
15-750: Graduate Algorithms January 23, 2017

Lecture 3: Fibonacci Heaps

Lecturer: Gary Miller Scribe(s): Gabriele Farina, Rui Silva

1 Motivation

Fibonacci Heaps [Fredman and Tarjan, 1987] can be viewed as an extension of Binomial Heaps. In
particular, they support the decrease-key operation in O(1) amortized time, while preserving
the complexity of all other operations. Table 1 provides a comparative summary of the complexity
of each operation supported by Binomial and Fibonacci Heaps.

Binomial Heaps (lazy) Fibonacci Heaps

make-heap O(1) O(1)

find-min O(1) O(1)

insert O(1) O(1)

delete-min O(log n) O(log n)

meld O(1) O(1)

delete O(log n) O(log n)

decrease-key O(log n) O(1)

Table 1: Amortized complexity of operations in Binomial and Fibonacci Heaps.

As seen in the previous lecture, the logarithmic cost of decrease-key in Binomial Heaps is
related to the fact that decreasing the key of a node may lead to a violation of the min-heap ordering
(unless performed on a root), which is fixed by “bubbling up” the modified node in the heap, until
the min-heap ordering is satisfied again. Since the trees have at most logarithmic height, in the
worst-case (i.e. when it is necessary to bubble up a leaf up to the root), this operation takes
O(log n) time. Fibonacci Heaps completely avoid this inconvenience, by allowing links to be cut in
a controlled way.

By supporting the decrease-key operation in O(1) time, Fibonacci Heaps become clearly
attractive for all those applications making extensive use of this operation. In particular, historically
they allowed an improvement in the runtime of the Dijkstra’s single-source shortest path algorithm,
bringing its time complexity down to O(m+ n log n).

1



2 Overview

Fibonacci Heaps are an extension of Binomial Heaps, and share many common points with Binomial
Heaps. To start, a Fibonacci Heap is also represented as a linked-list of heap-ordered trees (also
known as a forest). Furthermore, like in Binomial Heaps, each node v in a Fibonacci Heap has
associated a value rank(v), representing the number of children of v; the rank of a tree T , rank(T ),
is equal to the rank of the root of T , and again we only link trees with equal rank. Each node has
a pointer to its parent (or nil if the node is a root), and a list of pointers to its children. Finally,
a global pointer (the min-ptr) at each instant points to one of trees in the forest containing the
minimum element of the collection (such value must be stored at the root, since the trees are all
heap-ordered).

What sets Fibonacci Heaps apart is the fact that nodes can be unlinked (or cut) away from
their parents in amortized constant time. While the operation of cutting trees is not hard to
implement per se, it is important to consider that it poses a threat to the efficiency of the other
operations, especially delete-min. Indeed, after a number of cuts, the forest risks to be composed
of scraggly trees with high rank, making the implementation of delete-min we saw in the last
lecture inefficient. In order to guarantee that the trees in the forest are “bushy”, the cuts need to
be done in a controlled way.

3 Cuts

As aforementioned, Fibonacci Heaps introduce a new function, called cut. When cut is called
on the non-root vertex v, the link from v to its parent gets deleted, splitting the tree. As we will
show in a moment, it is possible to implement cut in constant time. However, let’s first stop to
appreciate how a constant-time implementation of cut allows us to implement decrease-key(v, δ)
in constant time. As we recalled earlier, the problem with decrease-key(v, δ) is that when v is
not the root of the tree, a decrement in its value might break the heap order. However, by first
running cut(v), we are guaranteed that v is the root of a tree in the heap, and changing the value
of v surely does not break the heap order.

In order to avoid the potential problem of having extremely sparse trees of high rank, we limit
the number of cuts among the children of any vertex to two. The rational behind this choice is that
by doing this, we can guarantee that each tree of rank k has at least ck nodes, for a suitable value
of c (reasonably, c < 2, i.e. we get a slightly worse base for the exponent than vanilla Binomial
Heaps). We defer this analysis to Section 4.2.

In order to keep track of the number of cut children of a node, we instrument every node v
with a boolean flag marked(v). When marked(v) is false, no child of v has been cut; when it is
true, exactly one child has been cut. In order to maintain our invariant, whenever marked(v) is
true and the second child of v gets cut, v gets recursively cut as well, and its marked attribute
reset. Figure 1 shows a sample forest with only one tree; the numbers inside the nodes represent
the values stored in the heap, while gray nodes with bold text represent nodes for which marked
is true.

2



1

4 2 3

5 6 8

9 7 10

11 15 8 19

23

Figure 1: Sample forest with only one tree. The numbers inside the nodes rep-
resent the values stored in the heap, while gray nodes with bold text represent
nodes for which marked is true.

Algorithm 1 shows the pseudocode for the algorithm described above, while Figure 2 presents a
step-by-step simulation of the effect of cut(19) on the tree of Figure 1.

