GRAPH ALGORITHMS

SHIMON EVEN

Technion Institute

Computer Science Press

Chapter 4

4. ORDERED TREES

4.1 UNIQUELY DECIPHERABLE CODES

Let $\Sigma = \{0, 1, ..., \sigma - 1\}$. We call Σ an alphabet and its elements are called letters; the number of letters in Σ is σ . (Except for this numerical use of σ , the "numerical" value of the letters is ignored; they are just "meaningless" characters. We use the numerals just because they are convenient characters.) A finite sequence $a_1a_2 \cdots a_l$, where a_i is a letter, is called a word whose length is l. We denote the length of a word w by l(w). A set of (non-empty and distinct) words is called a code. For example, the code $\{102, 21, 00\}$ consists of three code-words: one code-word of length 3 and two code-words of length 2; the alphabet is $\{0, 1, 2\}$ and consists of three letters. Such an alphabet is called ternary.

Let c_1, c_2, \ldots, c_k be code-words. The message $c_1c_2 \cdots c_k$ is the word resulting from the concatenation of the code-word c_1 with c_2 , etc. For exam-

ple, if $c_1 = 00$, $c_2 = 21$ and $c_3 = 00$, then $c_1c_2c_3 = 002100$.

A code C over Σ (that is, the code-words of C consist of letters in Σ) is said to be uniquely decipherable (UD) if every message constructed from codewords of C can be broken down into code-words of C in only one way. For example, the code $\{01, 0, 10\}$ is not UD because the message 010 can be parsed in two ways: 0, 10 and 01, 0.

Our first goal is to describe a test for deciding whether a given code C is UD. This test is an improvement of a test of Sardinas and Patterson [1] and

can be found in Gallager's book [2].

If s, p and w are words and ps = w then p is called a *prefix* of w and s is called a *suffix* of w. We say that a word w is non-empty if l(w) > 0.

A non-empty word t is called a *tail* if there exist two messages $c_1c_2 \cdots c_m$ and $c_1'c_2' \cdots c_n'$ with the following properties:

- (1) c_i , $1 \le i \le m$, and c_j , $1 \le j \le n$ are code-words and $c_1 \ne c_1$;
- (2) t is a suffix of c_n ';
- (3) $c_1 c_2 \cdots c_m t = c_1' c_2' \cdots c_n'$.

Lemma 4.1: A code C is UD if and only if no tail is a code-word.

Proof: If a code-word c is a tail then by definition there exist two messages $c_1c_2 \cdots c_m$ and $c_1'c_2' \cdots c_n'$ which satisfy $c_1c_2 \cdots c_mc = c_1'c_2' \cdots c_n'$, while $c_1 \neq c_1'$. Thus, there are two different ways to parse this message, and C is not UD.

If C is not UD then there exist messages which can be parsed in more than one way. Let μ be such an ambiguous message whose length is minimum: $\mu = c_1c_2 \cdots c_k = c_1'c_2' \cdots c_n'$; i.e. all the c_i -s and c_j -s are code-words and $c_1 \neq c_1'$. Now, without loss of generality we can assume that c_k is a suffix of c_n' (or change sides). Thus, c_k is a tail.

Q.E.D.

The algorithm generates all the tails. If a code-word is a tail, the algorithm terminates with a negative answer.

Algorithm for UD:

- (1) For every two code-words, c_i and c_j ($i \neq j$), do the following:
 - (1.1) If $c_i = c_j$, halt; C is not UD.
- (1.2) If for some word s, either $c_i s = c_j$ or $c_i = c_j s$, put s in the set of tails.
- (2) For every tail t and every code-word c do the following:
 - (2.1) If t = c, halt; C is not UD.
 - (2.2) If for some word s either ts = c or cs = t, put s in the set of tails.
- (3) Halt; C is UD.

Clearly, in Step (1), the words declared to be tails are indeed tails. In Step (2), since t is already known to be a tail, there exist code-words c_1, c_2, \ldots, c_m and c_1', c_2', \ldots, c_n' such that $c_1c_2 \cdots c_mt = c_1'c_2' \cdots c_n'$. Now, if ts = c then $c_1c_2 \cdots c_mc = c_1'c_2' \cdots c_n's$, and therefore s is a tail; and if cs = t then $c_1c_2 \cdots c_mcs = c_1'c_2' \cdots c_n'$ and s is a tail.

Next, if the algorithm halts in (3), we want to show that all the tails have been produced. Once this is established, it is easy to see that the conclusion that C is UD follows; Each tail has been checked, in Step (2.1), whether it is equal to a code-word, and no such equality has been found; by Lemma 4.1, the code C is UD.

For every t let $m(t) = c_1c_2 \cdots c_m$ be a shortest message such that $c_1c_2 \cdots c_m t = c_1'c_2' \cdots c_n'$, and t is a suffix of c_n' . We prove by induction on the length of m(t) that t is produced. If m(t) = 1 then t is produced by (1.2), since m = n = 1.

Now assume that all tails p for which m(p) < m(t) have been produced. Since t is a suffix of c_n' , we have $pt = c_n'$. Therefore, $c_1c_2 \cdots c_m = c_1'c_2' \cdots c_{n-1}'p$.

If $p = c_m$ then $c_m t = c_n'$ and t is produced in Step (1).

If p is a suffix of c_m then, by definition, p is a tail. Also, m(p) is shorter then m(t). By the inductive hypothesis p has been produced. In Step (2.2), when applied to the tail p and code-word c_n' , by $pt = c_n'$, the tail t is produced.

If c_m is a suffix of p, then $c_m t$ is a suffix of c_n , and therefore, $c_m t$ is a tail. $m(c_m t) = c_1 c_2 \cdots c_{m-1}$, and is shorter than m(t). By the inductive hypothesis $c_m t$ has been produced. In Step (2.2), when applied to the tail $c_m t$ and codeword c_m , the tail t is produced.

