

Lecture 19: Max Flow II: Edmonds-Karp

Lecturer: David Witmer

Scribes: Ellango Jothimurugesan, Ziqiang Feng

1 Failure of Ford-Fulkerson

Recall from last time that in the setting of integral capacities, Ford-Fulkerson finds the max flow in $O(F(m+n))$ time, where F is the value of the max flow. That is, Ford-Fulkerson is only a psuedo-polynomial time algorithm. But things get even worse if the graph has real-valued capacities.

Theorem 1.1. *There exists a flow network with real capacities such that Ford-Fulkerson does not terminate. Furthermore, the values of the flows found may converge to some value arbitrarily far from the max flow.*

Proof. Consider the following graph, where each edge is labeled with its capacity. The number $\phi = (\sqrt{5} - 1)/2$ is a solution to $\phi = 1 - \phi^2$.

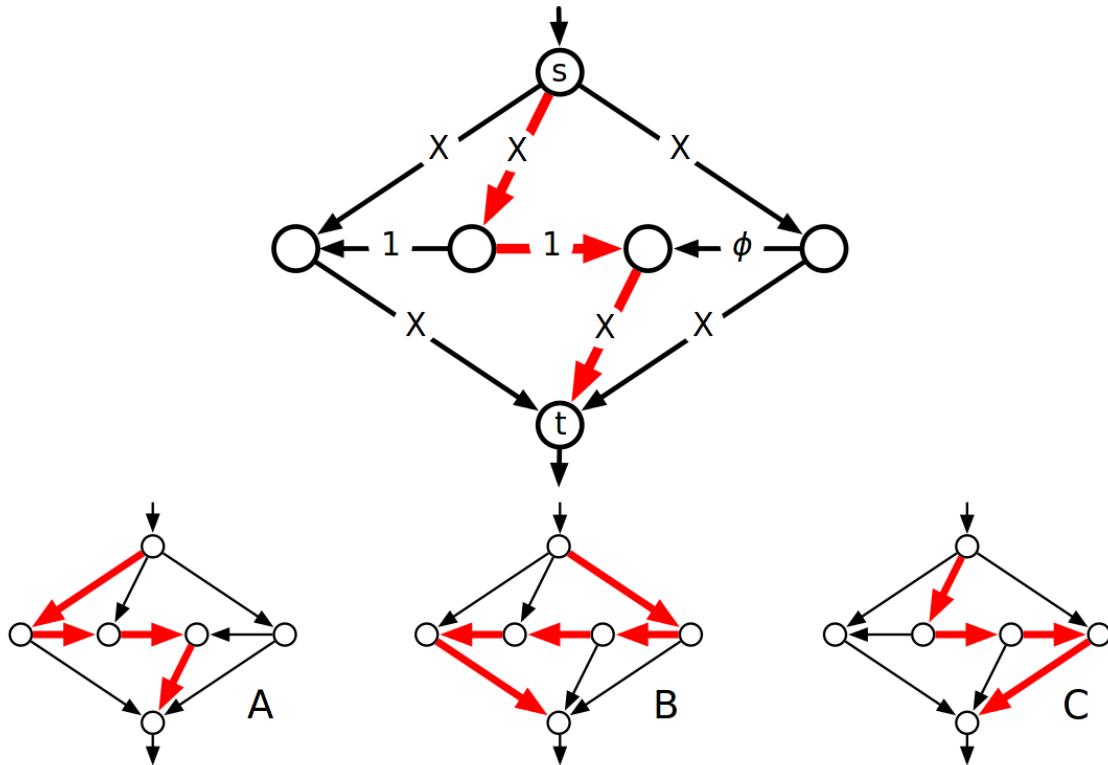


Figure 1: A simple graph where Ford-Fulkerson can fail, and three marked augmenting paths. Credit to Jeff Erickson [1] for the figure.

The max flow is $2X + 1$, but we will show that Ford-Fulkerson can find a sequence of augmenting

paths with flow values $1, \phi, \phi, \phi^2, \phi^2, \dots$, so that the combined flow value converges to

$$1 + 2 \sum_{i=1}^{\infty} \phi^i = 1 + \frac{2}{1-\phi} = 4 + \sqrt{5} < 7 \ll 2X + 1$$

for our choice of arbitrarily large X .

Suppose we first find the path through the center with flow 1. Observe that the resulting residual capacities along the three horizontal edges from left to right are: $1, 0, \phi$.

