zero temperature, we have a Hopfield net.

Annealing schedule:

Ti�1 � 0.9Ti
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Variations on Hopfield/Boltzmann

Hopfield : Si � {
�1 if neti � 0

unchanged if neti = 0

�1 if neti � 0

Can also choose randomly if net i = 0

Boltzmann: P�flip� = {
1 if �E�flip� � 0

f �neti � if �E�flip� � 0

Settles to local minima more rapidly: always flips
state if a flip would move downhill in energy.
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Boltzmann Machines Can Have
Hidden Units

Input
Units

Output Units

Hidden Units

Hidden units add extra computational power.
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Boltzmann Machines With Hidden
Units Are Universal

1) Clamp the input units to
an input pattern.

2) Perform simulated annealing
on the whole network.

3) Read the �answer� on the
output units

A Boltzmann machine with enough hidden units can
mimic any distribution of output states and compute
any computable function.

But annealing may have to be very slow.

Input
Units

Output
Units

Hidden
Units
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Mean Field Approximation

Mean field approximation to Boltzmann machine:

Replace Si by <Si>, which is proportional to P(S
i
= 1)

Settling is faster than with a regular Boltzmann
machine since we don't have to wait a long time to
reach equilibrium state.

But not as good at avoiding local minima.
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Learning in Boltzmann Machines:
The Wake/Sleep Algorithm

1. Clamp, anneal, measure �SiSj�
+

'wake' state

2. Unclamp, anneal, measure �SiSj�
-

'sleep' state

3. �wij = � [�SiS j�
+
��SiSj�

-
] weight update

Hebbian learning in wake state; antihebbian in sleep state.
Unlike backprop, this is a completely local learning rule!

Very, very slow, because each
learning step requires many
annealings to estimate �SiSj�,

and each must reach equilibrium. Input
Units

Output
Units

Hidden
Units
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