This proves that the algorithm halts with the right answer.

Let the code consists of n words and l be the maximum length of a codeword. Step (1) takes at most $O(n^2 \cdot l)$ elementary operations. The number of tails is at most $O(n \cdot l)$. Thus, Step (2) takes at most $O(n^2l^2)$ elementary operations. Therefore, the whole algorithm is of time complexity $O(n^2l^2)$. Other algorithms of the same complexity can be found in References 3 and 4; these tests are extendible to test for additional properties [5, 6, 7].

Theorem 4.1: Let $C = \{c_1, c_2, \ldots, c_n\}$ be a UD code over an alphabet of σ letters. If $l_i = l(c_i), i = 1, 2, \ldots, n$, then

$$\sum_{i=1}^{n} \sigma^{-l_i} \le 1. \tag{4.1}$$

The left hand side of (4.1) is called the *characteristic sum* of C; clearly, it characterizes the vector (l_1, l_2, \ldots, l_n) , rather than C. The inequality (4.1) is called the *characteristic sum condition*. The theorem was first proved by McMillan [8]. The following proof is due to Karush [9].

Proof: Let e be a positive integer

$$\left(\sum_{i=1}^{n} \sigma^{-l_i}\right)^e = \sum_{i_1=1}^{n} \sum_{i_2=1}^{n} \cdots \sum_{i_e=1}^{n} \sigma^{-(l_{i_1}+l_{i_2}+\cdots+l_{i_e})}.$$

There is a unique term, on the right hand side, for each of the n^e messages of e code-words. Let us denote by N(e, j) the number of messages of e codewords whose length is j. It follows that

$$\sum_{i_1=1}^{n}\sum_{i_2=1}^{n}\cdots\sum_{i_e=1}^{n}\sigma^{-(l_{i_1}+l_{i_2}+\cdots+l_{i_e})}=\sum_{j=e}^{e\hat{l}}N(e,j)\cdot\sigma^{-j}$$

where \hat{l} is the maximum length of a code-word. Since C is UD, no two messages can be equal. Thus, $N(e, j) \leq \sigma^{j}$. We now have,

$$\sum_{j=e}^{e \cdot l} N(e, j) \cdot \sigma^{-j} \leq \sum_{j=e}^{e \cdot l} \sigma^{j} \cdot \sigma^{-j} \leq e \cdot \hat{l}.$$

We conclude that for all $e \ge 1$

$$\left(\sum_{i=1}^n \sigma^{-l_i}\right)^e \leq e \cdot \hat{l}.$$

This implies (4.1).

Q.E.D.

A code C is said to be *prefix* if no code-word is a prefix of another. For example, the code $\{00, 10, 11, 100, 110\}$ is not prefix since 10 is a prefix of 100; the code $\{00, 10, 11, 010, 011\}$ is prefix. A prefix code has no tails, and is therefore UD. In fact it is very easy to parse messages: As we read the message from left to right, as soon as we read a code-word we know that it is the first code-word of the message, since it cannot be the beginning of another code-word. Therefore, in most applications, prefix codes are used. The following theorem, due to Kraft [10], in a sense, shows us that we do not need non-prefix codes.

Theorem 4.2: If the vector of integers, (l_1, l_2, \ldots, l_n) , satisfies

$$\sum_{i=1}^{n} \sigma^{-l_i} \le 1 \tag{4.2}$$

then there exists a prefix code $C = \{c_1, c_2, \ldots, c_n\}$, over the alphabet of σ letters, such that $l_i = l(c_i)$.

Proof: Let $\lambda_1 < \lambda_2 < \cdots < \lambda_m$ be integers such that each l_i is equal to one of the λ_j -s and each λ_j is equal to at least one of the l_i -s. Let k_j be the number of l_j -s which are equal to λ_j . We have to show that there exists a prefix code C such that the number of code-words of length λ_j is k_j .

Clearly, (4.2) implies that

$$\sum_{j=1}^{m} k_j \, \sigma^{-\lambda_j} \le 1 \tag{4.3}$$

We prove by induction on r that for every $1 \le r \le m$ there exists a prefix code C_r such that, for every $1 \le j \le r$, the number of its code-words of length λ_i is k_i .

First assume that r = 1. Inequality (4.3) implies that $k_1 \sigma^{-\lambda_1} \le 1$, or $k_1 \le \sigma^{\lambda_1}$. Since there are σ^{λ_1} distinct words of length λ_1 , we can assign any k_1 of them to constitute C_1 .

Now, assume C_r exists. If r < m then (4.3) implies that

$$\sum_{j=1}^{r+1} k_j \sigma^{-\lambda_j} \leq 1.$$

Multiplying both sides by σ^{λ_r+1} yields

$$\sum_{j=1}^{r+1} k_j \sigma^{\lambda_r+1-\lambda_j} \leq \sigma^{\lambda_r+1},$$

which is equivalent to

$$k_{r+1} \leq \sigma^{\lambda_r+1} - \sum_{j=1}^r k_j \sigma^{\lambda_r+1-\lambda_j}. \tag{4.4}$$

Out of the σ^{λ_r+1} distinct words of length λ_{r+1} , $k_j \cdot \sigma^{\lambda_r+1-\lambda_j}$, $1 \le j \le r$, have prefixed of length λ_j as code-words of C_r . Thus, (4.4) implies that enough are left to assign k_{r+1} words of length λ_{r+1} , so that none has a prefix in C_r . The enlarged set of code-words is C_{r+1} .

Q.E.D.

This proof suggests an algorithm for the construction of a code with a given vector of code-word length. We shall return to the question of prefix code construction, but first we want to introduce positional trees.