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Lecture 21: Linear Programming Duality
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1 Introduction

We have seen in Lecture 20 that every linear program can be put into canonical form as

P :


max
x

c>x

s.t. Ax ≤ b
x ≥ 0

Today, we will see how to construct the dual of P. Let’s start with an example.

1.1 Example

Consider problem of Equation 1. 

max
x1,x2

2x1 + 3x2

s.t. 1 4x1 + 8x2 ≤ 12
2 2x1 + x2 ≤ 3
3 3x1 + 2x2 ≤ 4
4 x1, x2 ≥ 0

(1)

Suppose that we also suggested that the optimal solution might be attained at (x1, x2) = (1/2, 5/4),
achieving an objective value equal to 2x1 + 3x2 = 19/4. We now construct a certificate for the
optimality of the hint.

The problem is asking us to maximize 2x1 + 3x2 (with x1, x2 non-negative), under some con-
straints. Let’s start by considering constraint 1 : since 4x1 + 8x2 ≤ 12, we definitely know that
the optimal value of 2x1 + 3x2 is upper bounded by the value of 4x1 + 8x2; hence, 12 is an upper
bound on the optimal value of the objective. Now, let’s consider 2 + 3 , i.e. the sum of constraints
2 and 3 : we have 5x1 + 3x2 ≤ 7 ; since definitely 2x1 + 3x2 ≤ 5x1 + 3x2 , a better upper bound
on the optimal value of the objective is 7. Let’s now consider 1

2 1 , that is, let’s multiply constraint
1 by 1/2: we conclude that 2x1 + 4x2 ≤ 6; again, 2x1 + 4x2 is an upper bound on the objective
2x1+3x2 (remember that x1 and x2 are non-negative), and we improve our incumbent upper bound
to 6. Now, consider instead 1

3 1 + 1
3 2 : we get 2x2 + 3x2 ≤ 5, improving the upper bound to 5.

We still don’t know if 19/4 is optimal, but we definitely know that whatever the optimal value, it
cannot be larger than 5.

Finally, consider 5
16 1 + 1

4 3 ; we get 2x1 + 3x2 ≤ 19/4. This proves that an upper bound on the
optimal value of the objective is 19/4. This means that the hint was correct, and the optimal value
of the problem is indeed 19/4. In other terms, our optimality certificate is the triple (5/16, 0, 1/4),
representing the multipliers that we applied to the constraints to obtain an upper bound matching
the value we wanted to certify.
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1.2 Dual problem

Take a second look at what we did in the example above. By selecting different choices of non-
negative1 constraint multipliers, we were able to upper bound the value of the objective function,
finding better and better upper bounds until we found a choice that actually matched the optimal
value of the program.

Now, let’s try to generalize the process. Assume we are given the canonical-form problem P as
defined above. We are interested in finding a non-negative vector y of constraint multipliers that,
when applied to the set of constraints Ax ≤ b has the property that:

• the left-hand side of the resulting constraint is an upper bound of the objective function c>x;
Notice that since the resulting constraint is (y>A)x = (y>b), it is enough that (y>A) ≥ c>

element-wise. By taking the transpose, an equivalent condition is A>y ≥ c.

• the right-hand side of the resulting constraint (that is, y>b) is as little as possible.

In other words, we can cast the problem of finding the lowest upper bound as the linear problem

D :


min
y

y>b

s.t. A>y ≥ c
y ≥ 0

The problem D is called the dual problem of P.

1.3 Duality Recipes

While every linear problem can be brought in canonical form, it is practically convenient to remember
how to deal with equality constraint and free variables when taking the dual of a problem. Consider
the problem on the left in Equation 2: it’s not hard to prove that its dual is the problem on the
right in Equation 2.

P̃ :



max
x

∑
j cjxj

s.t. a>i x ≤ bi ∀i ∈ I≤
a>i x = bi ∀i ∈ I=
xj ≥ 0 ∀j ∈ J+
xj ∈ R ∀j ∈ J0

↔ D̃ :



min
y

∑
i biyi

s.t. a>j y ≥ cj ∀j ∈ J+
a>j y = cj ∀j ∈ J0
yi ≥ 0 ∀i ∈ I≤
yi ∈ R ∀i ∈ I=

(2)

2 Weak duality

The previous section introduced the concept of the dual problem of P, the primal optimization
problem. This section presents the Weak Duality Theorem in Linear Programming problems, which
claims that the optimal solution to the dual problem serves as an upper bound to the optimal
solution of the primal problem.