Now for the inductive step, assume that the residual capacities of the three edges are $\phi^{k-1}, 0, \phi^k$. We will show that we can find 4 augmenting paths with flows $\phi^k, \phi^k, \phi^{k+1}, \phi^{k+1}$, such that the new residual capacities for the three edges are $\phi^{k+1}, 0, \phi^{k+2}$ afterwards. The 4 paths are the following:

Augmenting path	Residual capacities for the three edges
1. Add flow of ϕ^k along path B.	$\phi^{k-1} - \phi^k = \phi^{k-1}(1 - \phi) = \phi^{k-1}\phi^2 = \phi^{k+1}$ $0 - (-\phi^k) = \phi^k$ $\phi^k - \phi^k = 0$
2. Add flow of ϕ^k along path C.	ϕ^{k+1} (unchanged) $\phi^k - \phi^k = 0$ $0 - (-\phi^k) = \phi^k$
3. Add flow of ϕ^{k+1} along path B.	$\phi^{k+1} - \phi^{k+1} = 0$ $0 - (-\phi^{k+1}) = \phi^{k+1}$ $\phi^k - \phi^{k+1} = \phi^k(1 - \phi) = \phi^k\phi^2 = \phi^{k+2}$
4. Add flow of ϕ^{k+1} along path A.	$0 - (-\phi^{k+1}) = \phi^{k+1}$ $\phi^{k+1} - \phi^{k+1} = 0$ ϕ^{k+2} (unchanged)

□

2 Max Flow in Polynomial Time: Edmonds-Karp Algorithm

2.1 Edmonds-Karp 1: Pick largest-capacity augmenting path

As usual, suppose we have graph $G = (V, E)$, $|V| = n$, $|E| = m$.

Claim 2.1. *If the max flow of G is F , then there exists an $s \rightarrow t$ path with capacity of at least $\frac{F}{m}$.*

Proof. Imagine we delete all edges with capacity $< \frac{F}{m}$. We argue it *cannot* disconnect s from t , because otherwise it means there exists an s - t cut with capacity $< m \cdot \frac{F}{m} = F$ (we can have deleted at most m edges). But we know all cuts must be $\geq F$. So there must be an $s \rightarrow t$ path with capacity $\geq \frac{F}{m}$. □

Claim 2.2. *Edmonds-Karp 1 makes at most $O(m \ln F)$ iterations.*

Proof. Let F' be the max flow in the (changing) residual graph. In Edmonds-Karp 1, we iteratively reduce F' until it becomes < 1 (assume integrity of capacity).

Note Claim 2.1 holds for every residual graph too. So in each iteration, we pick the largest-capacity augmenting path with capacity $\geq \frac{F'}{m}$, reducing F' by a factor of $(1 - \frac{1}{m})$.

Start with $F' = F$, how many iterations x do we need to reduce F' to under 1?

$$\begin{aligned}
F(1 - \frac{1}{m})^x &< 1 \\
\implies F(1 - \frac{1}{m})^x &\approx F e^{-\frac{x}{m}} < 1 \\
\implies x &= m \ln F
\end{aligned}$$

□

Finding the augmenting path with largest capacity. We use Algorithm 1 similar to Dijkstra's algorithm.

Algorithm 1 Finding the largest-capacity path

Let $c(v)$ be the capacity of the highest-capacity path $s \rightarrow v$, $v \in V$

Maintain a tree T of vertices for which we have computed $c(v)$

while $V \setminus T \neq \emptyset$ **do**

for each $v \in V$ adjacent to T **do**

$c(v) \leftarrow \max_{u \in T, (u,v) \in E} \{ \min\{c_u, c_{(u,v)}\} \}$

end for

 Add $v \in V \setminus T$ with largest $c(v)$ to T

end while

Runtime of Algorithm 1 By using a heap (recall previous lectures in this semester on heaps), the algorithm runs in $O(m \log n)$ time.

Total runtime By Claim 2.2, we run at most $O(m \ln F)$ iterations. In each iteration, we run Algorithm 1 that takes $O(m \ln n)$ time. Total runtime is thus $O(m^2 \ln F \ln n)$.

But the above runtime still depends on F , which can be huge and independent of the shape of the graph. *Can we get rid of F ?* We do this in Edmonds-Karp 2 below.

2.2 Edmonds-Karp 2: Pick shortest augmenting path

Claim 2.3. For all $v \in V \setminus \{s, t\}$, the shortest path distance $d_f(s, v)$ in the residual graph G_f is non-decreasing.

Proof. by contradiction.

Let say after adding an augmenting path, there exist some vertices $W \subset V$ whose shortest path distances actually decrease. Let the residual graph before adding the path be G_f and after be $G_{f'}$. Let $v \in W$ be the vertex with the smallest shortest distance in $G_{f'}$: $v = \arg \min_{w \in W} d_{f'}(s, w)$

Note $d_{f'}(s, v) < d_f(s, v)$.

Let P be a shortest path from s to v in $G_{f'}$. There must exists a predecessor of v in P , let it be u .

