```
15-750: Graduate Algorithms

\section*{Lecture 26: Random Walks on Graphs}
```

Lecturer: Gary Miller
Scribe: Jiayi Li, Jueheng Zhu

```

\section*{1 Introduction}

Definition 1.1. Let \(G=(V, E, w)\) be a given (possibly directed graph), denote \(w_{i}=w\left(v_{i}\right) \equiv\) ( \(\sum_{(i, j) \in E} w_{i j}\) ), and \(p_{i j} \equiv w_{i j} / w_{i}\). The following process is a random walk on G: suppose at a given time we are at \(v_{i} \in V\), we move to \(v_{j}\) with probability \(p_{i j}\).

Example 1.2. \(V \equiv\) all orderings or a deck of 52 cards, \(p_{i j} \equiv\) probability of going from order \(i\) to order \(j\) in one shuffle. (Question: Why do professionals play after 5 shuffles? Related to the mixing rate defined below.)

\subsection*{1.1 Two views of a random walk}
- Particle view (definition)
- Wave, probability distribution, or large number of simultaneous independent walkers.

Specifically, let \(X^{(i)}\) be the distribution at time \(i\), then \(X^{(i+1)}=A D^{-1} X^{(i)}\), where A is the adjacent matrix of \(G\), and \(D\) is the diagonal matrix with the degree of each vertex.

\subsection*{1.2 Important Parameters:}
- Access time (or Hitting time): \(H_{i j} \equiv\) Expected time to visit \(j\) starting at \(i\)
- Commute time: \(K(i, j)=H(i, j)+H(j, i)\)
- Cover time: Expected time to visit all nodes, max over all starting nodes
- Mixing rate: the time it takes for the distribution induced by a random walk starting at some vertex to converge to the limiting distribution.

\section*{2 Random Walk: the Symmetric Case}
- Idea: Do random walk on a network of conductors.
- Input: \(G=(V, E, c), c_{i j}=c_{j i}\)

Definition 2.1. Consider a random walk starting at \(x\) and ending at \(b\), for a given \(a\),
\[
h_{x}=\text { probability we visit } a \text { before } b
\]

Example 2.2. Consider the following graph with unit weight on each edge:


It is straightforward that \(h_{a}=1\) and \(h_{b}=0\). What about \(h_{2}\) ? An immediate lower bound is \(h_{2}>1 / 2\), since we have a half chance heading towards \(a\) in the first move, and some possibility coming back to \(a\) from the right hand side. But can we be more precise about \(h_{2}\) ?

Claim 2.3. Suppose \(x \neq a, b\), then \(h_{x}=\sum_{y} p_{x y} h_{y}\).
Since \(p_{x y} \geq 0\) and \(\sum_{y} p_{x y}=1, h_{x}\) is a convex combination of its neighbors. In other words, \(h\) is harmonic with boundary points \(a, b\).

We can construct an identical electrical problem. Consider \(V_{a}=1\) and \(V_{b}=0\), then we have
\[
\forall x \neq a, b, \quad V_{x}=\sum_{y} \frac{c_{x y}}{c_{x}} V_{y} .
\]

Note that \(\frac{c_{x y}}{c_{x}}=p_{x y}\), by the uniqueness of the solution to the harmonic recursion, we have
\[
h=V
\]

Theorem 2.4. Set \(V_{a}=1, V_{b}=0\) and \(x \neq a, b\), then \(V_{x}=\) probability of visiting a before \(b\).
Back to the example, we can solve the voltage between each two conductors easily, and therefore \(h_{2}=3 / 4\).

\section*{3 Interpretation of Current for Random Walk}

Consider 1 unit of potential current flow from \(a\) to \(b\), say \(i\). What does \(i_{x y}\) correspond to in random walk from \(a\) to \(b\) ?

Theorem 3.1. \(i_{x y}=\) Expected net number of traversals of edge \(e=(x, y)\) in random walk from a to b.

