
BOLYAI SOCIETYMATHEMATICAL STUDIES, 2 Combinatorics,Paul Erd}os is Eighty (Volume 2)Keszthely (Hungary), 1993, pp. 1{46.Random Walks on Graphs: A SurveyL. LOV�ASZDedicated to the marvelous random walkof Paul Erd}osthrough universities, continents, and mathematicsVarious aspects of the theory of random walks on graphs are surveyed. Inparticular, estimates on the important parameters of access time, commute time,cover time and mixing time are discussed. Connections with the eigenvaluesof graphs and with electrical networks, and the use of these connections inthe study of random walks is described. We also sketch recent algorithmicapplications of random walks, in particular to the problem of sampling.0. IntroductionGiven a graph and a starting point, we select a neighbor of it at random, andmove to this neighbor; then we select a neighbor of this point at random,and move to it etc. The (random) sequence of points selected this way is arandom walk on the graph.A random walk is a �nite Markov chain that is time-reversible (seebelow). In fact, there is not much di�erence between the theory of randomwalks on graphs and the theory of �nite Markov chains; every Markov chaincan be viewed as random walk on a directed graph, if we allow weightededges. Similarly, time-reversible Markov chains can be viewed as randomwalks on undirected graphs, and symmetric Markov chains, as random walkson regular symmetric graphs. In this paper we'll formulate the results interms of random walks, and mostly restrict our attention to the undirectedcase.



2 L. Lov�aszRandom walks arise in many models in mathematics and physics. Infact, this is one of those notions that tend to pop up everywhere once youbegin to look for them. For example, consider the shu�ing of a deck ofcards. Construct a graph whose nodes are all permutations of the deck, andtwo of them are adjacent if they come by one shu�e move (depending onhow you shu�e). Then repeated shu�e moves correspond to a random walkon this graph (see Diaconis [20]). The Brownian motion of a dust particleis random walk in the room. Models in statistical mechanics can be viewedas random walks on the set of states.The classical theory of random walks deals with random walks on sim-ple, but in�nite graphs, like grids, and studies their qualitative behaviour:does the random walk return to its starting point with probability one? doesit return in�nitely often? For example, P�olya (1921) proved that if we do arandom walk on a d-dimensional grid, then (with probability 1) we return tothe starting point in�nitely often if d = 2, but only a �nite number of timesif d � 3. See Doyle and Snell [25]; for more recent results on random walkson in�nite graphs, see also Thomassen [65].More recently, random walks on more general, but �nite graphs havereceived much attention, and the aspects studied are more quantitative:how long we have to walk before we return to the starting point? before wesee a given node? before we see all nodes? how fast does the distributionof the walking point tend to its limit distribution?As it turns out, the theory of random walks is very closely relatedto a number of other branches of graph theory. Basic properties of arandom walk are determined by the spectrum of the graph, and also byelectrical resistance of the electric network naturally associated with graphs.There are a number of other processes that can be de�ned on a graph,mostly describing some sort of \di�usion" (chip-�ring, load-balancing indistributed networks etc.), whose basic parameters are closely tied with theabove-mentioned parameters of random walks. All these connections arevery fruitful and provide both tools for the study and opportunities forapplications of random walks. However, in this survey we shall restrict ourattention to the connections with eigenvalues and electrical networks.Much of the recent interest in random walks is motivated by importantalgorithmic applications. Random walks can be used to reach \obscure"parts of large sets, and also to generate random elements in large andcomplicated sets, such as the set of lattice points in a convex body orthe set of perfect matchings in a graph (which, in turn, can be used to



Random Walks on Graphs: A Survey 3the asymptotic enumeration of these objects). We'll survey some of theseapplications along with a number of more structural results.We mention three general references on random walks and �nite Markovchains: Doyle and Snell [25], Diaconis [20] and the forthcoming book ofAldous [3].Acknowledgement. My thanks are due to Peter Winkler, Andr�as Luk�acsand Andrew Kotlov for the careful reading of the manuscript of this paper,and for suggesting many improvements.1. Basic notions and factsLet G = (V;E) be a connected graph with n nodes and m edges. Considera random walk on G: we start at a node v0; if at the t-th step we are ata node vt, we move neighbor of vt with probability 1=d(vt). Clearly, thesequence of random nodes (vt : t = 0; 1; : : :) is a Markov chain. The nodev0 may be �xed, but may itself be drawn from some initial distribution P0.We denote by Pt the distribution of vt:Pt(i) = Prob(vt = i):We denote by M = (pij)i;j2V the matrix of transition probabilities ofthis Markov chain. So pij = � 1=d(i); if ij 2 E,0; otherwise. (1:1)Let AG be the adjacency matrix of G and let D denote the diagonal matrixwith (D)ii = 1=d(i), then M = DAG. If G is d-regular, then M = (1=d)AG.The rule of the walk can be expressed by the simple equationPt+1 =MTPt;(the distribution of the t-th point is viewed as a vector in RV ), and hencePt = (MT )tP0:It follows that the probability ptij that, starting at i, we reach j in t stepsis given by the ij-entry of the matrix M t.



4 L. Lov�aszIf G is regular, then this Markov chain is symmetric: the probability ofmoving to u, given that we are at node v, is the same as the probability ofmoving to node v, given that we are at node u. For a non-regular graph G,this property is replaced by time-reversibility: a random walk consideredbackwards is also a random walk. More exactly, this means that if we lookat all random walks (v0; : : : ; vt), where v0 is from some initial distributionP0, then we get a probability distribution Pt on vt. We also get a probabilitydistribution Q on the sequences (v0; : : : ; vt). If we reverse each sequence,we get another probability distribution Q0 on such sequences. Now time-reversibility means that this distribution Q0 is the same as the distributionobtained by looking at random walks starting from the distribution Pt.(We'll formulate a more handy characterization of time-reversibility a littlelater.)The probability distributions P0; P1; : : : are of course di�erent in gen-eral. We say that the distribution P0 is stationary (or steady-state) for thegraph G if P1 = P0. In this case, of course, Pt = P0 for all t � 0; we callthis walk the stationary walk.A one-line calculation shows that for every graph G, the distribution�(v) = d(v)2mis stationary. In particular, the uniform distribution on V is stationary if thegraph is regular. It is not di�cult to show that the stationary distributionis unique (here one has to use that the graph is connected).The most important property of the stationary distribution is thatif G is non-bipartite, then the distribution of vt tends to a stationarydistribution, as t ! 1 (we shall see a proof of this fact, using eigenvalues,a little later). This is not true for bipartite graphs if n > 1, since then thedistribution Pt is concentrated on one color class or the other, dependingon the parity of t.In terms of the stationary distribution, it is easy to formulate theproperty of time-reversibility: it is equivalent to saying that for every pairi; j 2 V , �(i)pij = �(j)pji. This means that in a stationary walk, we step asoften from i to j as from j to i. From (1.1), we have �(i)pij = 1=(2m) forij 2 E, so we see that we move along every edge, in every given direction,with the same frequency. If we are sitting on an edge and the randomwalk just passed through it, then the expected number of steps before itpasses through it in the same direction again is 2m. There is a similarfact for nodes: if we are sitting at a node i and the random walk just



