## 15-750: Graduate Algorithms

February 03, 2017

Lecture 8: Dynamic Programming II: Inference on Graphical Models

Lecturer: David Witmer Scribe: Zhengbo Li

# 1 Recall: Dynamic programming steps from last class

- 1. Define subproblems.
- 2. Write solution to subproblem recursively in terms of solutions to smaller subproblems.
- 3. Prove that this recurrence is correct using induction.
- 4. Determine runtime.

### 2 Lecture outline

- Factor graphs and examples.
- Inference tasks for factor graphs.
- Efficient inference on trees using dynamic programming.

**Reference:** Mezard and Montanari, *Information, Physics, and Computation*, Chapters 9 and 14. Available online

# 3 Factor graphs

Let P be a probability distribution on  $\{0,1\}^n$  with the following form:

$$P(x) = \frac{1}{Z} \prod_{a=1}^{m} \psi_a(X_{\partial a})$$

where:

- Z is a normalization factor, i.e,  $Z = \sum_{X \in \{0,1\}^n} \prod_{a=1}^m \psi_a(X_{\partial a})$
- $\partial a \subseteq [n]$
- $|\partial a| = k_a$
- $X_{\partial a} = (X_{(\partial a)_1}, X_{(\partial a)_2}, \dots, X_{(\partial a)_{k_n}})$
- $\psi_a: \{0,1\}^{\partial a} \to \mathbb{R}^{\geq 0}$ , capture dependencies, relationships among variables.

# 3.1 Examples

Example 3.1 (Medical diagnosis).

### Variables

| Notation | 1                             | 0         |
|----------|-------------------------------|-----------|
| c        | if I have a cold              | otherwise |
| s        | if I have a sore throat       | otherwise |
| r        | if I have a runny noise       | otherwise |
| p        | if there is pollen in the are | otherwise |

**Functions** c, s, and r are related: If I have a cold, I am more likely to have a runny noise.

| c | s | r | $\psi_a(c,s,r)$ |
|---|---|---|-----------------|
| 1 | 1 | 1 | 0.1             |
| 0 | 0 | 1 | 0.3             |
| 0 | 0 | 1 | 0.6             |

r, p are related: If there is pollen in the air, I am more likely to have a runny noise.

| r | p | $\psi_b(r,p)$ |
|---|---|---------------|
| 0 | 1 | 0.1           |
| 1 | 0 | 0.2           |
| 1 | 1 | 0.3           |
| 0 | 0 | 0.4           |

### Factor graph



$$P(c, s, r, p) = \frac{1}{Z}\psi_a(c, s, r)\psi_b(r, p)$$

We can ask the following questions:

- What is the probability that I have a cold given that my nose is running?  $P(c=1 \mid r=1)$ .
- What is the probability that I have cold given that my noise is running and there is pollen?  $P(c=1 \mid r=1, p=1)$ .

**Example 3.2** (3-SAT). We have n variables  $x_i \in \{0,1\}$ , 2n literals  $\{x_i, \bar{x_i}\}$ , and m clauses, e.g.,  $x_i \vee x_j \vee \bar{x_k}$ . We want to know whether there is an assignment to variables satisfying all m clauses, e.g.,  $(x_1 \vee \bar{x_2} \vee x_3) \wedge (x_3 \vee \bar{x_4} \vee \bar{x_5})$ .

Represent 3-SAT instance by a factor graph as follows:



 $\psi_{c_1}$  is indicator for clause 1 being satisfied:  $\psi_{c_1}(x_1, x_2, x_3) = x_1 \vee \bar{x_2} \vee x_3$ .  $\psi_{c_2}$  is indicator for clause 2 being satisfied:  $\psi_{c_2}(x_3, x_4, x_5) = x_3 \vee x_4 \vee x_5$ . Then

$$P(x_1, x_2, x_3, x_4, x_5) = \frac{1}{Z} \psi_{c_1}(x_1, x_2, x_3) \psi_{c_2}(x_3, x_4, x_5).$$

We have the following possible tasks:

- Compute  $Z = \sum_{x \in \{0,1\}^5} \psi_{c_1}(x_1, x_2, x_3) \psi_{c_2}(x_3, x_4, x_5)$ , which is the number of satisfying assignments.
- Compute  $P(x_i = 1)$ , which is the probability that a satisfying assignment sets  $x_i = 1$ .
- Sample a satisfying assignment.

