
15-750: Graduate Algorithms January 18, 2016

Lecture 17: 2D Closest Pair using Hashing

Lecturer: Gary Miller Scribes: Yanzhe Yang, Yao Liu

1 Introduction to Hashing and the Problem

Imagine that we want to maintain a set of keys, which belong to a huge space of keys U . Often,
the space can be larger than universal large constant:

|U| ≥ 10100 ≥ 1060

However, the size of key set K ⊂ U would not be such huge. Usually |K| ≈ 1015. If we want to
maintain the set of keys so that we can insert, lookup, and delete any keys, our solution so far has
been maintaining a ordered set so that we can do those options in O(log n) times.

1.1 Hashing

We can also maintain such a set by hashing. Hash function is a random mapping from the space
of key U to another smaller space T (table). Usually we set the size of T , denoted |T |, to be
approximately equal to |K| . We know that hashing method has the property:

Claim 1.1. Hashing table can insert, lookup, or delete any single element in O(1) expected time.

1.2 The Closest Pair Problem

The closest pair problem is defined as:

Input: P ⊂ R2; P ⊂ Unit Box; |P | = n

Output: CP (P) = arg min
p 6=q,p,q∈P

‖p− q‖21

Now we place the points into boxes using hashing. The main idea is that we partition unit box
into boxes of side length α. We define boxes partition Gα as a grid partition of boxes with length
of α. See figure 1. Note that if α is small, say 10−10 = one over 10 billion, then 1020 boxes is too
big!
Recall that we can use hashing to map the keys to a smaller space rather than key universe. Here,
in this problem, the key universe is the universe of name of all boxes. The key space is the space of
name of boxes containing a point. Note that there is totally at most n points. So the size of hash
table is O(n). We also can use dynamic sizing to maintain the hash table.

Lemma 1.2. Hashing points into its box is O(1) time.

Definition 1.3. (extended neighbor) If B is a box of Gα, then the extended neighbor of B is all
the 9 boxes next to B including B itself. See figure 2. We denote it Ext(B).

1For compactness, later we may also treat the output of CP as the distance between p and q. That is because we
want to be consistent with Gary’s lecture notes in this definition and later, also that is easy to compute ‖p− q‖2 in
O(1) time given q and p.

1

1/𝛼

𝛼

𝛼

Figure 1: A grid boxes partition Gα. There are in total
(
1
α

)2
boxes in the partition.

Figure 2: Ext(B)

Lemma 1.4. (Packing Lemma) Let B be a box with side length α, α ≤ CP (P), and P ⊆ B. Then
|P | ≤ 4.

Proof. Split B into 4 boxes. The diameter of each Bi is α/
√

2 ≤ α ≤ CP (P). Thus each Bi

contains at most one point.

2 Test α Algorithm

Before staring introducing the algorithm of calculating CP (P), we needs a procedure satisfying

Definition 2.1.

Test(α > 0, P) =


β < α if ∃p 6= q ∈ P , s. t. ‖p− q‖2 = β < α

α if CP(P) = α

False otherwise

Here is a procedure Test(α, P):
Let Pi = {P1, P2, ..., Pi−1}.

2

Algorithm 1 Test(α, P)

1: Make hash table Hα for grid Gα
2: Insert P1 into Gα
3: for i = 2 to n do
4: Insert Pi into its box B
5: Compute min dist(Pi,Pi

⋂
Ext(B)) = β

6: if β < α then
7: return “CP (P) ≤ β < α”
8: end if
9: if β = α then

10: Flag ← true
11: end if
12: end for
13: if Flag then
14: return “CP (P) = α”
15: else
16: return “CP (P) > α”
17: end if

Note: From Packing Lemma, there are at most 4 points in a box, so Ext(P) contains at most 36
points. So computing min dis(Pi,Pi

⋂
Ext(B)) is O(1).

Claim 2.2. Test is linear time and correctly test the relationship between CP(P) and α.

3 2D CP Algorithm

Algorithm 2 CP (P)

Input: P ⊆ UnitBox
Output: α

1: if n ≤ 4 then
2: Check all pairs.
3: end if
4: Randomly permute P = {P1, ..., Pn}
5: α← 1
6: while Test(α, P) = ”β < α” do
7: α← β
8: end while
9: return α

3.1 Correctness

If n ≤ 4, done.
By Lemma 1.4, if n > 4, then α < 1.

3.2 Backward Analysis

Theorem 3.1. CP (P) is expected linear time.

3

Definition 3.2. αi be random variable. αi = CP (P1, ..., Pi), i ≥ 2.

Note that αi+1 ≤ αi. And we restart Test (1) for each i s.t. αi < αi−1.
Then we need to know Prob(αi < αi−1). There are three cases.

1. There exists a unique closest pair, say (Pj , Pk), and Pj , Pk ∈ {P1, P2, ..., Pn}.
Then, removing Pj or Pk will cause it restart. So Prob(αi < αi−1) = 2

i .

2. There exists multiple closest pairs, and all these pairs include one point, say Pj (shown in
Figure 3: Left). Then, we need to restart only if we remove Pj . So, Prob(αi < αi−1) = 1

i

3. There are two or more disjoint closest pairs (shown in Figure 3: Right). If we remove only
one point from these pairs, we can see the closest distance will not change. So, we don’t need
to restart anymore, and Prob(αi < αi−1) = 0.

𝑃𝑟
𝑃𝑡 𝑃𝑘

𝑃𝑗

𝑃𝑗 𝑃𝑥
𝑃𝑡 𝑃𝑙

Figure 3: Left: Case 2. Right: Case 3

From the three cases, we learn P (αi < αi−1) ≤ 2
i . Each restart is O(i) new work. So, the total

expected work is

O(
∑

(
2

i
)i) = O(n).

4