Random Walks on Graphs: A Survey 5visited this node, then the expected number of steps before it returns is1=�(i) = 2m=d(i). If G is regular, then this \return time" is just n, thenumber of nodes.2. Main parametersWe now formally introduce the measures of a random walk that play themost important role in the quantitative theory of random walks, alreadymentioned in the introduction.(a) The access time or hitting time Hij is the expected number of stepsbefore node j is visited, starting from node i. The sum�(i; j) = H(i; j)+H(j; i)is called the commute time: this is the expected number of steps in arandom walk starting at i, before node j is visited and then node i isreached again. There is also a way to express access times in terms ofcommute times, due to Tetali [63]:H(i; j) = 12  �(i; j) +Xu �(u)[�(u; j)� �(u; i)]! : (2:1)This formula can be proved using either eigenvalues or the electricalresistance formulas (sections 3 and 4).(b) The cover time (starting from a given distribution) is the expectednumber of steps to reach every node. If no starting node (startingdistribution) is speci�ed, we mean the worst case, i.e., the node fromwhich the cover time is maximum.(c) The mixing rate is a measure of how fast the random walk converges toits limiting distribution. This can be de�ned as follows. If the graph isnon-bipartite, then p(t)ij ! dj=(2m) as t!1, and the mixing rate is� = lim supt!1 maxi;j ����p(t)ij � dj2m ����1=t :(For a bipartite graph with bipartition fV1; V2g, the distribution ofvt oscillates between \almost proportional to the degrees on V 001 and



6 L. Lov�asz\almost proportional to the degrees on V 002 . The results for bipartitegraphs are similar, just a bit more complicated to state, so we ignorethis case.)One could de�ne the notion of \mixing time" as the number of stepsbefore the distribution of vt will be close to uniform (how long shouldwe shu�e a deck of cards?). This number will be about (logn)=(1 � �).However, the exact value depends on how (in which distance) the phrase\close" is interpreted, and so we do not introduce this formally here. Insection 5 we will discuss a more sophisticated, but \canonical" de�nition ofmixing time.The surprising fact, allowing the algorithmic applications mentionedin the introduction, is that this \mixing time" may be much less thanthe number of nodes; for an expander graph, for example, this takes onlyO(logn) steps!Example 1. To warm up, let us determine the access time for two pointsof a path on nodes 0; : : : ; n� 1.First, observe that the access time H(k � 1; k) is one less than theexpected return time of a random walk on a path with k+1 nodes, startingat the last node. As remarked, this return time is 2k, soH(k�1; k) = 2k�1.Next, consider the access times H(i; k) where 0 � i < k � n. In orderto reach k, we have to reach node k�1; this takes, on the average,H(i; k�1)steps. From here, we have to get to k, which takes, on the average, 2k � 1steps (the nodes beyond the k-th play no role). This yields the recurrenceH(i; k) = H(i; k� 1) + 2k � 1;whence H(i; k) = (2i+1)+(2i+3)+ : : :+(2k� 1) = k2� i2. In particular,H(0; k) = k2 (this formula is closely related to the well-known fact thatBrownian motion takes you distance pt in t time).Assuming that we start from 0, the cover time of the path on n nodeswill also be (n�1)2, since it su�ces to reach the other endnode. The readermight �nd it entertaining to �gure out the cover time of the path whenstarting from an internal node.>From this it is easy to derive that the access time between two nodesat distance k of a circuit of length n is k(n � k). To determine the covertime f(n) of the circuit, note that it is the same as the time needed on avery long path, starting from the midpoint, to reach n nodes. Now we haveto reach �rst n�1 nodes, which takes f(n�1) steps on the average. At this



Random Walks on Graphs: A Survey 7point, we have a subpath with n�1 nodes covered, and we are sitting at oneof its endpoints. To reach a new node means to reach one of the endnodesof a path with n + 1 nodes from a neighbor of an endnode. Clearly, this isthe same as the access time between two consecutive nodes of a circuit oflength n. This leads to the recurrencef(n) = f(n� 1) + (n� 1);and through this, to the formula f(n) = n(n� 1)=2.Example 2. As another example, let us determine the access times andcover times for a complete graph on nodes f0; : : : ; n�1g. Here of course wemay assume that we start from 0, and to �nd the access times, it su�cesto determine H(0; 1). The probability that we �rst reach node 1 in the t-thstep is clearly �n�2n�1�t�1 1n�1 , and so the expected time this happens isH(0; 1) = 1Xt=1 t�n� 2n� 1�t�1 1n� 1 = n � 1:The cover time for the complete graph is a little more interesting, andis closely related to the so-called Coupon Collector Problem (if you want tocollect each of n di�erent coupons, and you get every day a random couponin the mail, how long do you have to wait?). Let �i denote the �rst timewhen i vertices have been visited. So �1 = 0 < �2 = 1 < �3 < : : : < �n.Now �i+1��i is the number of steps while we wait for a new vertex to occur| an event with probability (n� i)=(n� 1), independently of the previoussteps. Hence E(�i�1 � �i) = n � 1n� i ;and so the cover time isE(�n) = n�1Xi=1 E(�i+1 � �i) = n�1Xi=1 n� 1n� i � n logn:A graph with particularly bad random walk properties is obtained bytaking a clique of size n=2 and attach to it an endpoint of a path of lengthn=2. Let i be any node of the clique and j, the \free" endpoint of the path.Then H(i; j) = 
(n3):



8 L. Lov�aszIn fact, starting from i, it takes, on the average, n=2 � 1 moves to reachthe attachment node u; then with probability 1� 2=n, we move to anothernode of the clique, and we have to come back about n=2 times before we canexpect to move into the path. But one can argue that on a path of lengthn=2, if we start a random walk from one end, we can expect to return to thestarting node n=2 times. Each time, we can expect to spend 
(n2) steps toget back on the path.Bounds on the main parametersWe start with some elementary arguments (as we shall see later, eigenvaluesprovide more powerful formulas). Recall that if we have just traversedan edge, then the expected number of steps before it is traversed in thisdirection again is 2m. In other words, if we start from node i, and j isan adjacent node, then the expected time before the edge ji is traversedin this direction is 2m. Hence the commute time for two adjacent nodes isbounded by 2m. It follows that the commute time between two nodes atdistance r is at most 2mr < n3. A similar bound follows for the cover time,by considering a spanning tree. It is an important consequence of this factthat these times are polynomially bounded. (It should be remarked thatthis does not remain true on directed graphs.)The following proposition summarizes some known results about coverand commute times. An O(n3) upper bound on the access and cover timeswas �rst obtained by Aleliunas, Karp, Lipton, Lov�asz and Racko� [4]. Theupper bound on the access time in (a), which is best possible, is due toBrightwell and Winkler [13].It is conjectured that the graph with smallest cover time is the completegraph (whose cover time is � n logn, as we have seen, and this is of courseindependent of the starting distribution). Aldous [1] proved that this is trueup to a constant factor if the starting point is drawn at random, from thestationary distribution. The asymptotically best possible upper and lowerbounds on the cover time given in (b) are recent results of Feige [31,32].For the case of regular graphs, a quadratic bound on the cover time was�rst obtained by Kahn, Linial, Nisan and Saks (1989). The bound given in(c) is due to Feige [33].Theorem 2.1. (a) The access time between any two nodes of a graph onn nodes is at most(4=27)n3 � (1=9)n2 + (2=3)n� 1 if n � 0 (mod 3);