Theorem 2.1 (Weak Duality Theorem). Assume primal and dual problems P and D, with feasible
solutions x and y. Then, c>x ≤ b>y.

1Notice that constraint multipliers have to be non-negative, not to alter the sense of the constraint inequality.

2



Proof. We have

c>x = x>c ≤ x>(A>y) = (Ax)>y ≤ b>y,

where the first and second inequalities follow from the feasibility of y and x respectively, and from
the fact that x and y are non-negative.

As a corollary, from this result we can extract further conclusions. In particular, given a primal
problem P and its dual D one of the following applies:

• Both P and D are infeasible;

• P is unbounded and D is infeasible;

• P is infeasible and D is unbounded;

• Both P and D are feasible. In the next section we present an even stronger result that shows
that when this is the case, the optimal values are also equal.

Notice that for the first case it suffices to find an example of primal and dual LPs that are both
infeasible. The second and third cases follow directly from the Weak Duality Theorem—if P is
unbounded then there is no y such that b>y is an upper bound (and vice versa).

2.1 A second look via Lagrangian Duality

We now provide a second-look to the Weak Duality Theorem via Lagrangian Duality (Lemma 2.2),
following the approach presented in the AM 221 Advanced Optimization Course, taught by Yaron
Singer at Harvard. We start with a Lemma.

Lemma 2.2 (Lagrangian Weak Duality). For every function f : X → Y (including non-convex
functions), the following inequality holds

max
x∈X

min
y∈Y

f(x, y) ≤ min
y∈Y

max
x∈X

f(x, y)

Proof. Note that max
x∈X

min
y∈Y

f(x, y) ≤ max
x∈X

f(x, ȳ) for all ȳ ∈ Y, including y∗ = arg min
y∈Y

max
x∈X

f(x, y).

Thus, max
x∈X

min
y∈Y

f(x, y) ≤ min
y∈Y

max
x∈X

f(x, y).

In the case of Linear Programming, f(x) = c>x is a linear function, and X is the polytope
X = {x ∈ Rn | Cx ≤ d}, for some C and d.2 This is equivalent to the unconstrained maximization
of function f̃(x) equal to f(x) on X and taking value −∞ outside of X . Formally,

max
x∈X

f(x) = max
x∈Rn

f̃(x), for f̃(x) =

{
f(x), if x ∈ X
−∞, otherwise.

This result allows us now to formulate the maximization of f(x) as a max-min problem:
2 Note this definition is generic and also applies to any problem in canonical form. In particular we can merge the

constraints Ax ≤ b and x ≥ 0 into the one constraint Cx ≤ d, where C =

[
A
−I

]
, and d =

[
b
0

]
.
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max
x∈X

f(x) = max
x∈Rn

f̃(x) = max
x∈Rn

min
λ≥0

{
c>x+ λ> (d− Cx)

}
Note that the inner minimization takes λ∗ = 0 when x ∈ X , and λ∗ arbitrarily large otherwise.

Therefore, we conclude

max
x∈X

f(x) = max
x∈Rn

f̃(x) = max
x∈Rn

min
λ≥0

{
c>x+ λ> (d− Cx)

}
≤ min

λ≥0
max
x∈Rn

{
λ>d+ (c> − λ>C)x

}

where the first inequality is due to Lemma 2.2, and the second inequality follows from the Lagrangian
Weak Duality lemma (Lemma 2.2). Now, notice that

g̃(λ) := max
x∈Rn

{
λ>d+ (c> − λ>C)x

}
=

{
λ>d, if c> = λ>C
+∞, otherwise,

so that
min
λ≥0

max
x∈Rn

{
λ>d+ (c> − λ>C)x

}
= min

λ≥0
g̃(λ) = min

λ≥0, A>λ=c
λ>d.

