
15-750: Graduate Algorithms January 18, 2016

Lecture 1: Introduction and Strassen’s Algorithm

Lecturer: Gary Miller Scribe: David Witmer

1 Introduction

1.1 Machine models

In this class, we will primarily use the Random Access Machine (RAM) model. In this model, we
have a memory and a finite control. The finite control can read or write to any location in the
memory in unit time. In addition, it can perform arithmetic operations +, −, ×, and ÷ in unit
time. We will not require a more formal definition.

Later in the semester, we will consider the Parallel Random Access Machine (PRAM) model
and circuit models. We will not discuss caching models (though they may appear on a homework
assignment), memory hierarchies, or pipelining.

1.2 Asymptotic complexity

We will only consider asymptotic complexity of algorithms: The input size (typically n) grows to
infinity. We now define the asymptotic notation we will use to describe time and space used by
algorithms in this setting.

Definition 1.1. Let f, g : N→ N.

1. f(n) ∈ O(g(n)) if there exist c > 0 and n0 ∈ N such that for all n ≥ n0, f(n) ≤ c · g(n).

2. f(n) ∈ o(g(n)) if for all c > 0, there exists n0 ∈ N such that for all n ≥ n0, f(n) ≤ c · g(n).

For intuition, f ∈ O(g) means that f grows no faster than g, and f ∈ o(g) means that f grows
more slowly than g. We often write f = O(g) to indicate f ∈ O(g) and f = o(g) for f ∈ o(g).

There are two alternative definitions for f ∈ Ω(g).

Definition 1.2. f ∈ Ω(g) if g ∈ O(f).

Definition 1.3. f ∈ Ω(g) if there exists c > 0 such that for all n0 ∈ N, there exists n1 ≥ n0 such
that f(n1) ≥ c · g(n).

The phrase “for all n0 ∈ N, there exists n1 ≥ n0” simply means “infinitely often”. Intuitively,
f ∈ Ω(g) means that f grows at least as quickly as g. The two definitions usually agree, but there
are some cases in which they don’t. For instance, |n sinn| ∈ Ω(n) under Definition 1.3, but this
is not true under Definition 1.2. Such examples will not come up in this class, so for us these
definitions are essentially equivalent.

Example 1.4. Show that 2n2 + n+ 1 ∈ O(n2).

Proof. We try c = 3. We need to find n0 such that 2n2 + n + 1 ≤ 3n2 when n ≥ n0. This is
equivalent to n2−n−1 ≥ 0, and it is easy to see that this holds for n ≥ 2. We can therefore choose
c = 3 and n0 = 2.

1

Alternatively, we can use L’Hôpital’s Rule. Observe that

lim
n→∞

2n2 + n+ 1

n2
= lim

n→∞

4n+ 1

2n
= 2,

This means that for any ε > 0, there exists an n0 for which we can choose c = 2 + ε.

2 Strassen’s Algorithm

For an n ×m matrix M , we will denote the (i, j) entry by Mij , the ith row by Mi∗, and the jth
column by M∗j .

2.1 Matrix multiplication

Definition 2.1. Given matrices A ∈ Rn×k and B ∈ Rk×m, AB is defined to be a matrix in Rn×m

such that

(AB)ij =
k∑

t=1

AitBtj .

Here is a picture:

k

n

Ai∗

A
·

m

k B B∗j
=

m

n

Ai∗ ·B∗j

C

The product of two matrices can also be represented as the sum of outer products of their row
and column vectors.

Claim 2.2. Let A ∈ Rn×k and B ∈ Rk×m. Then

AB =

k∑
t=1

A∗tB
>
t∗.

This follows immediately from Definition 2.1, since (A∗tB
>
t∗)ij = AitBtj .

We recall some basic facts about matrix multiplication.

Fact 2.3.

1. (AB)C = A(BC)

2. In general, AB 6= BA.

3. For any scalar λ,

λA =

λ . . .

λ

A.

2

4. A(B + C) = AB +AC

Our goal in this lecture is to give an algorithm for matrix multiplication that is as efficient
as possible with respect to both time and space. We will start by giving a naive algorithm that
runs in time O(n3) and then show how we can do better using Strassen’s Algorithm. We will
only consider dense matrix multiplication, in which most of the entries of the input matrices are
nonzero. For sparse matrices, in which most of the entries are 0, there are algorithms for matrix
multiplication that leverage this sparsity to get a better runtime. We will not discuss algorithms
for sparse matrices in this class.