Random Walks on Graphs: A Survey 9(4=27)n3 � (1=9)n2 + (2=3)n� (29=27) if n � 1 (mod 3);(4=27)n3 � (1=9)n2 + (4=9)n� (13=27) if n � 2 (mod 3):(b) The cover time from any starting node in a graph with n nodes is atleast (1� o(1))n logn and at most (4=27 + o(1))n3.(c) The cover time of a regular graph on n nodes is at most 2n2.It is a trivial consequence of these results that the commute time be-tween any two nodes is also bounded by n3, and for a regular graph, theaccess time is at most 2n2 and the commute time is bounded by 4n2.No non-trivial lower bound on the commute time can be found in termsof the number of nodes: the commute time between the two nodes in thesmaller color class of the complete bipartite graph K2;n is 8. It is true,however, that �(u; v) � 2m=d(u) for all u and v (cf. Proposition 2.3 below,and also Corollary 3.3). In particular, the commute time between two nodesof a regular graph is always at least n.The situation is even worse for the access time: this can remain boundedeven for regular graphs. Consider a regular graph (of any degree d � 3) thathas a cutnode u; let G = G1 [ G2, V (G1) \ V (G2) = fug, and let v be anode of G1 di�erent from u. Then the access time from v to u is the sameas the access time from v to u in G1, which is independent of the size of therest of the graph.One class of graphs for which a lower bound of n=2 for any access timecan be proved is the class of graphs with transitive automorphism group;cf. Corollary 2.6.Symmetry and access timeThe access time from i to j may be di�erent from the access time from jto i, even in a regular graph. There is in fact no way to bound one of thesenumbers by the other. In the example at the end of the last paragraph,walking from u to v we may, with probability at least 1=d, step to a node ofG2. Then we have to walk until we return to u; the expected time before thishappens more than jV (G2)j. So �(u; v) > jV (G2)j, which can be arbitrarilylarge independently of �(v; u).Still, one expects that time-reversibility should give some sort of sym-metry of these quantities. We formulate two facts along these lines. The�rst is easy to verify by looking at the walks \backwards".



10 L. Lov�aszProposition 2.2. If u and v have the same degree, then the probabilitythat a random walk starting at u visits v before returning to u is equal tothe probability that a random walk starting at v visits u before returningto v.(If the degrees of u and v are di�erent, then the ratio of the givenprobabilities is �(v)=�(u) = d(v)=d(u).)The probabilities in Proposition 2.2 are related to the commute time�(u; v) in an interesting way:Proposition 2.3. The probability that a random walk starting at u visitsv before returning to u is 1=(�(u; v)�(u)).Proof. Let q denote the probability in question. Let � be the �rst timewhen a random walk starting at u returns to u and �, the �rst time whenit returns to u after visiting v. We know that E(�) = 2m=d(u) and byde�nition, E(�) = �(u; v). Clearly � � � and the probability of � = � isexactly q. Moreover, if � < � then after the �rst � steps, we have to walkfrom u until we reach v and then return to u. Hence E(���) = (1�q)E(�),and hence q = E(�)E(�) = 2md(u)�(u; v):A deeper symmetry property of access times was discovered by Cop-persmith, Tetali and Winkler [19]. This can also be veri�ed by elementarymeans considering walks visiting three nodes u, v and w, and then reversingthem, but the details are not quite simple.Theorem 2.4. For any three nodes u, v and w,H(u; v) +H(v; w)+H(w; u) = H(u; w) +H(w; v) +H(v; u):An important consequence of this symmetry property is the following.Corollary 2.5. The nodes of any graph can be ordered so that if u precedesv then H(u; v) � H(v; u). Such an ordering can be obtained by �xing anynode t, and order the nodes according to the value of H(u; t)�H(t; u).Proof. Assume that u precedes v in the ordering described. Then H(u; t)�H(t; u) � H(v; t)�H(t; v) and hence H(u; t) +H(t; v) � H(v; t)+H(t; u).By Theorem 2.4, this is equivalent to saying that H(u; v)� H(v; u).



Random Walks on Graphs: A Survey 11This ordering is not unique, because of the ties. But if we partitionthe nodes by putting u and v in the same class if H(u; v) = H(v; u) (thisis an equivalence relation by Proposition 2.4), then there is a well-de�nedordering of the equivalence classes, independent of the reference node t. Thenodes in the lowest class are \di�cult to reach but easy to get out of", thenodes in the highest class are \easy to reach but di�cult to get out of". Itis worth formulating a consequence of this construction:Corollary 2.6. If a graph has a vertex-transitive automorphism group thenH(i; j) = H(j; i) for all nodes i and j.Access time and cover timeThe access times and commute times of a random walk have many niceproperties and are relatively easy to handle. The cover time is more elusive.But there is a very tight connection between access times and cover times,discovered by Matthews [56]. (See also Matthews [57]; this issue of the J.Theor. Probability contains a number of other results on the cover time.)Theorem 2.7. The cover time from any node of a graph with n nodes isat most (1 + (1=2) + : : :+ (1=n)) times the maximum access time betweenany two nodes, and at least (1 + (1=2) + : : :+ (1=n)) times the minimumaccess time between two nodes.Let us sketch a simple proof for the somewhat weaker upper bound of2 log2 n times the maximum access time.Lemma 2.8. Let b be the expected number of steps before a random walkvisits more than half of the nodes, and let h be the maximum access timebetween any two nodes. Then b � 2h.>From this lemma, the theorem is easy. The lemma says that in 2hsteps we have seen more than half of all nodes; by a similar argument, inanother 2h steps we have seen more than half of the rest etc.Proof. Assume, for simplicity, that n = 2k + 1 is odd. Let �v be the timewhen node v is �rst visited. Then the time � when we reach more than halfof the nodes is the (k + 1)-st largest of the �v . HenceXv �v � (k + 1)�;and so b = E(�) � 1k + 1Xv E(�v) � nk + 1h < 2h:



