GRAPH
ALGORITHMS

SHMON EVEN

Technion Institute

Computer Science Press

TS T A T e

Chapter 4

4. ORDERED TREES

4.1 UNIQUELY DECIPHERABLE CODES | -

let ={0,1,...,0 —1}. WecallL an alphabet and its elements are
called letters; the number of letters in L is o. (Except for this numerical use of
o, the “numerical” value of the letters is ignored; they are just “meaningless”
characters. We use the numerals just because they are convenient characters.)
A finite sequence aia; -« a1, where a; is a letter, is called a word whose
length is I. We denote the length of a word w by [(w). A set of (non-empty and
distinct) words is called a code. For example, the code {102, 21, 00} consists
of three code-words: one code-word of length 3 and two code-words of length
2; the alphabet is {0, 1, 2} and consists of three letters. Such an alphabet is
called ternary.

Let ¢,, 2, ..., cx be code-words. The message c,cz ++ Ci is the word
resulting from the concatenation of the code-word c; with ¢z, etc. For exam-
ple, if ¢; = 00, c2 = 21 and ¢; = 00, then cicac3 = 002100.

A code C over L (that is, the code-words of C consist of letters in L) is said
to be uniquely decipherable (UD) if every message constructed from code-
words of C can be broken down into code-words of C in only one way. For ex-
ample, the code {01, 0, 10} is not UD because the message 010 can be parsed
in two ways: 0, 10 and 01, 0.

Our first goal is to describe a test for deciding whether a given code C is
UD. This test is an improvement of a test of Sardinas and Patterson [1] and
can be found in Gallager’s book [2].

If s, p and w are words and ps = w then p is called a prefix of w and s is
called a suffix of w. We say that a word w is non-empty if iw) > 0.

A non-empty word ¢ is called a tail if there exist two messages ¢1€2 - * Cm
andc;'cy' -+ - c»' with the following properties:

(1) ¢c;,1 <i=<m,andc;',1 <j <n are code-words and ¢, # ¢, "

(2) tis asuffixofc,’; _
3) cicr-cmt=ci'c2' oo cCa’.

69

sen—

70 Ordered Trees
Lemma 4.1: A code C is UD if and only if no tail is a code-word.

Proof: If a code-word c is a tail then by definition there exist two messages
€i€y *+- ¢cm and c¢;'cy’ --- ¢,’ which satisfy c,c; -++ cme =
ci1'cy' +--c,',whilec; # ¢, . Thus, there are two different ways to parse
this message, and C is not UD.

If Cis not UD then there exist messages which can be parsed in more than
one way. Let be such an ambiguous message whose length is minimum:
=c1cy s cr = cr'er’ --- cn';ice. all the ¢i-s and c;-s are code-words
and ¢; # c;'. Now, without loss of generality we can assume that c; is a suf-
fix of ¢, ' (or change sides). Thus, c; is a tail.

Q.E.D.

The algorithm generates all the tails. If a code-word is a tail, the algorithm
terminates with a negative answer.

Algorithm for UD:

(1) For every two code-words, ¢; and ¢; (i # j), do the following:

(1.1) If i = ¢y, halt; C is not UD.
(1.2) If for some word s, either cis = ¢; or c; = ¢;s, put s in the set of
tails.

(2) For every tail ¢ and every code-word ¢ do the following:

(2.1) If t = ¢, halt; C is not UD.
(2.2) If for some word s either s = ¢ or cs = ¢, put s in the set of tails.

(3) Halt; Cis UD.

Clearly, in Step (1), the words declared to be tails are indeed tails. In Step

(2), since t is already known to be a tail, there exist code-words ¢y, c3, ..., Cm
andci’, ¢2', ...,c." suchthatcie; -+ cut =c1'cy’ -+ ¢,'. Now, ifts = ¢
thencic; -+ ewc = ¢1'c;’ - -+ ca's, and therefore s is a tail; and if cs = ¢
thencic; -+ emes = c1'cy’ ++- ¢,' and s is a tail.

Next, if the algorithm halts in (3), we want to show that all the tails have
been produced. Once this is established, it is easy to see that the conclusion
that C is UD follows; Each tail has been checked, in Step (2.1), whether it is
equal to a code-word, and no such equality has been found; by Lemma 4.1,
the code C is UD.

Uniquely Decipherable Codes 71

For every t let m(t) = cicz - - - ¢ be a shortest message such thatcic; - - -
eul =c¢1'cy’' -+ ¢a', and t is a suffix of ¢, . We prove by induction on the
length of m(z) that ¢ is produced. If m(¢) = 1 then ¢ is produced by (1.2),
sincem =n = 1.

Now assume that all tails p for which m(p) < m(t) have been produced.
Since ¢ is a suffix of ¢, ', we have pt = c,'. Therefore, ¢ic2 -+ cm = c1'c2’

* Cn—1'P. '

If p = cmthencnt = ¢, andt is produced in Step (1).

