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1 Min s-t Cut

Recall that in the lecture introducing flows, we defined the Min s-t Cut problem:

Given graph G = (V,E), edge capacities ce for e ∈ E, source vertex s and sink vertex t,
we want to partition V into two sets, S and S̄, where S̄ = V \S, with s ∈ S, t ∈ S̄ such that

∑
(u,v)∈E
u∈S
v/∈S

cuv is minimized.

2 Sparsest Cut

Now, to generalize the min s-t cut problem, let’s define the sparsest cut problem. We are given a
capacity graph G = (V,EG) with capacities ce for e ∈ EG and a demand graph H = (V,EH) on the
same set of vertices with capacities De for e ∈ EH . The sparsity of a cut S ⊆ V is then

Φ(S) =

∑
(u,v)∈EG

u∈S,v /∈S

cuv

∑
(u,v)∈EH

u∈S,v /∈S

Duv
.

We wish to find the cut S minimizing Φ(S).
For example, in Fig.1, we have Φ(Sblue) = 2

3 and Φ(Sbrown) = 1.
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Figure 1: Red edges indicate demand, and black indicate capacity. Two cuts are
shown by the brown and blue circle.

It is trivial to see that

1. If the only De existing is Dst, this is exactly the min s-t cut problem.

2. If De is complete (uniform sparsest cut), the problem has the form

min
S⊆V

∑
(u,v)∈E
u∈S,v /∈S

cuv

|S||S̄|
.

In this uniform case, the intuition is to cut as little edge as possible, while keeping the two
sets as balance as possible. For example, in Fig.2, we can see that the sparsest cut (by the
red line) has Φ(Sred) = 2

4×5 = 1
10 , while the green line gives a bigger Φ(Sgreen) = 1

1×8 = 1
8 .

Figure 2: Two cuts are shown by the red line and the green line.
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2.1 Motivations

There are some motivations behind sparsest cut. Take the uniform sparsest cut with unit demand
between every pair of vertices (i.e. Duv = 1,∀u 6= v ∈ V ). If we have sparse cuts, we are able to
find good separators that enable us to do:

• Clustering: Edge capacities as a similarity measure (higher for more similar elements)

• Divide-and conquer algorithms: Recurse on 2 evenly-sized subproblems without cutting too
many edges.

However, we know that this problem is NP-Hard. We can ask instead if we could find an
α-approximate sparsest cut.

2.2 α-approximation Algorithm

An algorithm is an α-approximation for a minimization problem with optimum value OPT if it
returns a value ≤ α ·OPT .
Given that a sparsest cut is a NP-Hard problem, we seek a poly-time α-approximation algorithm.

Theorem 2.1. Sparsest cut has an poly-time O(log n)-approximation algorithm.

We obtain an O(log n)-approximation algorithm for sparsest cut using a linear programming
relaxation. We will lay the groundwork for stating this LP relaxation by giving an alternative
formulation of sparsest cut in terms of optimizing over `1-metrics.

2.3 Metric Space

A metric space on a set X is defined as a distance measure d : V ×V → R≥0 such that the following
three criteria holds.

1. d(x, y) = 0 ⇐⇒ x = y (not necessary for pseudometric)

2. d(x, y) = d(y, x)

3. d(x, z) ≤ d(x, y) + d(y, z), ∀x, y, z ∈ X (Triangle inequality).

We call (X, d) a metric space.

Example 2.2. A classic example is Rm equipped with `p-norms.

d(x, y) = (

m∑
i=1

|xi − yi|p)
1
p )

Example 2.3. Given a cut S ⊆ V , we associate a δS with this space such that:

δS(x, y) =

{
0, if x, y ∈ S or x, y ∈ S̄
1, otherwise

We could prove this is a pseudometric easily. Clearly, δS(x, y) = δS(y, x). For the triangle
inequality, we have d(x, z) ≤ d(x, y) + d(y, z). It is trivial if d(x, z) = 0. If d(x, z) = 1, we
must have one of the following:

• x ∈ S, z ∈ S̄
• x ∈ S̄, z ∈ S

Since y must exist in S or S̄, so either d(x, y) = 1 or d(y, z) = 1, therefore RHS≥ 1.
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2.4 Sparsest Cut and Metrics

Say that ce = 0 if e /∈ EG and De = 0 if e /∈ EH . Let’s restate sparsest cut as

min
cut metrics δS

∑
u,v∈V

cuvδS(u, v)∑
u,v∈V

DuvδS(u, v)
(1)

and define a cut cone as combination of the metrics.

