15-750: Graduate Algorithms
February 10, 2017
Lecture 11: Probability, Order Statistics and Sampling
Lecturer: David Whitmer
Scribes: Ilai Deutel, C.J. Argue

1 Exponential Distributions

Definition 1.1. Given sample space Ω equipped with probability measure p, a random variable is a function $X: \Omega \rightarrow \mathbb{R}$

Definition 1.2. Given a random variable X , a probability density function (PDF) f_{X} for X satisfies:

$$
P(a \leq X \leq b)=\int_{a}^{b} f_{X}(x) \mathrm{d} x
$$

Remark 1.3.

$$
\int_{-\infty}^{+\infty} f_{X}(x) \mathrm{d} x=1
$$

Example 1.4. Exponential distribution with parameter $\beta: X \sim \operatorname{Exp}(\beta)$

$$
f_{X}(x)=\left\{\begin{array}{clc}
\beta \mathrm{e}^{-\beta x} & : \quad x \geq 0 \\
0 & : & \text { otherwise }
\end{array}\right.
$$

Definition 1.5. The cumulative distribution function (CDF) for X is:

$$
F_{X}=\operatorname{Pr}(X \leq x)=\int_{-\infty}^{x} f_{X}(x) \mathrm{d} x
$$

Example 1.6. Exponential distribution with parameter $\beta: X \sim \operatorname{Exp}(\beta)$
For $x \geq 0$,

$$
F_{X}(x)=\int_{-\infty}^{x} \beta \mathrm{e}^{-\beta x} \mathrm{~d} x=-\mathrm{e}^{-\beta t} \left\lvert\, \begin{aligned}
& x \\
& 0
\end{aligned}=1-\mathrm{e}^{-\beta x}\right.
$$

Remark 1.7. In general, $f_{X}(x)=\frac{\mathrm{d} F_{X}(x)}{\mathrm{d} x}$
Definition 1.8. The expected value of X is:

$$
\mathbb{E}[X]=\int_{-\infty}^{+\infty} x f_{X}(x) \mathrm{d} x
$$

Example 1.9. For an exponential distribution with parameter $\beta: X \sim \operatorname{Exp}(\beta)$

$$
\mathbb{E}[X]=\int_{-\infty}^{+\infty} x \beta \mathrm{e}^{-\beta x} \mathrm{~d} x=\frac{1}{\beta}
$$

Proposition 1.10 (Memoryless Property of $\operatorname{Exp}(\beta)$). If $X \sim \operatorname{Exp}(\beta)$ then for any reals s, t, $\operatorname{Pr}[X \geq s+t \mid X \geq s]=\operatorname{Pr}[X \geq t]$

Proof.

$$
\begin{aligned}
\operatorname{Pr}[X \geq s+t \mid X \geq s] & =\frac{1-\left(1-\mathrm{e}^{-\beta(s+t)}\right)}{1-\left(1-\mathrm{e}^{-\beta s}\right)} \\
& =\frac{\mathrm{e}^{-\beta(s+t)}}{\mathrm{e}^{-\beta s}} \\
& =\mathrm{e}^{-\beta t} \\
& =\operatorname{Pr}[X \geq t]
\end{aligned}
$$

2 Order Statistics

Consider n i.i.d random variables X_{1}, \ldots, X_{n}.
Definition 2.1. $X_{(k)}$ is the $k^{t h}$ smallest of X_{1}, \ldots, X_{n}. That is, $X_{(i)}$ are a reordering of X_{i} s.t.

$$
X_{(1)} \leq X_{(2)} \leq \ldots \leq X_{(n)}
$$

Note that any single $X_{(i)}$ is a random variable, so it has a PDF f_{X} and $\operatorname{CDF} F_{X}$.
Example 2.2. Let $X_{i} \sim \operatorname{Exp}(\beta)$. In order to have $X_{(1)} \leq x$ we need to have $X_{i} \leq x$ (which has probability $F_{X}(x)$) for exactly one value of i and $X_{i}>x$ (probability $1-F_{X}(x)$) for the remaining $n-1$ values of i. There are n ways to choose which $X_{i} \leq x$, thus we have

$$
\begin{aligned}
f_{X_{(1)}}(x) & =f_{X}(x)\left(1-F_{X}(x)\right)^{n-1} n \\
& =\beta \mathrm{e}^{-\beta x(n-1)} n \\
& =n \beta \mathrm{e}^{-n \beta x}
\end{aligned}
$$

Thus $X_{(1)} \sim \operatorname{Exp}(n \beta)$, so $\mathbb{E}\left[X_{(1)}\right]=\frac{1}{n \beta}$.
We now establish the expectation of $X_{(n)}$.
Claim 2.3. $\mathbb{E}\left[X_{(n)}\right]=\Theta\left(\frac{\log n}{\beta}\right)$.