In conclusion, we have proved that

max
x∈Rn : Cx≤d

c>x ≤ min
λ≥0, A>λ=c

λ>d,

that is exactly the Weak Duality Theorem for linear programs.

3 Strong duality

In the previous section we proved among other things that if the canonical-form primal problem P
is feasible, so is the dual D, with the value of the latter being an upper bound on the value of the
former.

We now extend this result, showing that when the programs are feasible, their (optimal) values
coincide.

Theorem 3.1. If the canonical-form primal problem P is feasible, its dual D is also feasible, and
the (optimal) values of the two programs are equal.

Proof (sketch). Let x∗ be one optimal vertex for the primal problem P. Let I be the set of row
indices for the active constraints at x∗: in other words, i ∈ I ⇐⇒ a>i x

∗ = bi where {ai} and {bi}
represent the rows of A and b, respectively.

We prove that c belongs to the cone generated by the active rows {ai}i∈I . This has a strong
geometric justification: c determines the direction of maximal growth of the objective function, and
if x∗ is optimal we expect c to be directed “outside” of the feasibility polytope (see Figure 1).

Lemma 3.2. The vector c belongs to the convex cone generated by the active rows {ai}i∈I
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Figure 1: Geometric insight for the fact that c ∈ Cone({ai}i∈I) at an optimal
vertex. In this case, the active constraints correspond to rows j1 and j2.

Proof. Assume by contradiction that c /∈ Cone({ai}i∈I); then we can separate the convex cone and
c with a hyperplane of the form d>x = 0, so that d>ai ≤ 0 for all i ∈ I and d>c < 0. We now show
that x∗ is not optimal, by “sliding” it by a tiny amount ε in the direction of d so that the new point
remains feasible, and proving that the objective value at this new point x∗+ εd is larger than c>x∗.
First of all, we prove that if ε is small enough, x∗+ εd remains feasible: for all row index i, we have
a>i (x∗+ εd) = a>i x

∗+ εa>i d. Now, notice that if i ∈ I, a>i d ≤ 0, so that a>i (x∗+ εd) ≤ a>i x∗ = bi; if,
on the other hand, i /∈ I, then by hypothesis a>i x

∗ = bi − ξ, with ξ > 0 — this means that as long
as ε > 0 is such that εa>i d < ξ, constraint i is not violated. In summary, there exists ε > 0 such
that the point x∗+ εd respects all constraints, and is therefore feasible. The objective value at that
point is

c>(x∗ + εd) = c>x∗ + εc>d > c>x∗,

showing that x∗ was not optimal, a contradiction.

Let Ã and b̃ be the portion of A and b corresponding to all active rows (i.e. those rows having
index in I). By definition of convex cone, there exists λ̃ ≥ 0 such that c = Ã>λ̃. Now, since Ãx∗ = b̃
by definition of active row, we can also write

λ̃>b̃ = λ̃>(Ãx∗) = c>x∗.

This shows that that the dual problem D has a feasible solution (corresponding to the vector y
equal to λ̃ on rows ∈ I and 0 elsewhere), such that y>b = c>x∗. Therefore, the value of D, being
a minimization problem, is not greater than c>x∗. However, by the Weak Duality theorem, we
know that the value of the dual is not less than c>x∗. Hence, the values of the primal and the dual
coincide, concluding the proof.

4 Application: Max Flow – Min Cut duality

We now present an application of duality theory: the celebrated Max Flow – Min Cut theorem.
In the previous lecture, we have seen that the Max Flow problem can be formulated as a Linear
Program:
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max
f

∑
u∈V

f(s, u)

s.t.
∑
v∈V

f(v, u) =
∑
v∈V

f(u, v), ∀u ∈ V \ {s, t}

f(u, v) ≤ c(u, v), ∀(u, v) ∈ E
f(u, v) ≥ 0, ∀(u, v) ∈ E.

This time, however, we will formulate the problem in a slightly different yet equivalent way. Let
Pst be the set of all paths from s to t and xp the flow assigned to path p ∈ Pst, and consider the
problem

F :


max
x

∑
p∈Pst

xp

s.t.
∑
p3e

xp ≤ ce, ∀e ∈ E

xp ≥ 0, ∀p ∈ Pst.