12 L. Lov�aszMonotonicityLet G0 be obtained from the graph G by adding a new edge ab. Since thisnew graph is denser, one expects that a random walk on it turns back lessfrequently, and therefore the access times, commute times, and cover timesdecrease. As it turns out, this does not hold in general.First, it is easy to see that some access times may increase dramaticallyif an edge is added. Let G be a path on n nodes, with endpoints a and b.Let s = a and let t be the unique neighbor of s. Then the access time from sto t is 1. On the other hand, if we add the edge (a; b) then with probability1=2, we have to make more than one step, so the access time from s to twill be larger than one; in fact, it jumps up to n� 1, as we have seen.One monotonicity property of access time that does hold is that if anedge incident with t is added, then the access time from s to t is not largerin G0 than in G.The commute time, which is generally the best behaved, is not mono-tone either. For example, the commute time between two opposite nodes ofa 4-cycle is 8; if we add the diagonal connecting the other two nodes, thecommute time increases to 10. But the following \almost monotonicity"property is true (we'll return to its proof in section 4).Theorem 2.9. If G0 arises from a graph G by adding a new edge, and Ghas m edges, then the commute time between any two nodes in G0 is atmost 1 + 1=m times the commute time in G. In other words, the quantity�(s; t)=m does not decrease.We discuss brie
y another relation that one intuitively expects to hold:that access time increases with distance. While such intuition is oftenmisleading, the following results show a case when this is true (Keilson[42]).Theorem 2.10. Let G be a graph and t 2 V (G).(a) If we choose s uniformly from the set of neighbors of t, then the expec-tation of H(s; t) is exactly (2m=d(t))� 1.(b) If we choose s from the stationary distribution over V , then the ex-pectation of H(s; t) is at least 2md(t) �1� d(t)2m �2. So if we condition ons 6= t, the expectation of H(s; t) is at least (2m=d(t))� 1.(c) If we choose t from the stationary distribution over V , then the expec-tation of H(s; t) is at least n� 2 + 1=n.



Random Walks on Graphs: A Survey 13(a) is just a restatement of the formula for the return time. The proofof (b) and (c) uses eigenvalue techniques. It is easy to derive either from(b) or (c) that maxs;tH(s; t) � n � 1. We remark that the expectation in(c) is independent of s (see formula (3.3)).Applications of the cover time and commute time boundsPerhaps the �rst application of random walk techniques in computer sciencewas the following (Aleliunas, Karp, Lipton, Lov�asz and Racko� [4]). LetG = (V;E) be a connected d-regular graph, v0 2 V (G), and assume thatat each node, the ends of the edges incident with the node are labelled1; 2; : : : ; d. A traverse sequence (for this graph, starting point, and labelling)is a sequence (h1; h2; : : : ; ht) � f1; : : : ; dgt such that if we start a walk at v0and at the ith step, we leave the current node through the edge labelled hi,then we visit every node. A universal traverse sequence (for parameters nand d) is a sequence which is a traverse sequence for every d-regular graphon n nodes, every labelling of it, and every starting point.It is quite surprising that such sequences exist, and in fact need not betoo long:Theorem 2.11. For every d � 2 and n � 3, there exists a universal traversesequence of length O(d2n3 logn).A consequence of this fact is that the reachability problem on undirectedgraphs is solvable in non-uniform logspace. We do not discuss the details.Proof. The \construction" is easy: we consider a random sequence. Moreexactly, let t = 8dn3 logn, and letH = (h1; : : : ; ht) be randomly chosen fromf1; : : : ; dgt. For a �xed G, starting point, and labelling, the walk de�nedby H is just a random walk; so the probability p that H is not a traversesequence is the same as the probability that a random walk of length t doesnot visit all nodes.By Theorem 2.1, the expected time needed to visit all nodes is at most2n2. Hence (by Markov's Inequality) the probability that after 4n2 stepswe have not seen all nodes is less than 1=2. Since we may consider the next4n2 steps as another random walk etc., the probability that we have notseen all nodes after t steps is less than 2�t=(4n2) = n�2nd.Now the total number of d-regular graphs G on n nodes, with the endsof the edges labelled, is less than ndn (less than nd choices at each node),and so the probability that H is not a traverse sequence for one of thesegraphs, with some starting point, is less than nnndn�2nd < 1. So at leastone sequence of length t is a universal traverse sequence.



14 L. Lov�aszThe results of Coppersmith, Tetali and Winkler [19] discussed aboveserved to solve the following problem: let us start two random walks on agraph simultaneously; how long does it take before they collide? There arevariations depending on whether the two random walks step simultaneously,alternatingly, or in one of several other possible ways. Here we only considerthe worst case, in which a \schedule daemon" determines which randomwalk moves at any given time, whose aim is to prevent collision as long aspossible.The motivation of this problem is a self-stabilizing token-managementscheme for a distributed computing network. The \token" is the authoriza-tion for the processor carrying it to perform some task, and at any time,only one processor is supposed to carry it. Assume that by some distur-bance, two processors carry the token. They pass it around randomly, untilthe two tokens collide; from then on, the system is back to normal. Howlong does this take?Let M(u; v) denote the expected number of steps before two randomwalks, starting from nodes u and v, collide. It is clear that M(u; v) �H(u; v) (v may never wake up to move). Coppersmith, Tetali and Winkler[19] prove the nice inequalityM(u; v) � H(u; v) +H(v; w)�H(w; u)for some vertex w. Thus it follows that the collision time is O(n3).3. The eigenvalue connectionRecall that the probability ptij of the event that starting at i, the randomwalk will be at node j after t steps, is an entry of the matrix M t. Thissuggests that the powerful methods of the spectral theory of matrices canbe used.The matrix M has largest eigenvalue 1, with corresponding left eigen-value � and corresponding right eigenvalue 1, the all-1 vector on V . In fact,MT� = � expresses the fact that � is the stationary distribution, whileM1 = 1 says that exactly one step is made from each node.Unfortunately, M is not symmetric unless G is regular; but it is easyto bring it to a symmetric form. In fact, we kow that M = DA, whereA = AG is the adjacency matrix of G and D is the diagonal matrix in which



Random Walks on Graphs: A Survey 15the i-th diagonal entry is 1=d(i). Consider the matrix N = D1=2AD1=2 =D�1=2MD1=2. This is symmetric, and hence can be written in a spectralform: N = nXk=1�kvkvTk ;where �1 � �2 � : : : � �n are the eigenvalues of N and v1; : : : ; vn arethe corresponding eigenvectors of unit length. Simple substitution showsthat wi = pd(i) de�nes an eigenvector of N with eigenvalue 1. Since thiseigenvector is positive, it follows from the Frobenius-Perron Theorem that�1 = 1 > �2 � : : : � �n � �1 and that (possibly after 
ipping signs)v1 = (1=p2m)w, i.e., v1i =pd(i)=2m =p�(i). It also follows by standardarguments that if G is non-bipartite then �n > �1.Now we haveM t = D1=2N tD�1=2 = nXk=1 �tkD1=2vkvTkD�1=2 = Q+ nXk=2 �tkD1=2vkvTkD�1=2where Qij = �(j). In other words,ptij = �(j) + nXk=2 �tkvkivkjsd(j)d(i) : (3:1)If G is not bipartite then j�kj < 1 for k = 2; : : : ; n, and henceptij ! �(j) (t!1)as claimed above. We shall return to the rate of this convergence later.Spectra and access timesWe start a more in-depth study of connections between random walks andspectra by deriving a spectral formula for access times. Let H 2 RV�Vdenote the matrix in which Hij = H(i; j), the access time from i to j. Let�(i) be the set of neighbors of node i. The key equation is that if i 6= j thenH(i; j) = 1 + 1d(i) Xv2�(i)H(v; j)(since the �rst step takes us to a neighbor v of i, and then we have to reachj from there). Expressing this equation in matrix notation, we get thatF = J +MH �H is a diagonal matrix. Moreover,FT� = J� +HT (M � I)T� = J� = 1;