Proof. Let $S_{i}=X_{(i+1)}-X_{(i)}$ for $i \geq 1$.

is distributed as $\min \left(X_{1}, \ldots, X_{n-i}\right)-X_{(i)}$ conditioned on $\min \left(X_{1}, \ldots, X_{n-i}\right) \geq X_{(i)}$. By the memoryless property of exponential random variables, $\left[X_{(j)} \mid X_{(j)} \geq X_{(i)}\right] \sim X_{(j)}$. Thus S_{i} is the minimum of $n-i$ exponential random variables with parameter β, so by example 2.2,

$$
\begin{aligned}
S_{i} \sim \operatorname{Exp}((n-i) \beta) & , \text { and } \mathbb{E}\left[S_{i}\right]=\frac{1}{(n-i)} \\
\mathbb{E}\left[X_{(n)}\right] & =\sum_{i=1}^{n-1} \mathbb{E}\left[S_{i}\right]+\mathbb{E}\left[X_{(1)}\right] \\
& =\sum_{i=1}^{n-1} \frac{1}{\beta(n-i)}+\frac{1}{n \beta} \\
& =\frac{1}{\beta}\left(1+\frac{1}{2}+\ldots+\frac{1}{n}\right) \\
& \approx \frac{\log n}{\beta}
\end{aligned}
$$

We now bound the variation of $X_{(n)}$.
Claim 2.4. $\operatorname{Pr}\left[X_{(n)} \geq \frac{2 \log n}{\beta}\right] \leq \frac{1}{n}$
Proof.

$$
\operatorname{Pr}\left[X_{i} \geq \frac{c \log n}{\beta}\right]=1-F_{X}\left(\frac{c \log n}{\beta}\right)=1-\left(1-\mathrm{e}^{-\frac{c \log n}{\beta} \beta}\right)=n^{-c}
$$

Thus we have

$$
\operatorname{Pr}\left[X_{(n)} \geq \frac{c \log n}{\beta}\right] \leq n \operatorname{Pr}\left[X_{i} \geq \frac{c \log n}{\beta}\right]=n^{1-c}
$$

Letting $c=2$ gives $\operatorname{Pr}\left[X_{(n)} \geq \frac{2 \log n}{\beta}\right] \leq \frac{1}{n}$.

3 Sampling from distributions

3.1 Uniform distributions

Let U be the uniform distribution on $[0,1]$.

- PDF: $f_{U}(x)=\left\{\begin{array}{llc}1 & : & x \in[0,1] \\ 0 & : & \text { otherwise }\end{array}\right.$
- CDF: $F_{U}(x)=\left\{\begin{array}{ccc}x & : & x \in[0,1] \\ 0 & : & x \leq 0 \\ 1 & : & x \geq 1\end{array}\right.$

We will show how to use U to generate samples from other distributions.
Example 3.1. $\operatorname{Unif}(0,2)$

$$
X \sim U \Rightarrow 2 X \sim U n i f(0,2)
$$

3.2 Inverse transform sampling

Say that we want to sample from random variable X and we have $Y \sim U$. We want to find some function g such that $g(Y)$ is distributed like X. To this end, note that if $g(Y)$ is an increasing function such that $F_{g(Y)}=F_{X}$ then

$$
\begin{aligned}
F_{g(Y)}(z) & =\operatorname{Pr}(g(Y) \leq z) \\
& =\operatorname{Pr}\left(Y \leq g^{-1}(z)\right) \\
& =g^{-1}(z)
\end{aligned}
$$

So $g^{-1}(z)=F_{X}(z) \Rightarrow g(z)=F_{X}^{-1}(z)$
Example 3.2. $X \sim \operatorname{Exp}(\beta)$

$$
F_{X}(x)=\left\{\begin{array}{clc}
1-\mathrm{e}^{-\beta x} & : \quad x \geq 0 \\
0 & : & \text { otherwise }
\end{array}\right.
$$

To solve for F_{X}^{-1}

$$
\begin{aligned}
Y & =1-\mathrm{e}^{-\beta X} \\
\mathrm{e}^{-\beta X} & =1-Y \\
-\beta X & =\ln (1-Y) \\
X & =-\frac{1}{\beta} \ln (1-y)
\end{aligned}
$$

Thus

$$
\begin{aligned}
-\frac{\ln (1-Y)}{\beta} & \sim \operatorname{Exp}(\beta) \\
-\frac{\ln (Y)}{\beta} & \sim \operatorname{Exp}(\beta)
\end{aligned}
$$

The second line follows since $1-Y$ and Y are both distributed as U.

3.3 Drawing from a normal distribution

A standard normal random variable $\mathcal{N}(0,1)$, mean 0 , variance 1 , is given by

- PDF: $f(x)=\frac{1}{\sqrt{2 \pi}} \mathrm{e}^{-x^{2} / 2}$
- CDF: $F(x)=\int_{-\infty}^{x} \frac{1}{\sqrt{2 \pi}} \mathrm{e}^{-t^{2} / 2} \mathrm{~d} t$

How do you sample from a normal distribution? The following theorem suggests that standard inverse transform sampling will not suffice.