Definition 2.4. Cut cone:

CUTn = {d|d =
∑
S⊆V

αSδS , αS ≥ 0 ∀S}

We claim that the following form associated with the cut cone is equivalent to eq.(1).

min
d∈CUTn

∑
u,v∈V

cuvd(u, v)∑
u,v∈V

Duvd(u, v)
(2)

Lemma 2.5. Eq.(1) associated with cut metrics is equivalent to eq.(2) associated with cut cones.

To prove that eq.(1) and eq.(2) is equivalent, we would need to show:

1. eq.(1) does no better than eq.(2)

2. eq.(2) does no better than eq.(1)

The first is trivial, since any cut metric δS ∈ CUTn, because we could just set the corresponding
αS = 1, and the others 0.
To prove the second, we need to use the fact:

ai, bi ≥ 0, ∀i then, ∃i, s.t. a1 + a2 + · · ·+ at
b1 + b2 + · · ·+ bt

≥ ai
bi
.

We could verify this fact by some simple arithemic operations.
Now, let d =

∑
S

αSδS . We would have:

∑
u,v∈V

cuvd(u, v)∑
u,v∈V

Duvd(u, v)
=

∑
u,v∈V

cuv
∑
S

αSδS∑
u,v∈V

Duv
∑
S

αSδS

=

∑
S

αS
∑
(u,v)

cuvδS∑
S

αS
∑
(u,v)

DuvδS

≥
αS′

∑
(u,v)

cuvδS′

αS′
∑
(u,v)

DuvδS′

The last comes from the fact, and since α can be arbitrary value ≥ 0, the second is proved.
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2.5 CUTn versus `1-metric

Recall that in example 2.2, we’ve showed the definition of `p-metrics. Here, we discuss a specific
case, the `1-metrics. A metric d on n points X is an `1 metric if there exists a map f : X → Rt for
some t with d(x, y) = ||f(x)− f(y)||1 ∀x, y ∈ X.

Lemma 2.6. d ∈ CUTn ⇐⇒ d is an `1 metric.

Any n-point metric can be associated with a vector in R(n2), each coordinate corresponds to
some pair of points in V . We are now ready to prove d ∈ CUTn ⇐⇒ d is an `1 metric.

1. d ∈ CUTn ⇒ d is an `1 metric.

We want to have a mapping f : V → Rm s.t. d(u, v) = ||f(u)− f(v)||1.
We will have one coordinate for every S ⊆ V (m = 2n).
So we have, f(v) = (fS1(v), fS2(v), . . . , fS2n

(v)).
Where

fS(v) =

{
0, if v ∈ S
αS , otherwise.

We then get, ||f(u)− f(v)||1 =
∑
S

|fS(u)− fS(v)| =
∑
S

αSδS(u, v).

2. d ∈ CUTn ⇐ d is an `1 metric.

Consider a set of n-point (x1, x2, . . . , xn) in Rm. We want to find αS ’s such that:

m∑
i=1

|xj(i)− xk(i)| =
∑
S

αSδS(xj , xk)

Suppose we take one dimension d, and sort the points in increasing value along d, we would get
v1, v2, . . . , vl distinct values. Define cut metric Si = {x|x(d) ≤ vi+1}, and let αi = vi+1 − vi,

we have that |xj(d)− xk(d)| =
l∑

i=1
αiδSi(xj(d), xk(d)). We can construct S for all dimensions,

and have a metric in CUTn for every n-point metric in `1.

This lemma implies that (2) is equivalent to

min
`1 metrics d

∑
u,v∈V

cuvd(u, v)∑
u,v∈V

Duvd(u, v)
.
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