\section*{4 How to compute hitting time}

Definition 4.1. \(h(x, b) \equiv\) expected time to reach \(b\) from \(x\)
\(h_{x}=h(x, b), b\) fixed
Let's write a recurrance: \(h_{b}=0, x \neq b, h_{x}=1+\Sigma_{y} h_{y} P_{x y}\)
Let's think of \(h_{x}\) as voltage \(V_{x}\)
\(V_{b}=0, V_{x}=1+\Sigma_{y} \frac{c_{x y}}{c_{x}} V_{y}\) when \(x \neq b\)
\[
\begin{aligned}
& c_{x} V_{x}=c_{x}+\Sigma_{y} c_{x y} V_{y} \\
& c_{x} V_{x}-\Sigma_{y} c_{x y} V_{y}=c_{x}
\end{aligned}
\]

The left hand side of the above equaiton can be viewed as the vector \(V\) dotted with a row of the Laplacian. The right hand side is just the residual current at the corresponding node.

Let \(n=b\). Here we have \(n-1\) constraints. However, recall that for a connected graph, the Laplacian has rank \(n-1\), so the solutions to this system of equations form a 1-dimensional affine subspace. By adding another constraint \(V_{n}=0\), we would be able to fix a unique solution.

Specifically, define \(c=\Sigma_{i} c_{i}\), we have
\[
L V=\left(\begin{array}{c}
c_{1} \\
\vdots \\
c_{n-1} \\
\delta
\end{array}\right)
\]
where \(\delta=c_{n}-c\)
Algorithm for computing hitting time to \(V_{n}\)

Solve
\[
L V=\left(\begin{array}{c}
c_{1} \\
\vdots \\
c_{n-1} \\
\delta
\end{array}\right)
\]
return \(V_{x}\)

\section*{5 How to compute commute time}

Set vertex 1 to be \(a\), vetex n to be \(b\)
Solution 5.1. Solve
\[
L V^{b}=\left(\begin{array}{c}
c_{1} \\
\vdots \\
c_{n}-c
\end{array}\right), L V^{a}=\left(\begin{array}{c}
c_{1}-1 \\
\vdots \\
c_{n}
\end{array}\right)
\]
\(h(1, n)=V_{1}^{b}-V_{n}^{b}, h(n, 1)=V_{n}^{a}-V_{1}^{a}\)
Set \(V=V^{b}-V^{a}\)
\(K(1, n)=\left(V^{b}-V^{a}\right)_{1}-\left(V^{b}-V^{a}\right)_{n}=V_{1}-V_{n}\)

\section*{Solution 5.2.}
\[
L\left(V^{b}-V^{a}\right)=L V^{b}-L V^{a}=\left(\begin{array}{c}
c_{1} \\
\vdots \\
c_{n}-c
\end{array}\right)-\left(\begin{array}{c}
c_{1}-c \\
\vdots \\
c_{n}
\end{array}\right)=\left(\begin{array}{c}
c \\
0 \\
\vdots \\
0 \\
-c
\end{array}\right)=c\left(\begin{array}{c}
1 \\
0 \\
\vdots \\
0 \\
-1
\end{array}\right)
\]

Solve
\[
L V=\left(\begin{array}{c}
1 \\
0 \\
\vdots \\
0 \\
-1
\end{array}\right)
\]
return \(c\left(V_{1}-V_{n}\right)\)
but \(\left(V_{1}-V_{n}\right)=E R_{1 n}\)
where \(E R_{x y}\) is the effective resistence between two nodes \(x\) and \(y\), or how much does voltage drop as current goes through.

Theorem 5.3. \(K(a, b)=c \cdot E R_{a b}=2 m \cdot E R_{a b}\)

Example 5.4. In this example, we have \(n-1\) nodes strecthing out from one center node \(a\), as depicted by the graph below.


Using the above Theorem, \(K(a, b)=2(n-1)\)```

