
15-750: Graduate Algorithms February 03, 2017

Lecture 8: Dynamic Programming II: Inference on Graphical Models

Lecturer: David Witmer Scribe: Zhengbo Li

1 Recall: Dynamic programming steps from last class

1. Define subproblems.

2. Write solution to subproblem recursively in terms of solutions to smaller subproblems.

3. Prove that this recurrence is correct using induction.

4. Determine runtime.

2 Lecture outline

• Factor graphs and examples.

• Inference tasks for factor graphs.

• Efficient inference on trees using dynamic programming.

Reference: Mezard and Montanari, Information, Physics, and Computation, Chapters 9 and 14.
Available online

3 Factor graphs

Let P be a probability distribution on {0, 1}n with the following form:

P (x) =
1

Z

m∏
a=1

ψa(X∂a)

where:

• Z is a normalization factor, i.e, Z =
∑

X∈{0,1}n
∏m

a=1 ψa(X∂a)

• ∂a ⊆ [n]

• |∂a| = ka

• X∂a = (X(∂a)1 , X(∂a)2 , . . . , X(∂a)kn
)

• ψa : {0, 1}∂a → R≥0, capture dependencies, relationships among variables.

3.1 Examples

Example 3.1 (Medical diagnosis).

1

http://web.stanford.edu/~montanar/RESEARCH/book.html

Variables

Notation 1 0

c if I have a cold otherwise
s if I have a sore throat otherwise
r if I have a runny noise otherwise
p if there is pollen in the are otherwise

Functions c, s, and r are related: If I have a cold, I am more likely to have a runny noise.

c s r ψa(c, s, r)

1 1 1 0.1
0 0 1 0.3
0 0 1 0.6

r, p are related: If there is pollen in the air, I am more likely to have a runny noise.

r p ψb(r, p)

0 1 0.1
1 0 0.2
1 1 0.3
0 0 0.4

Factor graph

s

a

r

c

b

p

P (c, s, r, p) =
1

Z
ψa(c, s, r)ψb(r, p)

We can ask the following questions:

• What is the probability that I have a cold given that my nose is running? P (c = 1 | r = 1).

• What is the probability that I have cold given that my noise is running and there is pollen?
P (c = 1 | r = 1, p = 1).

Example 3.2 (3-SAT). We have n variables xi ∈ {0, 1}, 2n literals {xi, x̄i}, and m clauses, e.g.,
xi ∨ xj ∨ x̄k. We want to know whether there is an assignment to variables satifying all m clauses,
e.g., (x1 ∨ x̄2 ∨ x3) ∧ (x3 ∨ x̄4 ∨ x̄5).

Represent 3-SAT instance by a factor graph as follows:

2

x2

c1

x1

x3 c2

x4

x5

ψc1 is indicator for clause 1 being satisfied: ψc1(x1, x2, x3) = x1 ∨ x̄2 ∨ x3.
ψc2 is indicator for clause 2 being satisfied: ψc2(x3, x4, x5) = x3 ∨ x4 ∨ x5.
Then

P (x1, x2, x3, x4, x5) =
1

Z
ψc1(x1, x2, x3)ψc2(x3, x4, x5).

We have the following possible tasks:

• Compute Z =
∑

x∈{0,1}5 ψc1(x1, x2, x3)ψc2(x3, x4, x5), which is the number of satisfying as-
signments.

• Compute P (xi = 1), which is the probability that a satisfying assignment sets xi = 1.

• Sample a satisfying assignment.

3.2 Definition

Factor graphs are bipartite graphs composed of two sets of nodes: variable nodes [n] and factor
nodes [m]. Let ∂v denote the set of v’s neighbours and we have ψa : {0, 1}∂a → R≥0 for each factor
node. The corresponding distribution is:

P (x) =
1

Z

m∏
a=1

ψa(x∂a).

3.3 Tasks:

• Compute marginals P (xi = 1).

• Compute conditional marginals P (xi = 1 | xj = 0).

• Sample from distribution.

• Find mode: argmaxxP (x)

3.4 Assumptions:

• ka = |∂a| = O(1).

• Factor graph is a tree. In this case we can use dynamic programming to do all of the above
efficiently.

3

4 Compute marginals

Say we want to compute marginal distribution of x1,

P (xi = 1) =
1

Z

∑
x∈{0,1}n
x1=1

m∏
a=1

ψa(x∂a).

The naive algorithm computes all 2n−1 terms of the sum and adds them up. We will use
dynamic programming to do better.

Consider the following example:

x2

a

x1

x3 b

x4

x5

P (x1 = 1) =
1

Z

∑
x2,x3,x4,x5∈{0,1}

ψa(1, x2, x3)ψb(x3, x4, x5)

To compute this, we need to compute the 16 terms of the sum, requiring 32 computations of
the ψ’s. On the other hand, consider

P (x1 = 1) =
1

Z

∑
x2,x3∈{0,1}

ψa(1, x2, x3)
∑

x4,x5∈{0,1}

ψb(x3, x4, x5)

.
We can compute

∑
x4,x5∈{0,1} ψb(x3, x4, x5) for x3 = 0 and x3 = 1, respectively, by doing 8

computations of ψ’s. We can then do 4 additional computations of ψ’s to get P (x1 = 1), for a total
of 12 computations of ψ’s.

