

Lecture 37: Proving NP-Completeness via reductions

Lecturer: David Witmer

Scribe: Ilaï Deutel

1 Review of Lecture 36

Definition 1.1. Language L_1 is **poly-time reducible** to language L_2 , $L_1 \leq_p L_2$, if there exists poly-time compatible $f : \{0, 1\}^* \rightarrow \{0, 1\}^*$ such that $x \in L_1 \Leftrightarrow f(x) \in L_2$.

Definition 1.2. A language is **NP-complete** if:

1. $L \in \text{NP}$
2. $L' \leq_p L$ for all $L' \in \text{NP}$ (L is NP-hard)

Remark 1.3. If L is NP-hard and $L \leq_p L'$, then L' is NP-hard

Theorem 1.4. *CNF-SAT is NP-complete.*

Remark 1.5. Example of CNF-SAT problem: is there a tuple of boolean variables (x_1, x_2, x_3, \dots) such that $(x_1 \vee x_2 \vee \bar{x}_3) \wedge (x_7 \vee x_{10} \vee x_{15}) \wedge \dots$ is true.

2 Outline of this lecture

First, we will show that 3 coloring is NP-complete. We will do this in two main steps: First, we will reduce from 3-SAT, CNF-SAT with three variables per clause, to a problem called NAE-SAT, which is a variant of SAT in which we require each clause to have both a true literal and a false literal. Then we will reduce from NAE-SAT to 3 coloring. We will also sketch a proof that 3-coloring planar graphs is NP-complete.

Second, we will show that the independent set problem is NP-complete. Unlike SAT, NAE-SAT, and 3-coloring, independent set is not a constraint satisfaction problem (CSP).

3 Preliminary definitions and results

Definition 3.1.

- **3-SAT:** Every clause has **at most** 3 literals.
- **E3-SAT:** Every clause has **exactly** 3 literals.

Proposition 3.2. $\text{CNF-SAT} \leq_p \text{3-SAT}$

Proposition 3.3. $\text{3-SAT} \leq_p \text{E3-SAT}$

For technical reasons, it will be easier for us to reduce from 3-SAT and E3-SAT.

4 NAE-SAT

Definition 4.1.

- **NAE-SAT** (not-all-equal SAT): Like CNF-SAT, except clause is satisfied if at least one literal is true and one is false
- **NAE- k -SAT**: All clauses have length at most k
- **NAE- Ek -SAT**: All clauses have length exactly k

Remark 4.2. NAE-SAT is clearly in NP.

Example 4.3.

$$(x, y, z) \wedge (x, \bar{y}) \wedge \dots$$

is satisfied by $x = T, y = T, z = F$

Remark 4.4. If X satisfies NAE-SAT instance φ , then so does \bar{X} (negate every x_i)

Theorem 4.5. $3\text{-SAT} \leq_p \text{NAE-3-SAT}$

We will reduce via NAE-4-SAT.

Theorem 4.6. $3\text{-SAT} \leq_p \text{NAE-4-SAT}$

Proof. Given 3-SAT instance φ , make NAE-4-SAT instance φ' by adding new variable S to every clause (clearly in poly-time):

Example: $(x_3 \vee \bar{x}_5 \vee \bar{x}_5) \rightarrow (x_3, \bar{x}_5, \bar{x}_5, S)$

Let's prove the following claim: φ satisfiable as 3-SAT $\Leftrightarrow \varphi'$ satisfiable as NAE-4-SAT

(\Rightarrow) Say φ has satisfying assignment X . Then $(X, S = F)$ satisfies φ' : since X satisfies φ , every clause has one T and one $F(S)$.

(\Leftarrow) Say φ' has satisfying assignment (X, S) .

- If $S = F$, set $Y = X$.
- If $S = T$, then (\bar{X}, F) satisfies φ' . Set $Y = \bar{X}$.

Y satisfies φ . □

Theorem 4.7. $\text{NAE-4-SAT} \leq_p \text{NAE-3-SAT}$

Proof. Create a new variable w_i for each input clause:

Convert the i^{th} NAE-4-SAT clause (a, b, c, d) to 2 clauses $(a, b, w_i), (\bar{w}_i, c, d)$ (clearly in poly-time).

