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1 NP-hard Problems

Recall that in the last lecture, we mentioned NP -hard problems.

L is NP -hard if L′ ≤p L ∀L′ ∈ NP .

It is presumed that NP -hard problems are hard to solve, or intractable. Therefore, we are seeking
methods to solve NP -hard problems by relaxing some conditions to make them tractable. We will
be talking about:

1. Fixed-Parameter Tractability (FPT), which is the focus for this lecture.

2. Approximation algorithms

2 Vertex Cover Problem

2.1 Introduction

Consider a real world problem:

We have a set of roads and junctions. We want to place security cameras at specific junc-
tions such that all roads are monitored.

Now, our goal is to minimize the total number of cameras placed. We can see that this is a Vertex
Cover problem, which is NP -complete!

2.2 Solutions

• Approximation algorithms

– We know that we could find a 2-approximate vertex cover. However, cameras might be
expensive, so a factor of 2 might still be unsatisfactory.

– If P 6= NP , it is hard to approximate vertex cover to within a factor of 1.3, so we cannot
expect to do better than this in general.

• FPT algorithms

– If we know that the minimum number of cameras that we need to place is small, we can
do better.

– We fix parameter k, and solve the following problem:

∗ If OPT ≤ k return OPT

∗ Else return Failure
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3 Fixed-Parameter Tractability

3.1 Definition

A fixed parameter tractable (FPT) algorithm with fixed parameter k and input size n is an algorithm
with O(f(k)× poly(n)) time complexity.
Note that:

1. f(k) does not depend on n

2. f(k) must not be polynomial of k, otherwise we could let k = n and conclude P = NP !

3.2 Motivation

The motivation behind the definition could be illustrated by the vertex cover example.
Suppose k = 20 and n = 10000, where k is the fixed parameter, and n is the number of roads and
junctions. Consider the computational time for the follow algorithms:

• Brute force: 2n = 210000 ≈ 103000

– This is definitely intractable, and doesn’t take advantage of k.

• Try all set of k junctions:
(
n
k

)
=
(
10000
20

)
≈ 1080

– Poly-time for fixed k, and a great improvement compared to brute force.

– Still doesn’t work in practice.

• FPT algorithms: (we will give how they work later)

– We want algorithms such as 2k × n, k!× n2, ...

– This brings the algorithm to 220 × 10000 ≈ 1010, which might be solvable.

4 FPT for Vertex Cover with Bounded Search Tree

4.1 Main idea

• Pick one edge.

• One of its endpoint must be covered.

• Try both and do the recursion.

4.2 Algorithm

Given a graph G = (V,E) and a vertex u ∈ V , let’s define the notation

G− u = (V − u,E − e), where e = {(ū, v̄)|(ū, v̄) ∈ E, ū = u or v̄ = u}.

The bounded search tree for vertex cover is shown in Alg. 1. It is similar to running through the
tree, but limiting the height to at most k. It is demonstrated in Fig. 1, where each node corresponds
to removing a vertex in the graph from the parent’s node.
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Algorithm 1 Bounded Search Tree
1: procedure BoundedSearch(G, k)
2: Let e = {u, v} ∈ G
3: Try B1 = BoundedSearch(G− u, k − 1) // Remove all edge connected with u
4: Try B2 = BoundedSearch(G− v, k − 1) // Remove all edge connected with v
5: Return min(B1, B2) + 1

6: Base case 1: If k = 0,

{
If G not empty, return FAIL
If G empty, return 0

7: Base case 2: If G empty, return 0.

Figure 1: A fixed parameter-k bounded search tree. G′ is G− u and G′′ is G− v.

4.3 Analysis of Bounded Search Tree

T (n, k) = running time on G of size n, parameter k.
T (n, k) = 2 · T (n, k − 1) + O(n) (since removing edges take O(n) time)

= O(2kn)

We have f(k) = 2k, which gives us a FPT algorithm.

5 FPT for Vertex Cover with kernelization

5.1 Main idea

• “Most” of the graph G is easy to solve. Only a small “kernel” is hard (requires exponential
time). For example, in Fig. 2, the center of the graph is the “kernel”, for the part outside of
the kernel is easy to solve.

• Chip away at the graph G until the kernel is left (in poly-time).

• Solve the kernel (in exp-time).

• A kernelization algorithm requires size(kernel) = f(k), which does not depend on n.
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Figure 2: The center part of the graph is the kernel, which is “harder” than the
rest of the graph.

5.2 Algorithm

Algorithm 2 Kernelization
1: procedure Kernelization(G, k)
2: Apply 2 rules to G iteratively until we can’t anymore
3: Rule 1: If vertex v has degree 0, remove v.
4: Rule 2: If vertex v has degree > k, select v to the vertex cover. (v must be in the cover,

otherwise to cover the edge v connects to would require > k vertices.)

5.3 Analysis

Claim 5.1. If no rules in Alg. 2 can be applied further and OPT ≤ k, then |V | ≤ k(k + 1) and
|E| ≤ k2.

Proof. We can take a look at Fig. 3, where OPT is the optimal vertex cover for the graph obtained
by Alg. 2. There are some interesting properties that we could observe.
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Algorithm 3 Solving Vertex Cover by Kernelization
1: procedure VertexCoverKernelization(G, k)
2: Apply Alg. 2 on (G, k), obtain kernel.
3: If |V | > k(k + 1) or |E| > k2

4: return Infeasible
5: Else Run brute force on kernel.

Figure 3: The graph can be split to two parts, the optimal set and the residual.

1. For vertices in OPT , the degree must be ≤ k. This follows by Rule 2.

2. There are no edges between vertices in G\OPT . If there exists an edge between vertices in
G\OPT , that edge could not be covered.

Now we can prove our claim:

1. We have at most |OPT | × k ≤ k2 edges, given by Rule 2.

2. We have |#vertices in G\OPT | ≤ |OPT | × k since all vertices in G\OPT must connect to
some vertex in OPT by Rule 1. Therfore, we have |V | ≤ (|OPT |+ 1)× k ≤ k(k + 1)

Therefore, if |V | > k(k + 1) or |E| > k2, then there must be no vertex cover of size k.

In Alg. 3, we use the kernelization algorithm to solve vertex cover. Note that Claim 5.1 implies
that if |V | > k(k + 1) or |E| > k2, then there must be no vertex cover of size k.

The total runtime for Alg. 3 is:

1. O(n2) for applying rules. (Since the number of vertices in G is decreases in each iteration and
for every vertex we run through O(n) vertices to apply Rule 2.)
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2. 2kk2 for solving kernel (if we use the bounded search method).

Which yields O(n2 + 2kk2) time complexity.
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