Algorithm 1 Pseudocode for the cut operation.
1: procedure cut(v)
2: if parent(v) 6= nil then . v is not the root of the tree
3: p← parent(v)
4: Remove the link from p to v; add the new tree rooted in v to the list of trees
5: marked(v)← false
6: rank(p)← rank(p)− 1
7: if marked(p) then . p had already lost one child
8: cut(p)
9: else

10: marked(p)← true
11: end if
12: end if
13: end procedure

3.1 Interplay with the other operations

Apart from cut, all the other operations are agnostic to the presence of marks. This implies that
they can be mostly borrowed from Binomial Heaps without changes. The only exceptions are:

• insert(v), which also needs to initialize marked(v) to false;

• decrease-key(v, δ), which is now re-implemented to execute cut(v) before changing the
value of the (now) root v.

4 Analysis

Most of the (amortized) analysis done for Binomial Heap transfers unchanged to Fibonacci Heaps. In
particular, this is true for make-heap, link, consolidate, find-min, meld and insert. On the

3



cut(19)

1

4 2 3

5 6 8

9 7 10

11 15 8 19

23

The link connecting node 19 to its
parent 7 is deleted. Node 7 was
marked, so we recursively cut 7 as
well.

cut(7)

1

4 2 3

5 6 8

9 7 10

11 15 8 19

23

The link connecting node 7 to its
parent 5 is deleted. Node 7 is un-
marked. Node 5 was marked, so we
recursively cut 5 as well.

cut(5)

1

4 2 3

5 6 8

9 7 10

11 15 8 19

23

The link connecting node 5 to its
parent 4 is deleted. Node 5 is un-
marked. Node 4 was not marked, so
we mark it and return.

End

1

4 2 3

5 6 8

9 7 10

11 15 8 19

23

The call to cut(19) returns. The
heap now contains 4 trees, among
which 4 nodes are marked.

Figure 2: Step by step simulation of the effect of cut(19) on the tree of Figure 1.

4



contrary, extra care has to be put into the analysis of delete-min (which heavily depends on having
a logarithmic bound on the maximum rank of any tree), decrease-key (whose implementation
differs from Binomial Heaps), and of course the new operation, cut.

4.1 Analysis of cut and decrease-key

As discussed previously, the ability of performing cut operations in (amortized) constant time is
what sets Fibonacci Heaps apart, allowing for an efficient implementation of the decrease-key
operation. Here, we prove this amortized bound, using the potential method.

Each call to cut performs a constant amount of work, and potentially cascades, recursively
calling cut on the parent of the node. Let c be the number of calls to cut (including the first one)
needed before stopping. For instance, in the example of Figure 2, c = 3 as cut(19) results in a call
to cut(7) and cut(5) as well.

Consider now the potential function

Φ(H) = T (H) + 2M(H), (1)

where T (H) and M(H) are respectively the number of trees and of marked nodes in the heap
H. As an example, the potential function of the heap in the End stage of Figure 2 is given by
Φ(H) = 4 + 2× 4 = 12.

Each cut creates a new tree, provoking a change in potential of ∆n trees = +c. Furthermore, each
cut, except maybe the first one, clears a marked node, provoking a successive change in potential
∆cleared marks ≤ −2(c− 1). Finally, a node might1 be marked when the recursion stops, provoking a
change in potential ∆new mark ≤ +2. Therefore, the overall change in potential after a call to cut
makes c− 1 additional recursive calls is at most

∆Φ(H) = ∆n trees + ∆cleared marks + ∆new mark

≤ c− 2(c− 1) + 2

= −c+ 4.

The amortized cost per cut is then c+ 4− c = O(1).
Conveniently, this also proves that decrease-key(v) runs in amortized constant time, as it

just consists of a call to cut(v) and an access to memory to decrease the value of the (now) root v.

4.2 Analysis of delete-min

The logarithmic performance of delete-min (and therefore also delete) in Binomial Heaps is
directly related to the fact that the maximum rank of any tree in a heap of size n is at most
logarithmic in n (equivalently, the number of nodes in a tree is at least exponential in the rank of
that tree). Theorem 4.2, the central result for this section, proves that the same property holds for
Fibonacci heaps. We begin with a lemma.

Lemma 4.1. Let x be any vertex, and let y1, . . . , ym be the children of x, arranged in the order in
which they were linked into x. Then rank(yi) ≥ i− 2.

Proof. This is a direct consequence of our policy of only linking trees having equal rank. When yi
was linked into x, x had already i− 1 children. Hence, at that time, rank(yi) = i− 1. Since then,
yi might have lost one child, but not two, or otherwise yi itself would have been cut from the tree.
Hence, rank(yi) ≥ i− 2.

1It depends on whether the recursion stops before reaching the root or not.

