
15-750: Graduate Algorithms Feb 27, 2017

Lecture 18: Introduction to Max Flow

Lecturer: David Witmer Scribe: Ziye Tang

1 Basics

A flow network is a directed graph G = (V,A) with source node s ∈ V and sink node t ∈ V . Each arc
has nonnegative capacity ca ∈ R+. For convenience, write ca = 0 if a /∈ A. And n := |V |,m := |A|.
Definition 1.1. Flow: f : V × V → R satisfying following constraints:

1. (capacity) ∀u, v ∈ V, fuv ≤ cuv.

2. (conservation) ∀u /∈ {s, t},
∑

v∈V fuv =
∑

v∈V fvu.

3. (skew symmetry) ∀u, v ∈ V, fuv = −fvu.

Remark 1.2. Below I write
∑

v instead of
∑

v∈V whenever the summation is over all vertices.

• By skew symmetry, the conservation constraint is equivalent to
∑

v fuv = 0.

• If f, g are flow, then f + g preserves conservation and nonnegativeness.

Definition 1.3. value of flow |f | =
∑

v fsv.

Definition 1.4. Max flow problem: given flow network (G, s, t, c), find flow f which maximizes
|f |.

Below we shall explain the idea of Ford-Fulkerson algorithm, i.e. residual graph and augmenting
path. ‘Blindly’ augmenting s− t path in the residual graph, however, does not guanrantee a poly-
time algorithm. We will remedy this idea in the next lecture to obtain a poly-time algorithm.

2 Residual Graph and Augumenting Path

2.1 A wrong idea

A natural idea is to try a greedy approach: find s − t path in the network and try to push flow
along it, until we cannot find such path. Unfortunately this does not yield an optimal solution –
consider the toy example in figure 1 from [?]:

Figure 1: counterexample

1

The problem here is the condition that there is no s − t path in G is not equivalent to the
condition that the flow is optimal. In order to obtain an optimal solution in this example, we need
a way to ‘push back’ some flows, which leads us to consider residual graph defined below.

2.2 A modified idea

Definition 2.1. Given a flow network (G, s, t, c) and a flow f , the residual capacity (w.r.t. flow
f) is denoted by cf (u, v) = cuv − fuv. And the residual network Gf = (V,Af) where Af = {(u, v) :
cf (u, v) > 0}.

Definition 2.2. An f -augmenting path is an s− t path in Gf .

Figure 2: A flow f in a weighted graph G and the corresponding residual graph Gf

Consider figure 2 (chapter 23.3 in [?]). By the definition of residual graph, if ∃u, v ∈ V , such
that fuv > 0, then there exists a ‘back arc’ vu in Gf with capacity cf (v, u) = 0−(−fuv) = fuv. This
arc vu and its residual capacity captures the notion that we can push back at most cf (v, u) units
of flow. To show that the residual network remedies the above wrong idea, we have the following
theorem:

Theorem 2.3. A feasible flow f is maximum if and only if there exists no f-augmenting path in
the residual network.

Note the ‘only if’ part is clear from the definition of residual graph. We will prove the reverse
direction in the next section. But first let us see the Ford-Fulkerson algorithm that is motivated
by the theorem:

Algorithm 1 Ford-Fulkerson, 1956

Input: Flow network (G, s, t, c)
Output: Maximum flow f

Initialize f to be 0 everywhere.
while ∃s− t path P in Gf do

Let g be a flow of value mina∈A(P) along P and 0 elsewhere
f ← f + g.
Update residual graph based on the augmented flow f .

end while
Output f .

Note at each step, due to the definition of residual graph, after we augment flow f by flow g, we
still maintain a valid flow. Since DFS/BFS finds an augmenting path in O(m+n), we immediately
have the following runtime bound:

2

Theorem 2.4. For a flow network with INTEGER capcaities and maximum flow value F , Ford-
Fulkerson terminates in time O(F (m + n)).

Remark 2.5. The above is not necessarily a poly-time algorithm. Consider figure 3 (chapter 23.4
in [?]), the problem has size O(logX). If we augment along the arc having capacity only 1, we will
have exponential run time.

Figure 3: An exponential runtime example for Ford-Fulkerson

Remark 2.6. If all inputs are rational numbers, a similar bound still holds afer rescaling. But if
we allow irrational numbers, this algorithm may not terminate, in fact it may not even converge –
you can find it in chapter 23.5 of [?].

3 Max-Flow Min-Cut

We will prove theorem 2.3 in the following way: first we will show that any cut (defined below)
capacity is an upper bound of any flow value, then we will exhibit a particular cut that is equal to
the flow value when there is no augmenting path in the residual graph. Note the duality between
flow and cut. The first step corresponds to the weak duality in linear programming.

Definition 3.1. [S, T] is called an s− t cut if

• S ∩ T = ∅, S ∪ T = V

• s ∈ S, t ∈ T

Let cut capacity be defined as: C[S, T] =
∑

u∈S,v∈T cuv.

Claim 3.2. Any flow value is upper bounded by any cut capacity.

We first show a lemma:

Lemma 3.3. Let f be any s− t flow and [S, T] be any s− t cut. Then |f | = f+(S), where out-flow
f+(S) :=

∑
u∈S,v∈T fuv.

Note the above lemma leads to the proof of our claim since |f | = f+(S) =
∑

u∈S,v∈T fuv ≤∑
u∈S,v∈T cuv = C[S, T]. Now we prove the above lemma:

Proof. By skew symmetry and conservation we have ∀u /∈ {s, t}, the out-flow at u, f+(u), is 0. By

3

definition we have |f | = f+(s). Adding the equality 0 =
∑

v∈S,v 6=s f
+(v) to it, we have

|f | = f+(s) +
∑

v∈S,v 6=s

f+(v)

=
∑
v∈S

f+(v)

=
∑
p,q∈S

fpq +
∑

p∈S,q∈T
fpq

=
∑

p∈S,q∈T
fpq

= f+(S)

where the first, second, third and last equality are from definition, the fourth equality is from skew
symmetry applied to fpq where p, q ∈ S.

Recall our second step is to exhibit a cut with capacity equal to flow value. Then by our above
claim, we know both of them are optimal.

Theorem 3.4. The following statements are equivalent:

1. f is a max flow

2. Gf has no augmenting path

3. ∃[S, T], such that |f | = C[S, T]

Proof. 1⇒ 2: if there is an augmenting path, then we can augment flow value by a positive value,
contradicting optimality of current flow.

2 ⇒ 3: Let S := {v ∈ V : v is connected to s in Gf}, T = V \S. We will show |f | = C[S, T].
Consider an arbitrary arc a ∈ A(Gf), a = pq in [S, T]. It is clear that p ∈ T, q ∈ S since otherwise
q is connected to s in Gf . This means that in the original graph G, fqp saturates arc q, p, i.e.
fqp = cqp.

3⇒ 1: by claim 3.2.

4