Theorem 3.3. $F(x)$ is not an elementary function

3.3.1 Box-Muller sampling

Consider 2-dimensional normal $(X, Y)(X \sim \mathcal{N}(0,1), Y \sim \mathcal{N}(0,1))$ with PDF:

$$
\begin{aligned}
f(x, y) & =\frac{1}{2 \pi} \mathrm{e}^{-x^{2} / 2} \mathrm{e}^{-y^{2} / 2} \\
& =\frac{1}{2 \pi} \mathrm{e}^{-\frac{x^{2}+y^{2}}{2}}
\end{aligned}
$$

In polar coordinates, $f(r, \theta)=\frac{1}{2 \pi} \mathrm{e}^{-r^{2} / 2}$ (circular/spherical symmetry: doesn't depend on θ).
Let R be the random variable $\sqrt{X^{2}+Y^{2}}$. The CDF $F_{R}(r)$ is given by

$$
\begin{aligned}
F_{R}(r) & =\operatorname{Pr}(R \leq r) \quad \text { (integral of } f(r, \theta) \text { over disc of radius } r \text {) } \\
& =\int_{0}^{2 \pi} \int_{0}^{r} \frac{1}{2 \pi} \mathrm{e}^{-r^{\prime 2} / 2} r^{\prime} \mathrm{d} r^{\prime} \mathrm{d} \theta \\
& =\int_{0}^{r} \mathrm{e}^{-r^{\prime 2} / 2} r^{\prime} \mathrm{d} r^{\prime} \\
& =\int_{0}^{r^{2}} \frac{\mathrm{e}^{-u / 2}}{2} \mathrm{~d} u \quad\left(\text { set } u=r^{\prime 2}\right) \\
& =1-\mathrm{e}^{-r^{2} / 2}
\end{aligned}
$$

We can now apply inverse transform sampling

$$
\begin{aligned}
& Y=1-\mathrm{e}^{-R^{2} / 2} \\
& R=\sqrt{-2 \ln (1-Y)}
\end{aligned}
$$

Thus $F_{R}^{-1}(y)=\sqrt{-2 \ln (1-y)}$. To sample $X \sim \mathcal{N}(0,1)$, first draw from 2D normal (polar). Let $V, W \sim U$. Return (R, θ), where $R=\sqrt{-2 \ln (V)}$ and $\theta=2 \pi W$. The rectangular coordinates, ($R \cos \theta, R \sin \theta$), are independently distributed as $\mathcal{N}(0,1)$.

3.3.2 Polar form of Box-Muller

We can improve on this by eliminating the trigonometric functions, whose computation is costly. We will show an alternate way to sample normal variables via efficiently sampling a point from the uniform distribution on the unit disk. Consider generating a random variable as follows:

1. Choose (X, Y) uniformly at random on unit disk $\{X:\|X\| \leq 1\}$
2. Let $S=X^{2}+Y^{2}$
3. Return $\left(\sqrt{\frac{-2 \ln S}{S}} X, \sqrt{\frac{-2 \ln S}{S}} Y\right)$

We will show that this is equivalent to Box-Muller.
Claim 3.4. If (X, Y) is chosen uniformly at random from the unit disk, then $X^{2}+Y^{2} \sim U$.

Proof. It suffices to show that $\operatorname{Pr}\left[X^{2}+Y^{2} \leq t\right]=t$

$$
\begin{aligned}
\operatorname{Pr}\left[X^{2}+Y^{2} \leq t\right] & =\operatorname{Pr}\left[\sqrt{X^{2}+Y^{2}} \leq \sqrt{t}\right] \\
& =\frac{\text { Area of circle with radius } \sqrt{t}}{\text { Area of circle with radius } 1} \\
& =\frac{\pi t}{\pi} \\
& =t
\end{aligned}
$$

Also, symmetry implies that angle $\theta=\tan ^{-1}\left(\frac{Y}{X}\right)$ is uniform in $[0,2 \pi]$
So (X, Y) uniform on unit disk is distributed as $(\sqrt{V} \cos 2 \pi W, \sqrt{V} \sin 2 \pi W)$ for $V, W \sim U$.
$S=V$ and $\left(\sqrt{\frac{-2 \ln S}{S}} X, \sqrt{\frac{-2 \ln S}{S}} Y\right)=(R \cos \theta, R \sin \theta)$ above.

3.3.3 Sampling from the unit disk

To complete, we demonstrate how to generate uniform random point on unit disk without trigonometry. Intuitively, we throw darts at the square $[-1,1] \times[-1,1]$ until we hit the unit disk.

Let $V, W \sim U, X=2 U-1, Y=2 U-1$ so that X and Y are uniform on $[-1,1]$. Let $S=X^{2}+Y^{2}$.
Algorithm:

1. Draw V, W, calculate X, Y, S
2. If $S \leq 1$, return (X, Y)
3. Else, try again

This is an example of Rejection Sampling. The probability of success in each iteration is $\frac{\text { Area of circle }}{\text { Area of square }}=\frac{\pi}{4}$, so in expectation we need to sample $\frac{4}{\pi} \approx \frac{4}{3}$ times.