If p is a suffix of c,, then, by definition, p is a tail. Also, m(p) i is shorter
then m(t). By the inductive hypothesis p has been produced In Step (2.2),
when applied to the tail p and code-word ¢,’, by pt = ¢.', the tail ¢ is pro-
duced.

If ¢ is a suffix of p, then cnxt is a suffix of ¢, ', and therefore, cmt is a tail.
m(cmt) = €1€2 - * + Cm—1, and is shorter than m(z). By the inductive hypothesis
¢.1 has beenl produced. In Step (2.2), when applied to the tail c..¢ and code-
word ¢,,, the tail ¢ is produced.

This proves that the algorithm halts with the right answer.

Let the code consists of n words and / be the maximum length of a code-
word. Step (1) takes at most O(n? - [) elementary operations. The number of

tails is at most O(n - I). Thus, Step (2) takes at most O(n?/?) elementary
operations. Therefore, the whole algorithm is of time complexity O(n%/?).
Other algorithms of the same complexity can be found in References 3 and 4;
these tests are extendible to test for additional properties [S, 6, 7].

Theorem 4.1: Let C = {ci, c2, ..., cx} be a UD code over an a]phabet of o
letters. If; = lc;),i = 1, 2, ..., n, then

Ik

cli< 1. (4.1)

=1

The left hand side of (4.1) is called the characteristic sum of C; clearly, it
characterizes the vector (I, L, ..., l.), rather than C. The inequality (4.1) is
called the characteristic sum condition. The theorem was first proved by
McMillan [8]. The following proof is due to Karush [9].

Proof: Let e be a positive integer

[

n n n n
<E a—li> =Y ¥ ... ¥ gttt
i=1

=1 =1 ie=1

72 Ordered Trees

There is a unique term, on the right hand side, for each of the n messages of

-e code-words. Let us denote by N(e, j) the number of messages of e code-

words whose length is j. It follows that

n n n ei
L L ... L o-titit+ho =T N, j)-o
j=e

i,=1i=1 ie=1

where [is the maximum length of a code-word. Since C is UD, no two
messages can be equal. Thus, N(e, j) < ¢. We now have,

C'I C'I

LNe j)-o7< Loiog < el
. J=e J=e

We conclude that for alle > 1

This implies (4.1).
Q.E.D.

A code C is said to be prefix if no code-word is a prefix of another. For ex-
ample, the code {00, 10, 11, 100, 110} is not prefix since 10 is a prefix of 100;
the code {00, 10, 11, 010, 011} is prefix. A prefix code has no tails, and is
therefore UD. In fact it is very easy to parse messages: As we read the
message from left to right, as soon as we read a code-word we know that it is
the first code-word of the message, since it cannot be the beginning of
another code-word. Therefore, in most applications, prefix codes are used.
The following theorem, due to Kraft [10], in a sense, shows us that we do not
need non-prefix codes.

Theorem 4.2: If the vector of integers, (I, I, ..., I,), satisfies
Lo-is1 4.2)

then there exists a prefix code C = {c,, c,, ..., ¢, }, over the alphabet of o
letters, such that /; = I(c,).

Uniquely Deciliherable Codes 73

Proof: Let \; < A\, < --- < A\, be integers such that each /;is equal to one
of the \j-s and each), is equal to at least one of the /i-s. Let k; be the num-
ber of I;-s which are equal to \;. We have to show that there exists a prefix
code C such that the number of code-words of length \; is k;.

Clearly, (4.2) implies that |

£ kjovs1 @y

We prove by induction on r that forevery1 = r < m there exists a prefix
code C, such that, for every 1 <j < r, the number of its code-words of length
)_,‘ is kj'. .

First assume that r = 1. Inequality (4.3) implies thatk;6 ™ < 1,0rk; <
oM. Since there are o™ distinct words of length \;, we can assign any k, of
them to constitute C,.

Now, assume C, exists. If r < m then (4.3) implies that

r+1

> kjo"‘f <1.

j=1

Multiplying both sides by o*r+1 yields

r+1

'Elkjo)\r-fl—)\j < ghr+1,
.’=

-which is equivalent to

r
kiv1 < ghrti— __lkja)"*’l—)‘f. (4.4)
j=

Out of the o*+1 distinct words of length N, +1, k; - o™ +17%, I <j <r, have
prefixed of length \; as code-words of C,.. Thus, (4.4) implies that enough are
left to assign k,+ words of length X, +1, so that none has a prefix in C,. The

enlarged set of code-words is Cr+1. _
Q.E.D.

This proof suggests an algorithm for the construction of a code with a
piven vector of code-word length. We shall return to the question of prefix
code construction, but first we want to introduce positional trees.