2.2 Naive algorithm

We begin with a naive algorithm that loops through all entries of the output and computes each
one.

Algorithm 1 Naive matrix multiplication

Input: A,B ∈ Rn×n

Output: AB
for i = 1 to n do

for j = 1 to n do
Set Cij =

∑n
t=1AitBtj

end for
end for
return C

This requires n3 multiplications and (n− 1)n2 additions, so the total runtime is O(n3).

2.3 Recursive algorithm

Next, we will give a recursive algorithm that also runs in time O(n3). Strassen’s Algorithm will
use a similar recursive framework to achieve subcubic runtime. We assume that n = 2k for some
k. For A ∈ Rn×n, we write

A =

(
A11 A12

A21 A22

)
,

where each of the Aij ’s is n/2× n/2.

3

Algorithm 2 Recursive matrix multiplication

Input: A,B ∈ Rn×n

Output: AB
function M(A,B)

if A is 1× 1 then
return a11b11

end if
for i = 1 to 2 do

for j = 1 to 2 do
Set Cij = M(Ai1, B1j) +M(Ai2, B2j)

end for
end for

return

(
C11 C12

C21 C22

)
end function

Correctness First, we need to prove that this algorithm is correct. That is, we need to prove
that M(A,B) = AB. We will do this by induction on n. In the base case, n = 1 and the algorithm
correctly returns a11b11.

In the inductive case, we assume that M(A,B) = AB for all n×n matrices with n < n0. From
the definition of matrix multiplication, it is clear that

(AB)ij = Ai1B1j +Ai2B2j .

By induction, M(Ai1, B1j) = Ai1B1j and M(Ai2, B2j) = Ai2B2j , so we see that

(AB)ij = M(Ai1, B1j) +M(Ai2, B2j) = M(A,B).

Runtime Define T (n) to be the number of operations required for the algorithm to multiply two
n× n matrices. The algorithm makes eight recursive calls. It also adds two n× n matrices, which
requires cn2 time for some constant c. We therefore obtain the following recurrence:

T (n) ≤ 8T (n/2) + cn2 T (1) = 1.

Claim 2.4. T (n) = O(n3).

We will prove this claim in Section 3.
If the number of recursive calls is smaller, the runtime will be faster. Specifically, we will also

prove the following claim in Section 3.

Claim 2.5. Assume
T (n) ≤ 7T (n/2) + cn2 and T (1) = 1.

Then T (n) = O(nlog2 7).

Strassen’s Algorithm makes only seven recursive calls, so it runs in time O(nlog2 7) = O(n2.807...),
faster than O(n3).

4

2.4 Strassen’s Algorithm

We again consider multiplying n× n matrices broken into n/2× n/2 blocks as follows:

M =

(
A B
C D

)
, N =

(
E F
G H

)
.

Consider the following matrices:

S1 = (B −D)(G+H)

S2 = (A+D)(E +H)

S3 = (A− C)(E + F)

S4 = (A+B)H

S5 = A(F −H)

S6 = D(G− E)

S7 = (C +D)E.

The product MN can be computed using these seven matrices.

Claim 2.6. (
A B
C D

)
·
(
E F
G H

)
=

(
S1 + S2 − S4 + S6 S4 − S5

S6 + S7 S2 − S3 + S5 − S7

)
.

Proof. We will prove the claim for only the lower left submatrix. The proofs for the other three
are similar. In particular, we want to show that S6 + S7 = CE +DG. Plugging in definitions, we
obtain

S6 + S7 = D(G− E) + (C +D)E = DG−DE + CE +DE = CE +DG.

We can now write down Strassen’s Algorithm.

Algorithm 3 Strassen’s Algorithm

function Strassen(M ,N)
if M is 1× 1 then

return M11N11

end if

Let M =

(
A B
C D

)
and N =

(
E F
G H

)
Set S1 = Strassen(B −D,G+H)
Set S2 = Strassen(A+D,E +H)
Set S3 = Strassen(A− C,E + F)
Set S4 = Strassen(A+B,H)
Set S5 = Strassen(A,F −H)
Set S6 = Strassen(D,G− E)
Set S7 = Strassen(C +D,E)

return

(
S1 + S2 − S4 + S6 S4 − S5

S6 + S7 S2 − S3 + S5 − S7

)
end function

Correctness The correctness of this algorithm follows immediately from Claim 2.6.

