
15-750: Graduate Algorithms April 28, 2017

Lecture 37: Proving NP-Completeness via reductions

Lecturer: David Witmer Scribe: Iläı Deutel

1 Review of Lecture 36

Definition 1.1. Language L1 is poly-time reducible to language L2, L1 ≤p L2, if there exists
poly-time compatible f : {0, 1}∗ → {0, 1}∗ such that x ∈ L1 ⇔ f(x) ∈ L2.

Definition 1.2. A language is NP-complete if:

1. L ∈ NP

2. L′ ≤p L for all L′ ∈ NP (L is NP-hard)

Remark 1.3. If L is NP-hard and L ≤p L
′, then L′ is NP-hard

Theorem 1.4. CNF·SAT is NP-complete.

Remark 1.5. Example of CNF·SAT problem: is there a tuple of boolean variables (x1, x2, x3, . . . )
such that (x1 ∨ x2 ∨ x̄3) ∧ (x7 ∨ x10 ∨ x15) ∧ . . . is true.

2 Outline of this lecture

First, we will show that 3 coloring is NP-complete. We will do this in two main steps: First, we will
reduce from 3-SAT, CNF-SAT with three variables per clause, to a problem called NAE-SAT, which
is a variant of SAT in which we require each clause to have both a true literal and a false literal.
Then we will reduce from NAE-SAT to 3 coloring. We will also sketch a proof that 3-coloring
planar graphs is NP-complete.

Second, we will show that the independent set problem is NP-complete. Unlike SAT, NAE-SAT,
and 3-coloring, independent set is not a constraint satisfaction problem (CSP).

3 Preliminary definitions and results

Definition 3.1.

• 3·SAT: Every clause has at most 3 literals.

• E3·SAT: Every clause has exactly 3 literals.

Proposition 3.2. CNF·SAT ≤p 3·SAT

Proposition 3.3. 3·SAT ≤p E3·SAT

For technical reasons, it will be easier for us to reduce from 3·SAT and E3·SAT.
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4 NAE·SAT

Definition 4.1.

• NAE·SAT (not-all-equal SAT): Like CNF·SAT, except clause is satisfied if at least one literal
is true and one is false

• NAE-k·SAT: All clauses have length at most k

• NAE-Ek·SAT: All clauses have length exactly k

Remark 4.2. NAE·SAT is clearly in NP.

Example 4.3.
(x, y, z) ∧ (x, ȳ) ∧ . . .

is satisfied by x = T, y = T, z = F

Remark 4.4. If X satisfies NAE·SAT instance ϕ, then so does X̄ (negate every xi)

Theorem 4.5. 3·SAT ≤p NAE-3·SAT

We will reduce via NAE-4·SAT.

Theorem 4.6. 3·SAT ≤p NAE-4·SAT

Proof. Given 3·SAT instance ϕ, make NAE-4·SAT instance φ′ by adding new variable S to every
clause (clearly in poly-time):

Example: (x3 ∨ x̄5 ∨ x̄5)→ (x3, x̄5, x̄5, S)
Let’s prove the following claim: ϕ satisfiable as 3·SAT ⇔ ϕ′ satisfiable as NAE-4·SAT

(⇒) Say ϕ has satisfying assignment X. Then (X,S = F ) satifies ϕ′: since X satisfies ϕ, every
clause has one T and one F (S).

(⇐) Say ϕ′ has satisfying assignment (X,S).

– If S = F , set Y = X.

– If S = T , then (X̄, F ) satisfies ϕ′. Set Y = X̄.

Y satisfies ϕ.

Theorem 4.7. NAE-4·SAT ≤p NAE-3·SAT

Proof. Create a new variable wi for each input clause:
Convert the ith NAE-4·SAT clause (a, b, c, d) to 2 clauses (a, b, wi), (w̄i, c, d) (clearly in poly-

time).
Let’s prove the following claim: (a, b, c, d) is NAE⇔ there exists wi ∈ {F, T} such that (a, b, wi)

is NAE and (w̄i, c, d) is NAE.