5



Theorem 4.2. Let T be a tree in a Fibonacci Heap. The size of T is exponential in rank(T ).

Proof. The conclusion follows easily from Lemma 4.1. Let Sr be a lower bound on the size of any
tree having rank r. Clearly, S0 = 1, so that we can focus on the case r ≥ 1. By definition of rank,
the root of such a tree T has r children y1, . . . , yr. Using Lemma 4.1 on the yi’s, we know that the
subtree rooted in yi has size at least Si−2 (when i = 1, this means that the subtree rooted in y1 has
size at least S0 = 1 — i.e. node y1 itself). Therefore, the size s of the tree T is bounded by

s ≥ 1 + S0 +
r∑
i=2

Si−2 = 2 +
r∑
i=2

Si−2 = 2 +
r−2∑
i=0

Si,

and hence we can let

Sr = 2 +

r−2∑
i=0

Si. (2)

Equation 2 defines a recurrence relation, whose first terms are

S0 = 1,

S1 = 2,

S2 = 2 + 1 = 3,

S3 = 2 + 1 + 2 = 5,

S4 = 2 + 1 + 2 + 3 = 8,

. . .

This sequence of integers is known as the “Fibonacci sequence” (hence the name of the data struc-
ture). It is immediate to show that Equation 2 can also be rewritten as

Sn = Sn−1 + Sn−2 ∀n ≥ 2, S0 = 1, S1 = 2.

In order to conclude the proof, we show that Sr = Ω(cr) for some c > 1. For the time being, we
prove that by induction, by explicitly providing, “out of the blue”, the constant c; see Section 5 for
a more insightful proof.

Let φ be the only positive root of the quadratic equation x2 = x + 1; notice that such root is
smaller than 2. We prove by induction that Sr ≥ φr for all r. The base cases are readily checked,
as S0 = 1 ≥ 1 and S1 = 2 ≥ φ. Now, suppose the claim holds for r = 1, . . . , r̄ − 1; we prove that it
holds for r̄ as well. Indeed,

Sr̄ = Sr̄−1 + Sr̄−2

≥ φr̄−1 + φr̄−2

= φr̄−2(φ+ 1) = φr̄,

where we used the fact that φ+ 1 = φ2 by construction. This concludes the proof.

Theorem 4.2 immediately implies that in a heap containing n values, the rank of any tree in the
forest is O(logφ n) = O(log n). Therefore, the amortized cost of delete-min (and hence, also of
delete) is O(log n), as claimed.

References

[Fredman and Tarjan, 1987] Fredman, M. L. and Tarjan, R. E. (1987). Fibonacci heaps and their
uses in improved network optimization algorithms. Journal of the ACM, 34(3):596–615. 1

6



5 Appendix: Fibonacci numbers

We give an alternative proof of the asymptotics of Fibonacci numbers, whose definition is reported
in Equation 3:

S0 = 1, S1 = 2, Sn = Sn−1 + Sn−2 ∀ n ≥ 2. (3)

Equation 3 can be regarded as a discrete version of a linear ordinary differential equation (ODE)
of the second order. Like with higher-order linear ODEs, we can always reduce Equation 3 to first
order by increasing the dimension of the space:

F0 =

(
2
1

)
, Fn = MFn−1, where M =

(
1 1
1 0

)
, ∀n ≥ 1. (4)

Notice that for all n, Fn = (Sn+1, Sn)>.
We now show how to analytically compute a closed formula for Fn. Notice that we have

Fn = MnF0.

Since M is a symmetric matrix, the spectral theorem guarantees that it is (orthogonally) diagonal-
izable. In this case we have

M = PΛP−1 = PΛP>, where P =
1√
φ2 + 1

(
φ −1
1 φ

)
, Λ =

(
φ 0
0 −φ−1

)
,

and φ ≈ 1.618 is the only positive eigenvalue of M, i.e. the only positive root of the quadratic
equation x2 = x+ 1. This representation is particularly useful, because it allows us to write

Mn =
(
PΛ���P−1

)(
��PΛ���P−1

)
· · ·
(
��PΛP−1

)
︸ ︷︷ ︸

n times

= PΛnP−1 = PΛnP>.

However, Λ is a diagonal matrix, and therefore

Λn =

(
φn 0
0 (−φ−1)n

)
.

Wrapping up, we find that

Fn = MnF0 = P

(
φn 0
0 (−φ−1)n

)
P>F0.

This immediately proves that the terms in Fn (i.e. the Fibonacci numbers) grow as Θ(φn). Besides,
it also gives us a closed formula for computing the n-th Fibonacci number: by expanding the matrix
products, we find

Sn =
1 + φ√

5
· φn − 2− φ√

5
· (−φ−1)n

≈ 1.17 · φn − 0.17 · (−φ−1)n.

Notice that, as unlikely as it might look, the expression above evaluates to an integer for all
n ∈ N.

7