Note that the number of paths from s to t may be large, and as such, there may be exponentially
many variables — this formulation is not really useful for finding a max-flow, but has a cleaner
combinatorial structure.

The dual of F is C, as shown below.

C :


min
y

∑
e∈E

ceye

s.t. 1
∑
e∈p

ye ≥ 1, ∀p ∈ Pst

2 ye ≥ 0, ∀e ∈ E.

From the duality theory we know that the optimal values of F and C coincide. We now prove that
the optimal value α of C is equal to the value β of the min-cut.

(α ≤ β) We start by proving that every cut (S, S̄) of G, where S̄ = V \ S, can be easily
transformed into a feasible solution of C, preserving the value of the cut itself. To this end, assign

ye =

{
1 if e belongs to the cut, i.e. e = (u, v) with u ∈ S, v ∈ S̄,
0 otherwise.

Clearly, 2 is satisfied, and the value of C is equal to the value of the cut. Furthermore, being (S, S̄)
a cut of G, every path from s to t has to contain at least one edge of the cut, making 1 trivially
true. In particular, any min-cut is feasible for C, proving that α ≤ β.

(β ≤ α) Now, we prove that the existence of a feasible solution of C of value α implies the
existence of a valid s-t cut (S, S̄) of value not larger than α. Given a feasible solution for C, we
interpret the values of the variables ye as edge lengths, so that it makes sense to reason about the
minimum distance d(v) from s to any vertex v ∈ V . Notice that d(s) = 0; furthermore, constraint
1 implies that d(t) ≥ 1. Therefore, given any ρ ∈ [0, 1), the two sets Sρ = {v ∈ V | d(v) ≤ ρ} and
S̄ρ = {v ∈ V | d(v) > ρ} define a valid s-t cut of G, as s ∈ Sρ and t ∈ S̄ρ.

Given ρ ∈ [0, 1), it makes sense to define the notion of active cut at “time” ρ, that is the set
of edges e = (u, v) with u ∈ Sρ and v ∈ S̄ρ. The key observation now is that given any edge
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e = (u, v), the set of time instants for which e is active is pretty small; more precisely, we show that
the (Lebesgue) measure3 µ of the set

Te = {ρ ∈ [0, 1) | u ∈ Sρ, v ∈ S̄ρ}

is not greater than ye: µ(Te) ≤ ye. In order to see this, notice that clearly ρ < d(u) =⇒ u /∈ Sρ;
furthermore, since d(v) ≤ d(u) + ye, ρ ≥ d(u) + ye immediately implies that v /∈ S̄ρ. In both
cases, e would not be active: hence, Te ⊆ Le

.
= [d(u), d(u) + ye), and since µ(Le) = ye we conclude

µ(Te) ≤ ye.
With the above observation in mind, we prove that there must exist at least one ρ ∈ [0, 1) for

which the sum of the weight of all the active edges at time ρ is at most
∑
ceye. This makes intuitive

sense: each edge can be active only for a short amount of time (the measure of Te is upper-bounded),
and therefore it is not possible to guarantee that the value of the cut (Sρ, S̄ρ) is large at all times.

Consider the function c : [0, 1) → R indicating, for each ρ, the sum of the weights of all the
active edges at time ρ. We can write

c =
∑
e∈E

ceITe ,

where I• is the indicator function for •, i.e. the function equal to 1 for all ρ ∈ • and 0 otherwise.
The integral of c is given by∫

c dµ =
∑
e∈E

ce

∫
ITe dµ =

∑
e∈E

ceµ(Te) ≤
∑
e∈E

ceye.

Therefore, there must exist at least one ρ∗ ∈ [0, 1) for which c(ρ∗) ≤ w =
∑
ceye (or otherwise, the

integral of c could not be ≤ w). Therefore, the cut (Sρ∗ , S̄ρ∗) is a valid s-t cut of G of value w,
proving that the min-cut of G is upper bounded by the value of C, and completing the proof.

3The measure of a set intuitively represents how “large” it is. The Lebesgue measure is the standard way of
assigning a measure to a subset of Rn. Depending on the dimension n of the space (in our case, n = 1), it coincides
with the intuitive notion of length, area, or volume.
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