Observation

1. $d_{f'}(s, u) = d_{f'}(s, v) - 1$
2. $d_{f'}(s, u) \geq d_f(s, u)$. Otherwise $u \in W$ and $d_{f'}(s, u) < d_{f'}(s, v)$ violates minimality of v

Claim 2.4.

$$(u, v) \notin E_f$$

Proof. by contradiction

If $(u, v) \in E$, then

$$\begin{aligned} d_f(s, v) &\leq d_f(s, u) + 1 && \text{property of shortest path} \\ &\leq d_{f'}(s, u) + 1 && \text{by observation 2} \\ &= d_{f'}(s, v) && \text{by definition of } u \end{aligned}$$

This contradicts $d_{f'}(s, v) < d_f(s, v)$. □

So, we have

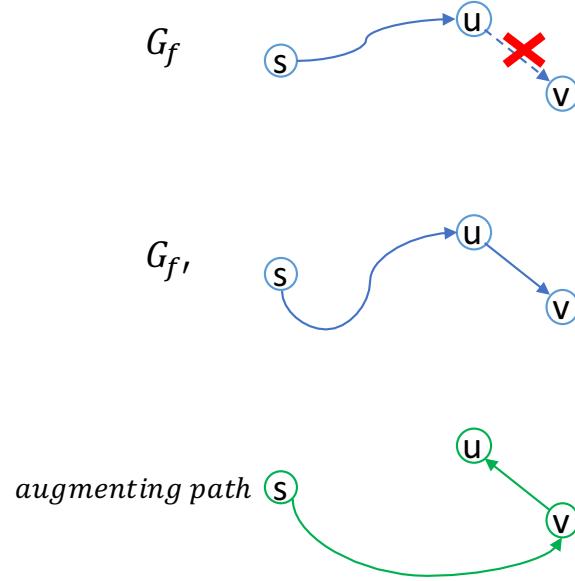
$$(u, v) \notin E_f, (u, v) \in E_{f'}$$

For this to happen, the augmenting path must have added a flow from v to u . Because the algorithm says we should pick the shortest path in G_f , it means the edge (v, u) is on the shortest path $s \rightarrow u$ in G_f .

$$\begin{aligned} d_f(s, v) &= d_f(s, u) - 1 && (v, u) \text{ is on the shortest path in } G_f \\ &\leq d_{f'}(s, u) - 1 && \text{by observation 2} \\ &= d_{f'}(s, v) - 2 && \text{by observation 1} \end{aligned}$$

This contradicts $d_{f'}(s, v) < d_f(s, v)$.

Now, we have proved the shortest path distance $d_f(s, v)$ in the residual graph G_f is non-decreasing.



□

Claim 2.5. Edmonds-Karp 2 has $O(mn)$ iterations.

Proof.

Definition 2.6. An edge $e \in G_f$ is **critical** for an augmenting path P if P puts flow $c_f(e)$ in e . In other words, e is critical if it is “saturated” by P .

Observation

1. After augmenting path P , e will be removed from G_f .
2. On every augmenting path, at least one edge is critical. Otherwise we can increase the flow of the path.

Claim 2.7. *Each edge $e \in E$ can be critical for $\leq \frac{n}{2}$ times.*

Suppose $\hat{e} = (u, v) \in E_f$ is a *critical* edge in G_f . Since Edmonds-Karp says we should pick the shortest path,

$$d_f(s, v) = d_f(s, u) + 1$$

By observation 1, (u, v) will be removed from the residual graph G_f after augmenting the path. It can't re-appear until we put a flow on (v, u) . Let f' be the flow when it happens. Again, since we are picking the shortest path:

$$\begin{aligned} d_{f'}(s, u) &= d_{f'}(s, v) + 1 \\ \therefore d_{f'}(s, u) &\geq d_f(s, v) + 1 && \text{by Claim 2.3} \\ &= d_f(s, u) + 2 \end{aligned}$$

So, every time an edge (u, v) becomes critical (again), its shortest path distance $d_f(s, u)$ increases by ≥ 2 . Any shortest path on G_f must be shorter than n . Hence an edge can only become critical for $\leq \frac{n}{2} = O(n)$ times.

\therefore The total number of critical edges is $\leq m \cdot O(n) = O(mn)$. □

Total runtime Claim 2.5 says Edmonds-Karp 2 runs in $O(mn)$ iterations. In each iteration, we run a BFS to find the shortest augmenting path, taking $O(m + n)$ time. So total runtime is $O(mn) \cdot O(m + n) = O(m^2n)$.

References

[1] Jeff Erickson. Lecture 23: Maximum flows and minimum cuts. In *Algorithms*. <http://jeffe.cs.illinois.edu/teaching/algorithms/notes/23-maxflow.pdf>, January 2015. 1