16 L. Lov�aszwhence (F )ii = 1�(i) = 2md(i):Thus F = 2mD, i.e., (I �M)H = J � 2mD: (3:2)We want to solve this \matrix equation" for H . Of course, this is notpossible since I �M is singular; in fact, with every X satisfying (3.2) (inplace of H), every matrix X + 1aT also satis�es it for any vector a. Butthese are all, as elementary linear algebra shows, and so a can be determinedusing the relations H(i; i) = 0 (i 2 V ):So if we �nd any solution of (3.2), we can obtain H by subtracting thediagonal entry from each column.Let M� denote the matrix 1�T , i.e., M�ij = �(j) (note that M� isthe limit of M t as t ! 1). Substitution shows that the matrix X =(I �M +M�)�1(J � 2mD) satis�es (3.2). Diagonalizing M as above, weget the following formula:Theorem 3.1.H(s; t) = 2m nXk=2 11� �k  v2ktd(t) � vksvktpd(s)d(t)! :As an immediate corollary we obtain a similar formula for the commutetime:Corollary 3.2.�(s; t) = 2m nXk=2 11� �k  vktpd(t) � vkspd(s)!2 :Using that 12 � 11� �k � 11� �2along with the orthogonality of the matrix (vks), we get



Random Walks on Graphs: A Survey 17Corollary 3.3.m� 1d(s) + 1d(t)� � �(s; t) � 2m1� �2 � 1d(s) + 1d(t)� :If the graph is regular, the lower bound is n. If we have a expander graph,which can be characterized as a regular graph for which 1=(1� �2) = O(1),then it follows that the commute time between any pair of nodes is �(n).In these formulas, the appearence of 1��k in the denominators suggestthat it will be necessary to �nd good bounds on the spectral gap: thedi�erence 1 � �2 = �1 � �2. This is an important parameter for manyother studies of graphs, and we shall return to its study in the next section.To warm up to the many applications of Theorem 3.1, the reader isencouraged to give a proof of the week symmetry property of access timesexpressed in Theorem 2.4, and of the expression for access times in terms ofcommute times (2.1). Another easy corollary is obtained if we average theaccess time over all t. We haveXt �(t)H(s; t) =Xt nXk=2 11� �k  v2kt � vktvkssd(t)d(s)!= nXk=2 11� �k  Xt v2kt � vkss 1d(s)Xt vktpd(t)! :Using that vk is of unit length and it is orthogonal to v1 for k � 2, we getthe nice formula Xt �(t)H(s; t) = nXk=2 11� �k : (3:3)Note that this value is independent of the starting node s.As another application, we �nd the access time between two antipodalnodes of the k-cube Qk . Let 0 = (0; : : : ; 0) and 1 = (1; : : : ; 1) represent twoantipodal nodes of the k-cube. As is well known, we get an eigenvector vbof M (or A) for every 0-1 vector b 2 f0; 1gk, de�ned by (vb)x = (�1)b�x.The corresponding eigenvalue of M is 1 � (2=k)b � 1. Normalizing vb andsubstituting in Theorem 3.1, we get thatH(0; 1) = k kXj=1 �kj� 12j (1� (�1)j):



18 L. Lov�aszTo �nd the asymptotic value of this expression, we substitute �kj� =Pk�1p=0 � pj�1�, and getH(0; 1) = k kXj=1 k�1Xp=0 12j� pj � 1�(1� (�1)j)= k k�1Xp=0 12(p+ 1) kXj=1 �p+ 1j �(1� (�1)j)= k k�1Xp=0 2pp+ 1 = 2k�1 k�1Xj=0 12j kk � j � 2k :(It is easy to see that the exact value is always between 2k and 2k+1.)As a further application, let us prove that \more distant targets aremore di�cult to reach" (Theorem 2.10.b). The argument is similar to theproof of (3.3). We haveXs �(s)H(s; t) =Xs nXk=2 11� �k  v2ktd(s)d(t) � vktvkssd(s)d(t)! :Using again that vk is orthogonal to v1 for k � 2, we haveXs �(s)H(s; t) = 2md(t) nXk=2 11� �k v2kt:By the inequality between arithmetic and harmonic means (considering thev2kt as weights), we havePnk=2 11��k v2ktPnk=2 v2kt � Pnk=2 v2ktPnk=2(1� �k)v2kt :Now here nXk=2 v2kt = nXk=1 v2kt � �(t) = 1� �(t)and nXk=2(1� �k)v2kt = nXk=1(1� �k)v2kt = 1� nXk=1�kv2kt = 1� (N)t;t = 1:



Random Walks on Graphs: A Survey 19Thus Xs �(s)H(s; t)� 1�(t)(1� �(t))2;which proves the assertion.Perhaps the most important applications of eigenvalue techniques con-cern the mixing rate, which we'll discuss in a separate section.Spectra and generating functionsOne may obtain spectral formulas carrying even more information by intro-ducing the probability generating functionF (x) = 1Xt=0 xtM t = (I � xM)�1:(the (i; j) entry Fij(x) of this matrix is the generating function for theprobabilities ptij).Using this function, we can express other probabilities via standardtechniques of generating functions. As an example, let qtij denote theprobability that the random walk starting at i hits node j for the �rsttime in the t-th step. It is clear thatptij = tXs=0 qsijpt�sjj ;We can translate this relation in terms of generating functions as follows.Let Gij(x) = 1Xt=0 qtijxt;then Fij(x) = Gij(x)Fjj(x):So the matrix G(x) = (Gij(x)) arises from F (x) by scaling each column sothat the diagonal entry becomes 1.We may use the spectral decomposition of M to get more explicitformulas. We haveFij(x) =sd(j)d(i) 1Xt=0 nXk=1(x�k)tvkivkj =sd(j)d(i) nXk=1 vkivkj 11� x�k :



20 L. Lov�aszHence we also get the generating functionGij(x) =sd(j)d(i) nXk=1 vkivkj 11� x�k , nXk=1 v2kj 11� �kx:>From this another proof of Theorem 3.1 follows easily, sinceH(s; t) = G0st(1):By calculating higher derivatives, we can derive similar (though increasinglycomplicated) formulas for the higher moments of the time a node t is �rstvisited.4. The electrical connectionLet G = (V;E) be a connected graph and S � V . A function � : V ! R iscalled a \harmonic function with set of poles S" if1d(v) Xu2�(v)�(u) = �(v)holds for every v =2 S (the set S is also called the boundary of the harmonicfunction). Not surprisingly, harmonic functions play an important role inthe study of random walks: after all, the averaging in the de�nition canbe interpreted as expectation after one move. They also come up in thetheory of electrical networks, and also in statics. This provides a connectionbetween these �elds, which can be exploited. In particular, various methodsand results from the theory of electricity and statics, often motivated byphysics, can be applied to provide results about random walks.We start with describing three constructions of harmonic functions, onein each �eld mentioned.(a) Let �(v) denote the probability that a random walk starting at node vhits s before it hits t. Clearly, � is a harmonic function with poles sand t. We have �(s) = 1 and �(t) = 0.More generally, if we have a set S � V and a function �0 : S ! R, thenwe de�ne �(v) for v 2 V n S as the expectation of �0(s), where s is the(random) node where a random walk starting at v �rst hits S. Then