Idea: Reorder sums and products to reuse computation (dynamic programming).

4.1 Define subproblems

Pick an arbitrary variable as the root and we get a tree. Define the subproblem νi(b) as the marginal
distribution for xi = b in the factor graph corresponding to subtree rooted at xi.

νi(b) =
∑
yi=b

∏
a

ψa(y∂a)

Where y is assignment for the subtree rooted at xi and a is factor in the subtree rooted at xi.
More formally, we define:

• Tw to be subtree rooted at w. w can be variable for factor node.

• Vw to be all variables in Tw.

• Fw to be all factors in Tw.

• Ch(w) to be children of w.

4

There are two types of subtrees:

• Variable rooted
νi(b) =

∑
y∈{0,1}Vi

yi=b

∏
a∈Fi

ψa(y∂a)

• Factor rooted
ν̂a(b) =

∑
y∈{0,1}Va

ψa(b, y∂a−{i})
∏

a′∈Fa−{a}

ψa′(y∂a′)

4.2 Write a recurrence

We need to write recurrence for both variable nodes and factor nodes:

νi(b) =

∏

a∈Ch(i)

ν̂a(b) if i is not a leaf,

1 if i is a leaf.

(1)

ν̂a(b) =

∑

y∈{0,1}Ch(a)

ψa(b, y)
∏

j∈Ch(a)

νj(yj) if i is not a leaf,

ψa(b) if a is a leaf.

(2)

This is called the “Sum-Product Algorithm”.

4.3 Prove recurrence is correct

We prove that the recurrence is correct by induction on the height of the tree.
Base case: Leaves (height 0). (1) and (2) hold.
Inductive case: Assume (1) and (2) hold for variable and factor nodes of height ≤ h. Want

to prove that (1) and (2) hold for variable and factor nodes of height h+ 1.
Subcase 1: i is a variable node of height h+ 1.

νi(b) =
∏

a∈Ch(i)

ν̂a(b)

=
∏

a∈Ch(i)

∑
y∈{0,1}Va

ψa(b, y∂a−{i})
∏

a′∈Fa−{a}

ψa′(y∂a′)

=
∑

y∈{0,1}Vi

∏
a∈Ch(i)

ψa(b, y∂a−{i})
∏

a′∈Fa−{a}

ψa′(y∂a′)

=

∑
y∈{0,1}Vi

yi=b

∏
a∈Fi

ψa(y∂a)

Subcase 2: a is a factor node of height h+ 1.

5

ν̂a(b) =
∑

y∈{0,1}Ch(a)

ψa(b, y)
∏

j∈Ch(a)

νj(yj)

=
∑

y∈{0,1}Ch(a)

ψa(b, y)
∏

j∈Ch(a)

 ∑
z∈{0,1}Vj
zj=yj

∏
a′∈Fj

ψa′(Z∂a′)

=

∑
y∈{0,1}Ch(a)

ψa(b, y)
∑

z∈{0,1}
zCh(a)=y

∏
j∈Ch(a)

 ∏
a′∈Fj

ψa′(z∂a′)

=

∑
y∈{0,1}Va

ψa(b, y∂a−{i})
∏

a′∈Fa−{a}

ψa′(y∂a′)

4.4 Runtime

From (1) and (2):

• Computing νi requires time O(deg(i)) given subproblem solutions.

• Computing ν̂a requires time O(2deg(a)deg(a)) = O(1) given subproblem solutions.

Total runtime:

m∑
a=1

O(1) +
n∑

i=1

O(deg(i)) = O(m) +O(|E|) = O(|E|)

5 Other tasks

5.1 Computing conditional marginals

For example, if we want to compute P (x1 = b1 | x2 = b2), we can simply add another factor ψa for
x2, where ψa(b2) = 1 and ψa(1−b2) = 0. Thus the problem is reduced to computing unconditioned
marginal of x1.

5.2 Sampling

• Compute P (x1), assign x1 to b1 with probability P (x1 = b1), b1 ∈ {0, 1}.

• Compute P (x2 | x1 = b1), assign x2 to b2 with probability P (x2 = b2 | x1 = b1), b2 ∈ {0, 1}.

• Continue for x3, . . . , xn in the same way.

5.3 Optimization: Compute argmaxx P (x)

Definition 5.1. For variable i ∈ [n] and b ∈ {0, 1}, the max marginal of i, denoted Mi(b), is
maxx∈{0,1}n{P (x) : xi = b}.

Given an algorithm computing max marginals, we can compute argmaxx P (x) as follows:

6

• Compute M1. Set x1 = argmaxbM1(b). Say x1 = b1.

• Fix x1 = b1 and compute M2. Set x2 = argmaxbM2(b). Say x2 = b2.

• Repeat for x3, . . . , xn.

5.4 Computing max marginals

We use a similar dynamic programming approach called the Max Product Algorithm.

νi(b) =
∏

a∈Ch(i)

ν̂a(b)

ν̂a(b) = maxy∈{0,1}Ch(a)

ψa(b, y)
∏

j∈Ch(a)

νj(yj)

We can prove that this works using similar inductive argument.

7

