
15-750: Graduate Algorithms March 1, 2017

Lecture 19: Max Flow II: Edmonds-Karp

Lecturer: David Witmer Scribes: Ellango Jothimurugesan, Ziqiang Feng

1 Failure of Ford-Fulkerson

Recall from last time that in the setting of integral capacities, Ford-Fulkerson finds the max flow in
O(F (m+n)) time, where F is the value of the max flow. That is, Ford-Fulkerson is only a psuedo-
polynomial time algorithm. But things get even worse if the graph has real-valued capacities.

Theorem 1.1. There exists a flow network with real capacities such that Ford-Fulkerson does not
terminate. Furthermore, the values of the flows found may converge to some value arbitrarily far
from the max flow.

Proof. Consider the following graph, where each edge is labeled with its capacity. The number
φ = (

√
5− 1)/2 is a solution to φ = 1− φ2.

Figure 1: A simple graph where Ford-Fulkerson can fail, and three marked augmenting paths.
Credit to Jeff Erickson [1] for the figure.

The max flow is 2X+1, but we will show that Ford-Fulkerson can find a sequence of augmenting

1

paths with flow values 1, φ, φ, φ2, φ2, . . . , so that the combined flow value converges to

1 + 2
∞∑
i=1

φi = 1 +
2

1− φ
= 4 +

√
5 < 7� 2X + 1

for our choice of arbitrarily large X.
Suppose we first find the path through the center with flow 1. Observe that the resulting

residual capacities along the three horizontal edges from left to right are: 1, 0, φ.
Now for the inductive step, assume that the residual capacities of the three edges are φk−1, 0, φk.

We will show that we can find 4 augmenting paths with flows φk, φk, φk+1, φk+1, such that the new
residual capacities for the three edges are φk+1, 0, φk+2 afterwards. The 4 paths are the following:

Augmenting path Residual capacities for the three edges

1. Add flow of φk along path B. φk−1 − φk = φk−1(1− φ) = φk−1φ2 = φk+1

0− (−φk) = φk

φk − φk = 0

2. Add flow of φk along path C. φk+1 (unchanged)

φk − φk = 0

0− (−φk) = φk

3. Add flow of φk+1 along path B. φk+1 − φk+1 = 0

0− (−φk+1) = φk+1

φk − φk+1 = φk(1− φ) = φkφ2 = φk+2

4. Add flow of φk+1 along path A. 0− (−φk+1) = φk+1

φk+1 − φk+1 = 0

φk+2 (unchanged)

2 Max Flow in Polynomial Time: Edmonds-Karp Algorithm

2.1 Edmonds-Karp 1: Pick largest-capacity augmenting path

As usual, suppose we have graph G = (V,E), |V | = n, |E| = m.

Claim 2.1. If the max flow of G is F , then there exists an s→ t path with capacity of at least F
m .

Proof. Imagine we delete all edges with capacity < F
m . We argue it cannot disconnect s from t,

because otherwise it means there exists an s-t cut with capacity < m · Fm = F (we can have deleted
at most m edges). But we know all cuts must be ≥ F . So there must be an s → t path with
capacity ≥ F

m .

Claim 2.2. Edmonds-Karp 1 makes at most O(m lnF) iterations.

Proof. Let F ′ be the max flow in the (changing) residual graph. In Edmonds-Karp 1, we iteratively
reduce F ′ until it become < 1 (assume integrity of capacity).

Note Claim 2.1 holds for every residual graph too. So in each iteration, we pick the largest-
capacity augmenting path with capacity ≥ F ′

m , reducing F ′ by a factor of (1− 1
m).

Start with F ′ = F , how many iterations x do we need to reduce F ′ to under 1?

2

F (1− 1

m
)x < 1

=⇒ F (1− 1

m
)x ≈ Fe−

x
m < 1

=⇒ x = m lnF

Finding the augmenting path with largest capacity. We use Algorithm 1 similar to Dijk-
stra’s algorithm.

Algorithm 1 Finding the largest-capacity path

Let c(v) be the capacity of the highest-capacity path s→ v, v ∈ V
Maintain a tree T of vertices for which we have computed c(v)
while V \ T 6= ∅ do

for each v ∈ V adjacent to T do
c(v)← maxu∈T,(u,v)∈E{min{cu, c(u,v)}}

end for
Add v ∈ V \ T with largest c(v) to T

end while

Runtime of Algorithm 1 By using a heap (recall previous lectures in this semester on heaps),
the algorithm runs in O(m log n) time.