Random Walks on Graphs: A Survey 21�(v) is a harmonic function with pole set S. Moreover, �(s) = �0(s)for all s 2 S.(b) Consider the graph G as an electrical network, where each edge rep-resents a unit resistance. Assume that an electric current is 
owingthrough G, entering at s and leaving at t. Let �(v) be the voltage ofnode v. Then � is a harmonic function with poles s and t.(c) Consider the edges of the graph G as ideal springs with unit Hookeconstant (i.e., it takes h units of force to stretch them to length h).Let us nail down nodes s and t to points 1 and 0 on the real line, andlet the graph �nd its equilibrium. The energy is a positive de�nitequadratic form of the positions of the nodes, and so there is a uniqueminimizing position, which is the equilibrium. Clearly all nodes will lieon the segment between 0 and 1, and the positions of the nodes de�nea harmonic function with poles s and t.More generally, if we have a set S � V and we �x the positions ofthe nodes in S (in any dimension), and let the remaining nodes �ndtheir equilibrium, then any coordinate of the nodes de�nes a harmonicfunction with pole set S.Let us sum up some trivial properties of harmonic functions. Clearly,�(v) lies between the minimum and maximum of � over S. Moreover, givenS � V and �0 : S ! R, there is a unique harmonic function on G withpole set S extending �0. (The existence follows by either construction (a)or (c); the uniqueness follows by considering the maximum of the di�erenceof two such functions.)In particular it follows that every harmonic function with at most onepole is constant. We denote by �st the (unique) harmonic function withpoles s and t such that �st(s) = 1 and �st(t) = 0:Another consequence of the uniqueness property is that the harmonicfunctions constructed in (a) and (c), and (for the case jSj = 2) in (b) are thesame. As an application of this idea, we show the following useful charac-terizations of commute times (see Nash-Williams [60], Chandra, Raghavan,Ruzzo, Smolensky and Tiwari [16]).Theorem 4.1. (i) Consider the graph G as an electrical network as in (b)and let Rst denote the resistance between nodes s and t. Then the commutetime between nodes s and t is exactly 2mRst.(ii) Consider the graph G as a spring structure in equilibrium, as inexample (c), with two nodes s and t nailed down at 1 and 0. Then the force



22 L. Lov�aszpulling the nails is 1Rst = 2m�(s; t) :The energy of the system is 12Rst = m�(s; t) :Note that equation (2.1) can be used to express access times in termsof resistances or spring forces (Tetali [63]).Proof. By construction (b), �st(v) is the voltage of v if we put a currentthrough G from s to t, where the voltage of s is 0 and the voltage of tis 1. The total current through the network is Pu2�(t) �st(u), and so theresistence is Rst = 0@ Xu2�(s)�st(u)1A�1 :On the other hand, (a) says that �st(u) is the probability that a randomwalk starting at u visits s before t, and hence 1d(t)Pu2�(t) �st(u) is theprobability that a random walk starting at t hits s before returning to t.By Proposition 2.3, this probability is 2m=d(t)�(s; t). This proves assertion(i). The proof of (ii) is similar.Using the \topological formulas" from the theory of electrical networksfor the resistance, we get the following characterization of commute time:Corollary 4.2. Let G be a graph and s; t 2 V . Let G0 denote the graphobtained from G by identifying s and t, and let T (G) denote the number ofspanning trees of G. Then �(s; t) = 2mT (G0)T (G) :The following fact is called Raleigh's Principle in the theory of electricalnetworks. We derive it as a consequence of Theorem 4.1.Corollary 4.3. Adding any edge to a graph G does not increase anyresistance Rst. Consequently, no commute time �(s; t) is increased by morethan a factor of (m+ 1)=m.In fact, it su�ces to prove that deleting an edge from a graph G cannotincrease the energy of the equilibrium con�guration in the spring structure



Random Walks on Graphs: A Survey 23(c). Clearly, deleting an edge while keeping the positions of the nodes �xedcannot increase the energy. If we let the new graph �nd its equilibrium thenthe energy can only further decrease.Combining Corollaries 4.2 and 4.3, a little algebraic manipulation givesthe following inequality for the numbers of spanning trees in a graph G andin its subgraphs G� e, G� f , and G� e� f , where e and f are two edgesof G: T (G� e)T (G� f) � T (G)T (G� e� f): (4:1)5. Mixing rateIn several recent applications of random walks, the most important param-eter is the mixing rate. Using eigenvalues, it is an easy task to determinethe mixing rate in polynomial time (see below), but this result does not tellthe whole story, since, as we shall see, the underlying graph in the casesof interest is exponentially large, and the computation of the eigenvaluesby the tools of linear algebra is hopeless. Therefore, combinatorial tech-niques that lead to approximations only but are more manageable are oftenpreferable. Two main techniques that have been used are coupling and con-ductance. In this section we discuss these techniques; in the next, we giveseveral applications in algorithm design.Mixing rate and couplingWe shall illustrate the methods for bounding the mixing rate on a specialclass of graphs. (For reasons of comparison, we will also apply the othermethods to the same graph.) These graphs are the cartesian sum Ckn ofk circuits of length n, where n is odd. The node set of this graph isf0; : : : ; n � 1gk, and two nodes (x1; : : : ; xk) and (y1; : : :yk) are adjacenti� there exists an i, 1 � i � k, such that xj = yj for j 6= i and xi �yi � 1 (mod n).Let us start a random walk (v0; v1; : : :) on Ckn from an arbitrary initialdistribution P0. To estimate how long we have to walk to get close tothe stationary distribution (which is uniform in this case), let us startanother random walk (w0; w1; : : :), in which w0 is drawn from the uniformdistribution. Of course, wt is then uniformly distributed for all t.The two walks are not independent; we \couple" them as follows. Thevertices of Ckn are vectors of length k, and a step in the random walk consists