Let's prove the following claim: (a, b, c, d) is NAE \Leftrightarrow there exists $w_i \in \{F, T\}$ such that (a, b, w_i) is NAE and (\bar{w}_i, c, d) is NAE.

(\Leftarrow) If (a, b, w_i) and (\bar{w}_i, c, d) are both NAE, then (a, b, c, d) is NAE (can't set w_i otherwise)

(\Rightarrow) If (a, b, c, d) is NAE, then we can satisfy (a, b, w_i) and (\bar{w}_i, c, d) .

- Case 1: If $a \neq b$, (a, b, w_i) is NAE, make (\bar{w}_i, c, d) NAE by setting $w_i = c$.
- Case 2: If $a \neq c$, set $w_i = c \neq a$.
- Other cases are similar

□

5 Coloring

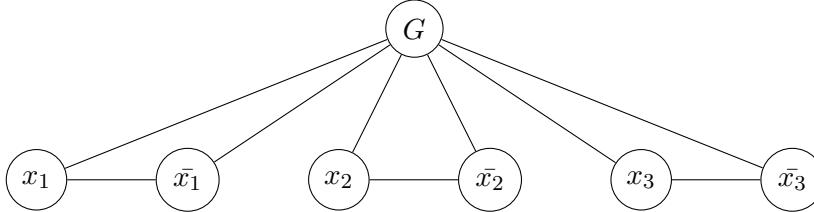
Definition 5.1. 3-COL: Decision problem: Given G , does there exist a valid 3-coloring (each edge has different-colored endpoints) of G ?

Again, 3-COL is clearly in NP.

Theorem 5.2. $NAE\text{-}E3\text{-SAT} \leq_p 3\text{-COL}$

Proof. Given NAE-E3-SAT instance φ , we want to construct a 3-coloring instance (graph) G_φ .

1. Start with 1 vertex ground G .
2. Add two vertices x_i, \bar{x}_i for each variable i .
3. Draw triangles (x_i, \bar{x}_i, G) for each variable i .

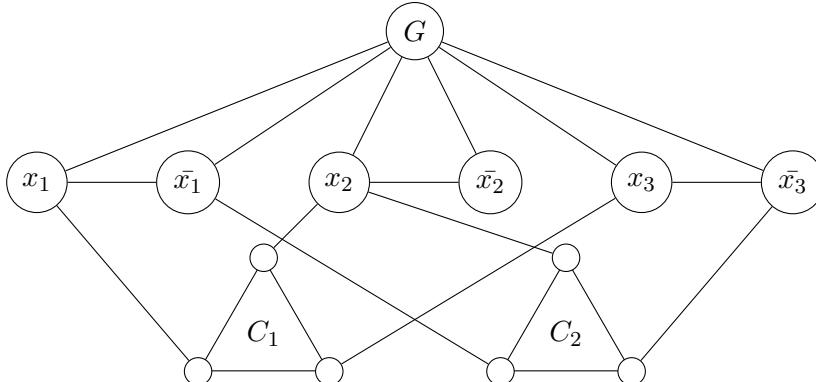


4. Without loss of generality, color Ground Y .
5. Force x_i, \bar{x}_i to have different colors in $\{R, B\}$.

We can think of $B = \text{True}$, $R = \text{False}$. Any valid 3-coloring of G_φ induces a truth assignment to X .

We want to encode NAE constraint C as a “gadget”: subgraph should be colorable \Leftrightarrow the corresponding assignment satisfies C . It turns out that a triangle satisfies this property. For each clause C , we can add a triangle on three new vertices. Then we add edges connecting the three triangle vertices to the vertices corresponding to the literals in C . See Example 5.3.

Example 5.3. $C_1 \wedge C_2$, where $C_1 = (x_1, x_2, x_3)$ and $C_2 = (\bar{x}_1, x_2, \bar{x}_3)$



It is then easy to see that the vertices of the triangle for C have a valid 3-coloring if and only if the truth assignment corresponding to this 3-coloring satisfies C . \square

