15-750: Graduate Algorithms April 28, 2017
Lecture 37: Proving NP-Completeness via reductions

Lecturer: David Witmer Scribe: Ilai Deutel

1 Review of Lecture 36

Definition 1.1. Language L; is poly-time reducible to language Lo, L1 <, Lo, if there exists
poly-time compatible f:{0,1}* — {0,1}* such that € L, < f(z) € Lo.

Definition 1.2. A language is NP-complete if:

1. Le NP

2. L' <, L for all L' € NP (L is NP-hard)
Remark 1.3. If L is NP-hard and L <, L', then L' is NP-hard
Theorem 1.4. CNF-SAT is NP-complete.

Remark 1.5. Example of CNF-SAT problem: is there a tuple of boolean variables (z1, z2,x3,...)
such that (z1V zo V23) A (27 V x10V 215) A ... is true.

2 OQOutline of this lecture

First, we will show that 3 coloring is NP-complete. We will do this in two main steps: First, we will
reduce from 3-SAT, CNF-SAT with three variables per clause, to a problem called NAE-SAT, which
is a variant of SAT in which we require each clause to have both a true literal and a false literal.
Then we will reduce from NAE-SAT to 3 coloring. We will also sketch a proof that 3-coloring
planar graphs is NP-complete.

Second, we will show that the independent set problem is NP-complete. Unlike SAT, NAE-SAT,
and 3-coloring, independent set is not a constraint satisfaction problem (CSP).

3 Preliminary definitions and results
Definition 3.1.

e 3-SAT: Every clause has at most 3 literals.

e E3-SAT: Every clause has exactly 3 literals.
Proposition 3.2. CNF-SAT <, 3-SAT

Proposition 3.3. 3-SAT <, E3-SAT

For technical reasons, it will be easier for us to reduce from 3-SAT and E3-SAT.



4 NAE-SAT

Definition 4.1.

e NAE-SAT (not-all-equal SAT): Like CNF-SAT, except clause is satisfied if at least one literal
is true and one is false

e NAE-L-SAT: All clauses have length at most k

e NAE-EEL-SAT: All clauses have length exactly k
Remark 4.2. NAE-SAT is clearly in NP.
Example 4.3.

(x,y,2) A (z,9) A ...

is satisfied by x =T,y =T,z = F
Remark 4.4. If X satisfies NAE-SAT instance ¢, then so does X (negate every x;)
Theorem 4.5. 3SAT <, NAE-3-SAT

We will reduce via NAE-4-SAT.
Theorem 4.6. 3SAT <, NAE-4-SAT

Proof. Given 3-SAT instance ¢, make NAE-4-SAT instance ¢’ by adding new variable S to every
clause (clearly in poly-time):

Example: (z3V @5 V 25) — (3, T5, T5, S)

Let’s prove the following claim: ¢ satisfiable as 3-SAT < ¢’ satisfiable as NAE-4-SAT

(=) Say ¢ has satisfying assignment X. Then (X, S = F) satifies ¢': since X satisfies ¢, every
clause has one T' and one F'(S).

(<) Say ¢’ has satisfying assignment (X, S).
—IfS=FsetY =X.
— If S =T, then (X, F) satisfies ¢'. Set Y = X.
Y satisfies ¢. O
Theorem 4.7. NAE-4-SAT <, NAE-3-SAT

Proof. Create a new variable w; for each input clause:

Convert the " NAE-4-SAT clause (a,b,c,d) to 2 clauses (a,b,w;), (w;,c,d) (clearly in poly-
time).

Let’s prove the following claim: (a, b, ¢, d) is NAE < there exists w; € {F, T} such that (a, b, w;)
is NAE and (w;, ¢, d) is NAE.
(<) If (a,b,w;) and (w;, ¢, d) are both NAE, then (a, b, c,d) is NAE (can’t set w; otherwise)
(=) If (a,b,c,d) is NAE, then we can satisfy (a,b,w;) and (w;, ¢, d).

— Case 1: If a # b, (a,b,w;) is NAE, make (w;, c,d) NAE by setting w; = c.
— Case 2: If a # ¢, set w; = ¢ # a.

— Other cases are similar



5 Coloring

Definition 5.1. 3-COL: Decision problem: Given G, does there exist a valid 3-coloring (each
edge has different-colored endpoints) of G?

Again, 3-COL is clearly in NP.
Theorem 5.2. NAE-E3-SAT <, 3-COL

Proof. Given NAE-E3-SAT instance ¢, we want to construct a 3-coloring instance (graph) G,.
1. Start with 1 vertex ground G.
2. Add two vertices x;, ; for each variable .

3. Draw triangles (z;, Z;, G) for each variable i.

4. Without loss of generality, color Ground Y.

5. Force z;, z; to have different colors in {R, B}.

We can think of B = True, R = False. Any valid 3-coloring of G, induces a truth assignment
to X.

We want to encode NAE constraint C' as a “gadget”: subgraph should be colorable < the
corresponding assignment satisfies C. It turns out that a triangle satisfies this property. For each
clause C, we can add a triangle on three new vertices. Then we add edges connecting the three
triangle vertices to the vertices corresponding to the literals in C. See Example 5.3.

Example 5.3. C; A Cq, where C = (21, z2,23) and Cy = (71, x2, T3)

It is then easy to see that the vertices of the triangle for C' have a valid 3-coloring if and only
if the truth assignment corresponding to this 3-coloring satisfies C. O

We can also consider the 3-coloring problem restricted to planar graphs.

Definition 5.4. PLANAR-3-COL: 3-COL, where G is planar



Planar 3-coloring is also NP-hard.
Theorem 5.5. 3 COL <, PLANAR-3-COL

Proof. Given 3-COL instance G, we want to construct a PLANAR-3-COL instance G’. Draw G in
the plane (with edge crossing), replace edge crossings with “crossover gadget”! O

Properties 5.6.

1. Every valid 3-coloring x has x(a) = x(b), x(c) = x(d)

2. Giwen c1,c € {R,B,Y}, 3 valid 3-coloring x such that ¢; = x(a) = x(b), c2 = x(c) = x(d)
Theorem 5.7. Any PLANAR graph can be colored with 4 colors
Remark 5.8.

e PLANAR-3-COL is NP-hard

e PLANAR-4-COL is easy: always answer yes

6 Independent Set

So far, we have talked about constraint satisfaction problems (CSPs). Let’s talk about a problem
that is not a CSP.

Definition 6.1. Recall: An independent set is a subset S of vertices with no edge between any
pair in S.
IND-SET: Decision problem: Given G, k, does G have an independent set of size > k7

IND-SET is clearly in NP.
Theorem 6.2. E3-SAT <, IND-SET



Proof. Given E3-SAT instance, we construct an IND-SET instance.

Say our E3-SAT instance has m clauses. In this reduction, we again use a triangle as our gadget.
For each clause, we add a vertex for each literal and all three edges on these vertices. We then have
m disjoint, disconnected triangles. Note that any independent set has size at most m: one vertex
per triangle. Then add an edge between each pair of vertices corresponding to opposite literals.
Consider Example 6.3.

Example 6.3. (z1V za Va3) A (21 VT2 Va3) A (21 V x2 V x3).

We then claim that there is an independent set of size m <> there is a satisfying assignment for
the E3-SAT instance. O