### 3.2 Definition

Factor graphs are bipartite graphs composed of two sets of nodes: variable nodes [n] and factor nodes [m]. Let  $\partial v$  denote the set of v's neighbours and we have  $\psi_a: \{0,1\}^{\partial a} \to \mathbb{R}^{\geq 0}$  for each factor node. The corresponding distribution is:

$$P(x) = \frac{1}{Z} \prod_{a=1}^{m} \psi_a(x_{\partial a}).$$

### 3.3 Tasks:

- Compute marginals  $P(x_i = 1)$ .
- Compute conditional marginals  $P(x_i = 1 \mid x_j = 0)$ .
- Sample from distribution.
- Find mode:  $\operatorname{argmax}_x P(x)$

### 3.4 Assumptions:

- $k_a = |\partial a| = O(1)$ .
- Factor graph is a tree. In this case we can use dynamic programming to do all of the above efficiently.

# 4 Compute marginals

Say we want to compute marginal distribution of  $x_1$ ,

$$P(x_i = 1) = \frac{1}{Z} \sum_{\substack{x \in \{0,1\}^n \\ x_1 = 1}} \prod_{a=1}^m \psi_a(x_{\partial a}).$$

The naive algorithm computes all  $2^{n-1}$  terms of the sum and adds them up. We will use dynamic programming to do better.

Consider the following example:



$$P(x_1 = 1) = \frac{1}{Z} \sum_{x_2, x_3, x_4, x_5 \in \{0, 1\}} \psi_a(1, x_2, x_3) \psi_b(x_3, x_4, x_5)$$

To compute this, we need to compute the 16 terms of the sum, requiring 32 computations of the  $\psi$ 's. On the other hand, consider

$$P(x_1 = 1) = \frac{1}{Z} \sum_{x_2, x_3 \in \{0, 1\}} \psi_a(1, x_2, x_3) \sum_{x_4, x_5 \in \{0, 1\}} \psi_b(x_3, x_4, x_5)$$

We can compute  $\sum_{x_4,x_5\in\{0,1\}} \psi_b(x_3,x_4,x_5)$  for  $x_3=0$  and  $x_3=1$ , respectively, by doing 8 computations of  $\psi$ 's. We can then do 4 additional computations of  $\psi$ 's to get  $P(x_1=1)$ , for a total of 12 computations of  $\psi$ 's.

**Idea:** Reorder sums and products to reuse computation (dynamic programming).

### 4.1 Define subproblems

Pick an arbitrary variable as the root and we get a tree. Define the subproblem  $\nu_i(b)$  as the marginal distribution for  $x_i = b$  in the factor graph corresponding to subtree rooted at  $x_i$ .

$$\nu_i(b) = \sum_{y_i = b} \prod_a \psi_a(y_{\partial a})$$

Where y is assignment for the subtree rooted at  $x_i$  and a is factor in the subtree rooted at  $x_i$ . More formally, we define:

- $T_w$  to be subtree rooted at w. w can be variable for factor node.
- $V_w$  to be all variables in  $T_w$ .
- $F_w$  to be all factors in  $T_w$ .
- Ch(w) to be children of w.

There are two types of subtrees:

• Variable rooted

$$\nu_i(b) = \sum_{\substack{y \in \{0,1\}^{V_i} \\ u_i = b}} \prod_{a \in F_i} \psi_a(y_{\partial a})$$

• Factor rooted

$$\hat{\nu}_a(b) = \sum_{y \in \{0,1\}^{V_a}} \psi_a(b, y_{\partial a - \{i\}}) \prod_{a' \in F_a - \{a\}} \psi_{a'}(y_{\partial a'})$$

### 4.2 Write a recurrence

We need to write recurrence for both variable nodes and factor nodes:

$$\nu_i(b) = \begin{cases} \prod_{a \in Ch(i)} \hat{\nu}_a(b) & \text{if } i \text{ is not a leaf,} \\ 1 & \text{if } i \text{ is a leaf.} \end{cases}$$
 (1)

$$\hat{\nu}_a(b) = \begin{cases}
\sum_{y \in \{0,1\}^{Ch(a)}} \psi_a(b,y) \prod_{j \in Ch(a)} \nu_j(y_j) & \text{if } i \text{ is not a leaf,} \\
\psi_a(b) & \text{if } a \text{ is a leaf.}
\end{cases}$$
(2)

This is called the "Sum-Product Algorithm".

### 4.3 Prove recurrence is correct

We prove that the recurrence is correct by induction on the height of the tree.

Base case: Leaves (height 0). (1) and (2) hold.

**Inductive case:** Assume (1) and (2) hold for variable and factor nodes of height  $\leq h$ . Want to prove that (1) and (2) hold for variable and factor nodes of height h + 1.