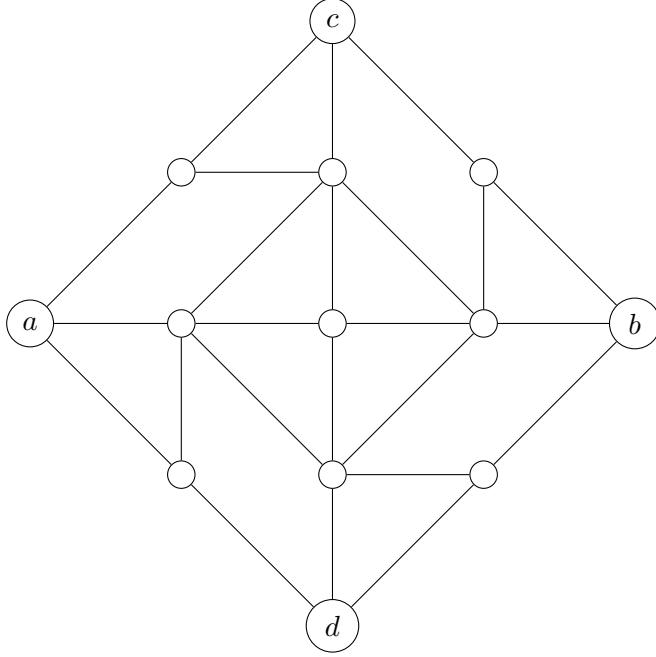
We can also consider the 3-coloring problem restricted to planar graphs.

Definition 5.4. PLANAR-3-COL: 3-COL, where G is planar

Planar 3-coloring is also NP-hard.

Theorem 5.5. $3\text{-COL} \leq_p \text{PLANAR-3-COL}$

Proof. Given 3-COL instance G , we want to construct a PLANAR-3-COL instance G' . Draw G in the plane (with edge crossing), replace edge crossings with “crossover gadget”! \square



Properties 5.6.

1. Every valid 3-coloring χ has $\chi(a) = \chi(b)$, $\chi(c) = \chi(d)$
2. Given $c_1, c_2 \in \{R, B, Y\}$, \exists valid 3-coloring χ such that $c_1 = \chi(a) = \chi(b)$, $c_2 = \chi(c) = \chi(d)$

Theorem 5.7. Any PLANAR graph can be colored with 4 colors

Remark 5.8.

- PLANAR-3-COL is NP-hard
- PLANAR-4-COL is easy: always answer yes

6 Independent Set

So far, we have talked about constraint satisfaction problems (CSPs). Let's talk about a problem that is not a CSP.

Definition 6.1. Recall: An **independent set** is a subset S of vertices with no edge between any pair in S .

IND-SET: Decision problem: Given G, k , does G have an independent set of size $\geq k$?

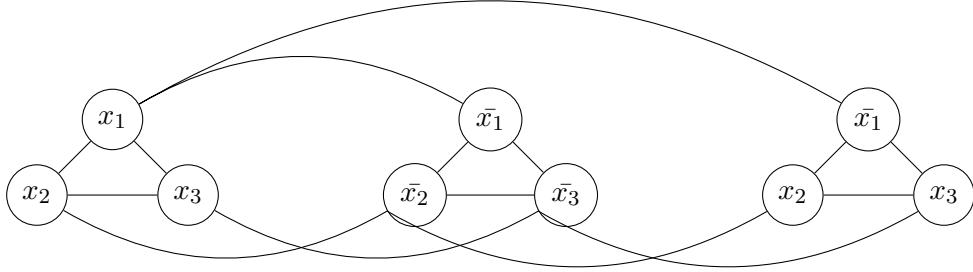
IND-SET is clearly in NP.

Theorem 6.2. $E3\text{-SAT} \leq_p \text{IND-SET}$

Proof. Given E3-SAT instance, we construct an IND-SET instance.

Say our E3-SAT instance has m clauses. In this reduction, we again use a triangle as our gadget. For each clause, we add a vertex for each literal and all three edges on these vertices. We then have m disjoint, disconnected triangles. Note that any independent set has size at most m : one vertex per triangle. Then add an edge between each pair of vertices corresponding to opposite literals. Consider Example 6.3.

Example 6.3. $(x_1 \vee x_2 \vee x_3) \wedge (\bar{x}_1 \vee \bar{x}_2 \vee \bar{x}_3) \wedge (\bar{x}_1 \vee x_2 \vee x_3)$.



We then claim that there is an independent set of size $m \Leftrightarrow$ there is a satisfying assignment for the E3-SAT instance. \square