5

Runtime There are seven recursive calls and the additions and subtractions take time cn2 for
some constant c. The runtime T (n) therefore satisfies

T (n) ≤ 7T (n/2) + cn2 T (1) = 1. (1)

By Claim 2.5, the runtime is O(nlog2 7).
As a side note, we point out that we are doing 18 additions of n/2 × n/2 matrices, so we can

take the constant c to be 9/2.
We make two remarks about this algorithm. First, even though it is asymptotically faster than

the naive algorithm, Strassen’s Algorithm does not become faster than the naive algorithm until
the dimension of the matrices is on the order of 10,000. Instead of recursing all the way down to
1× 1 matrices, we can just run the naive algorithm once the matrices become small enough to get
a faster algorithm.

Second, we have not paid much attention to the space the algorithm is using. Computing
S1, . . . , S7 and the matrix that we return in the last step requires O(n2) space. We can therefore
write a recursion that is identical to (1) for space to see that the total space used is O(nlog2 7). The
naive algorithm uses only O(n2) space: We need 2n2 space for the inputs A and B, allocate n2

space for the output, and then construct the output by computing each AitAtj and adding it to
location (i, j) in the output matrix.

2.5 Running Strassen’s Algorithm using only O(n2) space

By being a bit more careful about how we use space, we can also run Strassen’s Algorithm in O(n2)
space. Rather than computing each of the Si’s in its own space, we can use the same space for each
of these recursive calls. We start with 3n2 space for the two input matrices and the output matrix.
We then allocate 3(n/2)2 space for the recursive call to compute S1. Once S1 is returned, we add
it to the upper left quadrant of the output matrix. In this same 3(n/2)2 space, we compute S2,
and then we add it to the upper left and lower right quadrants of the output matrix. We continue
in the same manner for the rest of the Si’s.

Let W (n) be the amount of memory needed to multiply two n × n matrixes. From the above
discussion, we see that

W (n) = 3n2 +W (n/2).

Claim 2.7. W (n) ≤ 4n2.

The picture below shows that the claim holds.

n

n

n

n

6

The three n × n squares are the space needed for the top-level call, the three n/2 × n/2 squares
are the space needed for the first level of recursion, etc. We will also give a more formal proof in
Section 3

3 Solving recurrences

In this section, we will show how to solve the three recurrences mentioned in the last section using
the “tree of recursive calls” method.

Claim 2.4. If it holds that

T (n) ≤ 8T (n/2) + cn2 T (1) = 1,

then T (n) = O(n3).

To solve this recurrence, we recursively evaluate T and write resulting function calls in a tree.

n

n
2

n
2

n
4

n
4

n
4

n
4

11

8 children

...

cn2

8c
(
n
2

)2
= 2cn2

(23)2c
(
n
22

)2
= 4cn2

...

2log ncn2 = O(n3)

Problem size
Work at each level

Total work: O(n3)

We then calculate the total amount of work at each level and sum over all levels of the tree.

Claim 2.5. Assume
T (n) ≤ 7T (n/2) + cn2 and T (1) = 1.

Then T (n) = O(nlog2 7).

To show this, we consider a similar tree of recursive calls.

7

n

n
2

n
2

n
4

n
4

n
4

n
4

11

7 children

...

cn2

7c
(
n
2

)2
= 7

4cn
2

72c
(
n
4

)2
=

(
7
4

)2
cn2

...

(
7
4

)log n
cn2 = O(nlog2 7)

Problem size
Work at each level

Total work: O(nlog2 7)

Claim 2.7. Assume
W (n) = 3n2 +W (n/2).

Then W (n) ≤ 4n2.

Here, there is only one subproblem, so the recursive tree is just a path.

W (n) = 3n2 +W (n/2)

= 3n2 + 3
(n

2

)2
+W (n/4)

= 3n2 +
3

4
n2 + 3

(n
4

)2
+W (n/8)

...

= 3n2
(

1

4
+

1

42
+ · · ·

)
≤ 3n2

(
1/4

1− 1/4

)
= 4n2.

8