**Subcase 1:** *i* is a variable node of height h + 1.

$$\begin{split} \nu_i(b) &= \prod_{a \in \operatorname{Ch}(i)} \hat{\nu}_a(b) \\ &= \prod_{a \in \operatorname{Ch}(i)} \sum_{y \in \{0,1\}^{V_a}} \psi_a(b, y_{\partial a - \{i\}}) \prod_{a' \in F_a - \{a\}} \psi_{a'}(y_{\partial a'}) \\ &= \sum_{y \in \{0,1\}^{V_i}} \prod_{a \in \operatorname{Ch}(i)} \left( \psi_a(b, y_{\partial a - \{i\}}) \prod_{a' \in F_a - \{a\}} \psi_{a'}(y_{\partial a'}) \right) \\ &= \sum_{\substack{y \in \{0,1\}^{V_i} \\ y_i = b}} \prod_{a \in F_i} \psi_a(y_{\partial a}) \end{split}$$

**Subcase 2:** a is a factor node of height h + 1.

$$\hat{\nu}_{a}(b) = \sum_{y \in \{0,1\}^{\operatorname{Ch}(a)}} \psi_{a}(b,y) \prod_{j \in \operatorname{Ch}(a)} \nu_{j}(y_{j})$$

$$= \sum_{y \in \{0,1\}^{\operatorname{Ch}(a)}} \psi_{a}(b,y) \prod_{j \in \operatorname{Ch}(a)} \left( \sum_{\substack{z \in \{0,1\}^{V_{j}} \ a' \in F_{j}}} \prod_{a' \in F_{j}} \psi_{a'}(Z_{\partial a'}) \right)$$

$$= \sum_{y \in \{0,1\}^{\operatorname{Ch}(a)}} \psi_{a}(b,y) \sum_{\substack{z \in \{0,1\} \ z_{\operatorname{Ch}(a)} = y}} \prod_{j \in \operatorname{Ch}(a)} \left( \prod_{a' \in F_{j}} \psi_{a'}(z_{\partial a'}) \right)$$

$$= \sum_{y \in \{0,1\}^{V_{a}}} \psi_{a}(b,y_{\partial a - \{i\}}) \prod_{a' \in F_{a} - \{a\}} \psi_{a'}(y_{\partial a'})$$

# 4.4 Runtime

From (1) and (2):

- Computing  $\nu_i$  requires time  $O(\deg(i))$  given subproblem solutions.
- Computing  $\hat{\nu}_a$  requires time  $O(2^{\deg(a)}\deg(a)) = O(1)$  given subproblem solutions.

Total runtime:

$$\sum_{n=1}^{m} O(1) + \sum_{i=1}^{n} O(\deg(i)) = O(m) + O(|E|) = O(|E|)$$

### 5 Other tasks

### 5.1 Computing conditional marginals

For example, if we want to compute  $P(x_1 = b_1 \mid x_2 = b_2)$ , we can simply add another factor  $\psi_a$  for  $x_2$ , where  $\psi_a(b_2) = 1$  and  $\psi_a(1 - b_2) = 0$ . Thus the problem is reduced to computing unconditioned marginal of  $x_1$ .

### 5.2 Sampling

- Compute  $P(x_1)$ , assign  $x_1$  to  $b_1$  with probability  $P(x_1 = b_1)$ ,  $b_1 \in \{0, 1\}$ .
- Compute  $P(x_2 \mid x_1 = b_1)$ , assign  $x_2$  to  $b_2$  with probability  $P(x_2 = b_2 \mid x_1 = b_1)$ ,  $b_2 \in \{0, 1\}$ .
- Continue for  $x_3, \ldots, x_n$  in the same way.

## 5.3 Optimization: Compute $\operatorname{argmax}_x P(x)$

**Definition 5.1.** For variable  $i \in [n]$  and  $b \in \{0,1\}$ , the max marginal of i, denoted  $M_i(b)$ , is  $\max_{x \in \{0,1\}^n} \{P(x) : x_i = b\}$ .

Given an algorithm computing max marginals, we can compute  $\operatorname{argmax}_x P(x)$  as follows:

- Compute  $M_1$ . Set  $x_1 = \operatorname{argmax}_b M_1(b)$ . Say  $x_1 = b_1$ .
- Fix  $x_1 = b_1$  and compute  $M_2$ . Set  $x_2 = \operatorname{argmax}_b M_2(b)$ . Say  $x_2 = b_2$ .
- Repeat for  $x_3, \ldots, x_n$ .

## 5.4 Computing max marginals

We use a similar dynamic programming approach called the Max Product Algorithm.

$$\nu_i(b) = \prod_{a \in \operatorname{Ch}(i)} \hat{\nu}_a(b)$$

$$\hat{\nu}_a(b) = \max_{y \in \{0,1\}^{\mathrm{Ch}(a)}} \left\{ \psi_a(b, y) \prod_{j \in \mathrm{Ch}(a)} \nu_j(y_j) \right\}$$

We can prove that this works using similar inductive argument.