(⇐) If (a, b, wi) and (w̄i, c, d) are both NAE, then (a, b, c, d) is NAE (can’t set wi otherwise)

(⇒) If (a, b, c, d) is NAE, then we can satisfy (a, b, wi) and (w̄i, c, d).

– Case 1: If a 6= b, (a, b, wi) is NAE, make (w̄i, c, d) NAE by setting wi = c.

– Case 2: If a 6= c, set wi = c 6= a.

– Other cases are similar
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5 Coloring

Definition 5.1. 3·COL: Decision problem: Given G, does there exist a valid 3-coloring (each
edge has different-colored endpoints) of G?

Again, 3·COL is clearly in NP.

Theorem 5.2. NAE-E3·SAT ≤p 3·COL

Proof. Given NAE-E3·SAT instance ϕ, we want to construct a 3-coloring instance (graph) Gϕ.

1. Start with 1 vertex ground G.

2. Add two vertices xi, x̄i for each variable i.

3. Draw triangles (xi, x̄i, G) for each variable i.

G

x1 x̄1 x2 x̄2 x3 x̄3

4. Without loss of generality, color Ground Y.

5. Force xi, x̄i to have different colors in {R, B}.

We can think of B = True, R = False. Any valid 3-coloring of Gϕ induces a truth assignment
to X.

We want to encode NAE constraint C as a “gadget”: subgraph should be colorable ⇔ the
corresponding assignment satisfies C. It turns out that a triangle satisfies this property. For each
clause C, we can add a triangle on three new vertices. Then we add edges connecting the three
triangle vertices to the vertices corresponding to the literals in C. See Example 5.3.

Example 5.3. C1 ∧ C2, where C1 = (x1, x2, x3) and C2 = (x̄1, x2, x̄3)

G

C1 C2

x1 x̄1 x2 x̄2 x3 x̄3

It is then easy to see that the vertices of the triangle for C have a valid 3-coloring if and only
if the truth assignment corresponding to this 3-coloring satisfies C.

We can also consider the 3-coloring problem restricted to planar graphs.

Definition 5.4. PLANAR-3·COL: 3·COL, where G is planar
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Planar 3-coloring is also NP-hard.

Theorem 5.5. 3·COL ≤p PLANAR-3·COL

Proof. Given 3·COL instance G, we want to construct a PLANAR-3·COL instance G′. Draw G in
the plane (with edge crossing), replace edge crossings with “crossover gadget”!

c

a b

d

Properties 5.6.

1. Every valid 3-coloring χ has χ(a) = χ(b), χ(c) = χ(d)

2. Given c1, c2 ∈ {R,B, Y }, ∃ valid 3-coloring χ such that c1 = χ(a) = χ(b), c2 = χ(c) = χ(d)

Theorem 5.7. Any PLANAR graph can be colored with 4 colors

Remark 5.8.

• PLANAR-3·COL is NP-hard

• PLANAR-4·COL is easy: always answer yes

6 Independent Set

So far, we have talked about constraint satisfaction problems (CSPs). Let’s talk about a problem
that is not a CSP.

Definition 6.1. Recall: An independent set is a subset S of vertices with no edge between any
pair in S.

IND-SET: Decision problem: Given G, k, does G have an independent set of size ≥ k?

IND-SET is clearly in NP.

Theorem 6.2. E3·SAT ≤p IND-SET
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Proof. Given E3·SAT instance, we construct an IND-SET instance.
Say our E3·SAT instance has m clauses. In this reduction, we again use a triangle as our gadget.

For each clause, we add a vertex for each literal and all three edges on these vertices. We then have
m disjoint, disconnected triangles. Note that any independent set has size at most m: one vertex
per triangle. Then add an edge between each pair of vertices corresponding to opposite literals.
Consider Example 6.3.

Example 6.3. (x1 ∨ x2 ∨ x3) ∧ (x̄1 ∨ x̄2 ∨ x̄3) ∧ (x̄1 ∨ x2 ∨ x3).

x1

x2 x3

x̄1

x̄2 x̄3

x̄1

x2 x3

We then claim that there is an independent set of size m ⇔ there is a satisfying assignment for
the E3·SAT instance.
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