Total runtime By Claim 2.2, we run at most O(m lnF) iterations. In each iteration, we run
Algorithm 1 that takes O(m lnn) time. Total runtime is thus O(m2 lnF lnn).

But the above runtime still depends on F , which can be huge and independent of the shape of
the graph. Can we get rid of F? We do this in Edmonds-Karp 2 below.

2.2 Edmonds-Karp 2: Pick shortest augmenting path

Claim 2.3. For all v ∈ V \ {s, t}, the shortest path distance df (s, v) in the residual graph Gf is
non-decreasing.

Proof. by contradiction.
Let say after adding an augmenting path, there exist some vertices W ⊂ V whose shortest path

distances actually decrease. Let the residual graph before adding the path be Gf and after be Gf ′ .
Let v ∈W be the vertex with the smallest shortest distance in Gf ′ : v = arg minw∈W df ′(s, w)

Note df ′(s, v) < df (s, v).
Let P be a shortest path from s to v in Gf ′ . There must exists a predecessor of v in P , let it

be u.

Observation

1. df ′(s, u) = df ′(s, v)− 1

2. df ′(s, u) ≥ df (s, u). Otherwise u ∈W and df ′(s, u) < df ′(s, v) violates minimality of v

3

Claim 2.4.
(u, v) 6∈ Ef

Proof. by contradiction
If (u, v) ∈ E, then

df (s, v) ≤ df (s, u) + 1 property of shortest path

≤ df ′(s, u) + 1 by observation 2

= df ′(s, v) by definition of u

This contradicts df ′(s, v) < df (s, v).

So, we have
(u, v) 6∈ Ef , (u, v) ∈ Ef ′

For this to happen, the augmenting path must have added a flow from v to u. Because the
algorithm says we should pick the shortest path in Gf , it means the edge (v, u) is on the shortest
path s→ u in Gf .

df (s, v) = df (s, u)− 1 (v, u) is on the shortest path in Gf

≤ df ′(s, u)− 1 by observation 2

= df ′(s, v)− 2 by observation 1

This contradicts df ′(s, v) < df (s, v).
Now, we have proved the shortest path distance df (s, v) in the residual graph Gf is non-

decreasing.

𝐺" s
u

v

𝐺"# s
u

v

𝑎𝑢𝑔𝑚𝑒𝑛𝑡𝑖𝑛𝑔	𝑝𝑎𝑡ℎ s
u

v

Claim 2.5. Edmonds-Karp 2 has O(mn) iterations.

Proof.

4

Definition 2.6. An edge e ∈ Gf is critical for an augmenting path P if P puts flow cf (e) in e.
In other words, e is critical if it is “saturated” by P .

Observation

1. After augmenting path P , e will be removed from Gf .

2. On every augmenting path, at least one edge is critical. Otherwise we can increase the flow
of the path.

Claim 2.7. Each edge e ∈ E can be critical for ≤ n
2 times.

Suppose ê = (u, v) ∈ Ef is a critical edge in Gf . Since Edmonds-Karp says we should pick the
shortest path,

df (s, v) = df (s, u) + 1

By observation 1, (u, v) will be removed from the residual graph Gf after augmenting the path.
It can’t re-appear until we put a flow on (v, u). Let f ′ be the flow when it happens. Again, since
we are picking the shortest path:

df ′(s, u) = df ′(s, v) + 1

∴ df ′(s, u) ≥ df (s, v) + 1 by Claim 2.3

= df (s, u) + 2

So, every time an edge (u, v) becomes critical (again), its shortest path distance df (s, u) increases
by ≥ 2. Any shortest path on Gf must be shorter than n. Hence an edge can only become critical
for ≤ n

2 = O(n) times.
∴ The total number of critical edges is ≤ m ·O(n) = O(mn).

Total runtime Claim 2.5 says Edmonds-Karp 2 runs in O(mn) iterations. In each iteration,
we run a BFS to find the shortest augmenting path, taking O(m + n) time. So total runtime is
O(mn) ·O(m+ n) = O(m2n).

References

[1] Jeff Erickson. Lecture 23: Maximum flows and minimum cuts. In Algorithms. http://jeffe.
cs.illinois.edu/teaching/algorithms/notes/23-maxflow.pdf, January 2015. 1

5

http://jeffe.cs.illinois.edu/teaching/algorithms/notes/23-maxflow.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/notes/23-maxflow.pdf

