Mar 31, 2017

Lecture 26: Random Walks on Graphs

Lecturer: Gary Miller

Scribe: Jiayi Li, Jueheng Zhu

1 Introduction

Definition 1.1. Let G = (V, E, w) be a given (possibly directed graph), denote $w_i = w(v_i) \equiv (\sum_{(i,j)\in E} w_{ij})$, and $p_{ij} \equiv w_{ij}/w_i$. The following process is a **random walk** on G: suppose at a given time we are at $v_i \in V$, we move to v_j with probability p_{ij} .

Example 1.2. $V \equiv$ all orderings or a deck of 52 cards, $p_{ij} \equiv$ probability of going from order *i* to order *j* in one shuffle. (Question: Why do professionals play after 5 shuffles? Related to the mixing rate defined below.)

1.1 Two views of a random walk

- Particle view (definition)
- Wave, probability distribution, or large number of simultaneous independent walkers.

Specifically, let $X^{(i)}$ be the distribution at time *i*, then $X^{(i+1)} = AD^{-1}X^{(i)}$, where A is the adjacent matrix of *G*, and *D* is the diagonal matrix with the degree of each vertex.

1.2 Important Parameters:

- Access time (or Hitting time): $H_{ij} \equiv$ Expected time to visit j starting at i
- Commute time: K(i, j) = H(i, j) + H(j, i)
- Cover time: Expected time to visit all nodes, max over all starting nodes
- Mixing rate: the time it takes for the distribution induced by a random walk starting at some vertex to converge to the limiting distribution.

2 Random Walk: the Symmetric Case

- Idea: Do random walk on a network of conductors.
- Input: $G = (V, E, c), c_{ij} = c_{ji}$

Definition 2.1. Consider a random walk starting at x and ending at b, for a given a,

 $h_x =$ probability we visit a before b

Example 2.2. Consider the following graph with unit weight on each edge:

It is straightforward that $h_a = 1$ and $h_b = 0$. What about h_2 ? An immediate lower bound is $h_2 > 1/2$, since we have a half chance heading towards a in the first move, and some possibility coming back to a from the right hand side. But can we be more precise about h_2 ?

Claim 2.3. Suppose $x \neq a, b$, then $h_x = \sum_{y} p_{xy} h_y$.

Since $p_{xy} \ge 0$ and $\sum_{y} p_{xy} = 1$, h_x is a convex combination of its neighbors. In other words, h is harmonic with boundary points a, b.

We can construct an identical electrical problem. Consider $V_a = 1$ and $V_b = 0$, then we have

$$\forall x \neq a, b, \ V_x = \sum_y \frac{c_{xy}}{c_x} V_y$$

Note that $\frac{c_{xy}}{c_x} = p_{xy}$, by the uniqueness of the solution to the harmonic recursion, we have

$$h = V$$

Theorem 2.4. Set $V_a = 1$, $V_b = 0$ and $x \neq a, b$, then $V_x =$ probability of visiting a before b.

Back to the example, we can solve the voltage between each two conductors easily, and therefore $h_2 = 3/4$.

3 Interpretation of Current for Random Walk

Consider 1 unit of potential current flow from a to b, say i. What does i_{xy} correspond to in random walk from a to b?

Theorem 3.1. $i_{xy} = Expected$ net number of traversals of edge e=(x,y) in random walk from a to b.

4 How to compute hitting time

Definition 4.1. $h(x, b) \equiv$ expected time to reach b from x

 $h_x = h(x, b), b$ fixed

Let's write a recurrance: $h_b = 0, x \neq b, h_x = 1 + \Sigma_y h_y P_{xy}$

Let's think of h_x as voltage V_x

 $V_b = 0, V_x = 1 + \sum_y \frac{c_{xy}}{c_x} V_y$ when $x \neq b$

$$c_x V_x = c_x + \Sigma_y c_{xy} V_y$$
$$c_x V_x - \Sigma_y c_{xy} V_y = c_x$$

The left hand side of the above equaiton can be viewed as the vector V dotted with a row of the Laplacian. The right hand side is just the residual current at the corresponding node.

Let n = b. Here we have n - 1 constraints. However, recall that for a connected graph, the Laplacian has rank n - 1, so the solutions to this system of equations form a 1-dimensional affine subspace. By adding another constraint $V_n = 0$, we would be able to fix a unique solution.

Specifically, define $c = \Sigma_i c_i$, we have

$$LV = \begin{pmatrix} c_1 \\ \vdots \\ c_{n-1} \\ \delta \end{pmatrix}$$

where $\delta = c_n - c$

Algorithm for computing hitting time to V_n

Solve

$$LV = \begin{pmatrix} c_1 \\ \vdots \\ c_{n-1} \\ \delta \end{pmatrix}$$

return V_x

5 How to compute commute time

Set vertex 1 to be a, vetex n to be b

Solution 5.1. Solve

$$LV^{b} = \begin{pmatrix} c_{1} \\ \vdots \\ c_{n} - c \end{pmatrix}, LV^{a} = \begin{pmatrix} c_{1} - 1 \\ \vdots \\ c_{n} \end{pmatrix}$$
$$h(1, n) = V_{1}^{b} - V_{n}^{b}, h(n, 1) = V_{n}^{a} - V_{1}^{a}$$
Set $V = V^{b} - V^{a}$
$$K(1, n) = (V^{b} - V^{a})_{1} - (V^{b} - V^{a})_{n} = V_{1} - V_{n}$$

Solution 5.2.

$$L(V^{b} - V^{a}) = LV^{b} - LV^{a} = \begin{pmatrix} c_{1} \\ \vdots \\ c_{n} - c \end{pmatrix} - \begin{pmatrix} c_{1} - c \\ \vdots \\ c_{n} \end{pmatrix} = \begin{pmatrix} c \\ 0 \\ \vdots \\ 0 \\ -c \end{pmatrix} = c \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \\ -1 \end{pmatrix}$$
Solve
$$LV = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \\ -1 \end{pmatrix}$$

return $c(V_1 - V_n)$

but $(V_1 - V_n) = ER_{1n}$

where ER_{xy} is the effective resistence between two nodes x and y, or how much does voltage drop as current goes through.

Theorem 5.3. $K(a,b) = c \cdot ER_{ab} = 2m \cdot ER_{ab}$

Example 5.4. In this example, we have n - 1 nodes stretching out from one center node a, as depicted by the graph below.

Using the above Theorem, K(a,b) = 2(n-1)