24 L. Lov�aszof changing a randomly chosen coordinate by one. We �rst generate thestep in the �rst walk, by selecting a random coordinate j, 1 � j � k, anda random " 2 f�1; 1g. The point vt+1 is obtained by adding " to the j-th coordinate of vt. Now the trick is that if vt and wt agree in the j-thcoordinate, we generate wt+1 by adding " to the j-th coordinate of wt; else,we subtract " from the j-th coordinate of wt. (All operations are modulon.) The important fact is that viewing (w0; w1; : : :) in itself, it is an entirelylegitimate random walk. On the other hand, the \coupling" rule aboveimplies that once a coordinate of vt becomes equal to the correspondingcoordinate of wt, it remains so forever. Sooner or later all coordinatesbecome equal, then vt will have the same distribution as wt, i.e., uniform.To make this argument precise, let us look at the steps when the j-thcoordinate is selected. The expected number of such steps before the twowalks will have equal j-th coordinate is the average access time between twonodes of the circuit on length n, which is (n2�1)=6. So the expected numberof steps before all coordinates become equal is k(n2 � 1)=6. By Markov'sinequality, the probability that after kn2 steps vt and wt are still di�erentis less than 1=6, and so the probability that after ckn2 steps these pointsare still di�erent is less than 6�c. Hence for any T that is large enough,jP (vT 2 S)� jSjnk j = jP (vT 2 S)� P (wT 2 S)j � P (wT 6= vT ) < 6�T=(kn2):We obtain that the mixing rate is at most 6�1=(kn2) < 1� 1kn2 .This method is elegant but it seems that for most applications of inter-est, there is no simple way to �nd a coupling rule, and so it applies only inlucky circumstances.Mixing rate and the eigenvalue gapAn algebraic formula for the mixing rate is easily obtained. Let � =minfj�2j; j�njg, then from (3.1) it is easy to derive:Theorem 5.1. For a random walk starting at node i,jPt(j)� �(j)j �sd(j)d(i)�t:More generally, jPt(S)� �(S)j �s�(S)�(i) �t:



Random Walks on Graphs: A Survey 25So the mixing rate is at most �; it is not di�cult to argue that equalitymust hold here. Thus we obtain:Corollary 5.2. The mixing rate of a random walk on a non-bipartite graphG is � = maxfj�2j; j�njg.In most applications, we don't have to worry about �n; for example,we can add d(i) loops at each point i, which only slows down the walk bya factor of 2, but results in a graph with positive semide�nite adjacencymatrix. The crucial parameter is �2, or rather, the \spectral gap" 1 � �2.Note that log(1=�) � (1� �)�1.Theorem 5.1 concerns the convergence to the stationary distributionin terms of the total variation distance, which seems to be the most im-portant for applications. Other measures have other, sometimes technical,adventages. For example, using the �2 measure has the adventage that thedistance is improving after each step (Fill [34]):Xj (Pt+1(j)� �(j))2�(j) � �Xj (Pt(j)� �(j))2�(j) :As an application of Theorem 5.1, let us determine the mixing rate ofa random walk on an n-dimensional cube. This graph is bipartite, so weadd loops; let's add n loops at each node. The eigenvalues of the resultinggraph are 0; 2; 4; : : : ; 2n, and so the eigenvalues of the transition matrix are0; 1=n; 2=n; : : :; (n� 1)=n; 1. Hence the mixing rate is (n� 1)=n.Next, let us do the graph Ckn, where n is odd. The eigenvalues of Cnare 2 cos(2r�=n), 0 � r < n. Hence the eigenvalues of the adjacency matrixCkn are all numbers2 cos(2r1�=n) + 2 cos(2r2�=n) + : : :+ 2 cos(2rk�=n)(see e.g. Lov�asz [48], exercise 11.7). In particular, the largest eigenvalue is(of course) 2k, the second largest is 2(k� 1)+2 cos(2�=n), and the smallestis 2k cos((n� 1)�=n). From this it follows that the mixing rate is1� 1k �1� cos 2�n � � 1� 2�2kn2 :



26 L. Lov�aszThe eigenvalue gap and conductanceLet G be a graph and S � V , S 6= ;. Let r(S) denote the set of edgesconnecting S to V n S. We de�ne the conductance of the set S � V , S 6= ;by �(S) = jr(S)j2m�(S)�(V n S)and the conductance of the graph by� = minS �(S);where the minimum is taken over all non-empty proper subsets S � V . Ifthe graph is d-regular, then the conductance of S is�(S) = njr(S)jdjSj � jV n Sj :To digest this quantity a little, note that jr(S)j=2m is the frequencywith which a stationary random walk switches from S to V n S; while�(S)�(V nS) is the frequency with which a sequence of independent randomelements of V , drawn from the stationary distribution �, switches from Sto V n S. So � can be viewed as a certain measure of how independentconsecutive nodes of the random walk are.Sinclair and Jerrum [62] established a connection between the spectralgap and the conductance of the graph. A similar result for the related, butsomewhat di�erent parameter called expansion rate was proved by Alon[5] and, independently, by Dodziuk and Kendall [24]; cf. also Diaconis andStroock [21]. All these results may be considered as discrete versions ofCheeger's inequality in di�erential geometry.Theorem 5.3. �28 � 1� �2 � �:We'll sketch the proof of this fundamental inequality; but �rst, we state(without proof) a simple lemma that is very useful in the study of thespectral gap.Lemma 5.4.1� �2 = min8<: Xij2E(G)(xi � xj)2 : Xi �(i)xi = 0; Xi �(i)x2i = 12m9=;



Random Walks on Graphs: A Survey 27(each edge ij is considered only once in the sum).Proof. Proof of Theorem 5.3 To warm up, let us prove the upper bound�rst. By Lemma 5.4, it su�ces to exhibit a vector x 2 RV such thatXi �(i)xi = 0; Xi �(i)x2i = 1=(2m); (5:1)and Xij2E(G)(xi � xj)2 = �: (5:2)Let S be a set with minimum conductance, and consider a vector of thetype xi = � a; if i 2 S,b; if i 2 V n S.Such a vector satis�es (5.1) ifa =s�(V n S)2m�(S) ; b = �s �(S)2m�(V n S) ;and then straightforward substitution shows that (5.2) is also satis�ed.To prove the lower bound, we again invoke Lemma 5.4: we prove thatfor every vector x 2 RV satisfying (5.1), we haveXij2E(G)(xi � xj)2 � �28 : (5:3)Conductance enters the picture through the following inequality, whichis, in a sense, the \`1-version" of (5.3).Lemma 5.5. Let G be a graph with conductance �. Let y 2 RV andassume that �(fi : yi > 0g) � 1=2, �(fi : yi < 0g) � 1=2 andPi �(i)jyij =1. Then X(i;j)2E jyi � yj j � m�:Proof. Proof of the Lemma Label the points by 1; : : : ; n so thaty1 � y2 � yt < 0 = yt+1 = : : : = ys < ys+1 � : : : � yn:



28 L. Lov�aszSet Si = f1; : : : ; ig. Substituting yj � yi = (yi+1 � yi) + � � �+ (yj � yj�1),we getX(i;j)2E jyi� yj j = n�1Xi=1 jr(Si)j(yi+1� yi) � 2m� n�1Xi=1(yi+1� yi)�(Si)�(V nSi):Using that �(Si) � 1=2 for i � t, �(Si) � 1=2 for i � s + 1, and thatyi+1 � yi = 0 for t < i < s, we obtainX(i;j)2E jyi � yj j � m� tXi=1(yi+1 � yi)�(Si) +m� n�1Xi=t+1(yi+1 � yi)�(V n Si)= m�Xi �(i)jyij = m�:Now we return to the proof of the theorem. Let x be any vectorsatisfying (5.1). We may assume that x1 � x2 � : : :� xn. Let k (1 � k � n)be the index for which �(f1; : : : ; k� 1g) � 1=2 and �(fk+1; : : : ; ng) < 1=2.Setting zi = maxf0; xi � xkg and choosing the sign of x appropriately, wemay assume thatXi �(i)z2i � 12Xi �(i)(xi� xk)2 = 12Xi �(i)x2i � xkXi �(i)xi+ 12x2k= 12m + 12x2k � 12m:Now Lemma 5.5 can be applied to the numbers yi = z2i =Pi �(i)z2i , and weobtain that X(i;j)2E jz2i � z2j j � m�Xi �(i)z2i :On the other hand, using the Cauchy-Schwartz inequality,X(i;j)2E jz2i � z2j j � 0@ X(i;j)2E(zi � zj)21A1=20@ X(i;j)2E(zi + zj)21A1=2 :Here the second factor can be estimated as follows:X(i;j)2E(zi + zj)2 � 2 X(i;j)2E(z2i + z2j ) = 4mXi �(i)z2i :



Random Walks on Graphs: A Survey 29Combining these inequalities, we obtainX(i;j)2E(zi � zj)2 � 0@ X(i;j)2E jz2i � z2j j1A2. X(i;j)2E(zi + zj)2� �2m2 Xi �(i)z2i!2.4mXi �(i)z2i= �2m4 Xi �(i)z2i � �28 :Since trivially X(i;j)2E(xi � xj)2 � X(i;j)2E(zi � zj)2;the theorem follows.Corollary 5.6. For any starting node i, any node j and any t � 0,��P t(j)� �(j)�� �sd(j)d(i) �1� �28 �t :In another direction, Chung and Yau [17] considered a re�ned notion ofconductance, replacing �(S)�(V n S) in the denominator by some powerof it, and showed how this relates to higher eigenvalues. Diaconis andSalo�-Coste [23] used similar inequalities to get improved bounds on themixing time, in particular on the early part when the distribution is highlyconcentrated. Theorem 5.3 is a discrete analogue of Cheeger's inequalityfrom di�erential geometry, and these inequalities are discrete analogues ofthe Harnack, Sobolev and Nash inequalities known from the theory of theheat equation, and in fact, these results represent �rst steps in the excitingarea of studying \di�erence equations" on graphs as discrete analogues ofdi�erential equations.Conductance and multicommodity 
owsConductance itself is not an easy parameter to handle; it is NP-hard to de-termine it even for an explicitly given graph. But there are some methodsto obtain good estimates. The most important such method is the construc-tion of multicommodity 
ows. Let us illustrate this by a result of Babai andSzegedy [11].



30 L. Lov�aszTheorem 5.7. Let G be a connected graph with a node-transitive auto-morphism group, with diameter D. Then the conductance of G is at least1=(dD). If the graph is edge-transitive, its conductance is at least 1=D.Proof. For each pair i; j of points, select a shortest path Pij connectingthem. Let P denote the family of these paths and all their images underautomorphisms ofG. The total number of paths in P (conting multiplicities)is �n2�g, where g is the number of automorphisms of G. Moreover, Pcontains exactly g paths connecting any given pair of points.We claim that every edge occurs in at most Dg(n� 1) paths of P . Infact, if an edge e occurs in p paths then so does every image of e underthe automorphisms, and there are at least n=2 distinct images by node-transitivity. This gives pn=2 edges, but the total number of edges of pathsin P is at most Dg�n2�, which proves the claim.Now let S � V (G), jSj = s � jV (G)j=2. The number of paths in Pconnecting S to V (G) n S is exactly gs(n � s). On the other hand, thisnumber is at most jr(S)j �Dg(n� 1), and hencejr(S)j � gs(n� s)Dg(n� 1) = sD � n � sn � 1 :Hence the conductance of S isnjr(S)jds(n� s) � nn� 1 1dD > 1dD:This proves the �rst assertion. The second follows by a similar argument.Let us use Theorem 5.7 to estimate the mixing rate of Ckn (where nis odd). This graph has an edge-transitive automorphism group, and itsdiameter is k(n� 1)=2. Hence its conductance is more than 2=(kn), and soits mixing rate is at most 1� 12k2n2We see that the bound is worse than the coupling and eigenvalue bounds;in fact, depending on the relative value of n and k, the mixing rate may beclose to either the upper or the lower bound in Theorem 5.3.If we look in the proof of Theorem 5.7 at all paths connecting a givenpair fu; vg of nodes, and take each such path with weight 1=n2g, we get
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ow from u to v with value 1=n2. The little argument given shows thatthese �n2� 
ows load each edge with at most D(n� 1)=n2. The rest of theargument applies to any graph and shows the following:Proposition 5.8. If we can construct in G a 
ow fuv of value �(u)�(v)from u to v for each u 6= v, and the maximum total load of these �n2� 
owson any edge is at most 
, then the conductance of G is at least 1=(2m
).This proof method has many applications (Jerrum and Sinclair [36],Diaconis and Stroock [21], Fill [34]). But what are its limitations, i.e., howclose can we get to the true conductance? An important theorem of Leightonand Rao [47] shows that we never lose more than a factor of O(logn).Theorem 5.9. Let G be a graph with conductance �. Then there existsa system of 
ows fuv of value �(u)�(v) from u to v for each u 6= v, loadingany edge by at most O(logn)=m�.There are many re�nements and extensions of this fundamental result(see e.g. Klein, Agraval, Ravi and Rao [45]; Leighton et al [46]), but thesefocus on multicommodity 
ows and not on conductance, so we do not discussthem here.ShortcutsIn the last paragraphs we have sketched the following steps in estimatingthe mixing rate:mixing rate! eigenvalue gap! conductance! multicommodity 
ows:It is possible to make \shortcuts" here, thereby obtaining bounds that areoften sharper and more 
exible.Diaconis and Stroock [21] and Fill [34] prove the following lower boundon the eigenvalue gap, shortcutting the notion of conductance. We de�nethe cost of a 
ow f as Pe f(e).Theorem 5.10. Assume that there exists a 
ow fuv of value �(u)�(v) fromu to v for each u 6= v, such that the maximum total load of these �n2� 
owson any edge is at most 
, and the cost of each 
ow fuv is at most ��(u)�(v).Then �2 � 1� 12m�
 :



32 L. Lov�aszLov�asz and Simonovits [50,51] introduced a method that estimates themixing rate directly using conductance or related parameters, without theuse of eigenvalue techniques. This makes the method more 
exible. Weformulate one application that is implicit in these papers:Theorem 5.11. Let t 2 Z+ and assume that for each 0 � s � t and0 � x � 1, every level set A = fv 2 V : P s(v) � xg has conductance atleast  . Then for every S � V ,jP t(S)� �(S)j �pjV j�1�  24 �t :In other words, if the convergence P t ! � is slow, then among the levelsets of the P t there is one with small conductance. Other applications ofthis method include results where sets S with \small" measure �(S) areallowed to have small conductance.6. Sampling by random walksProbably the most important applications of random walks in algorithmdesign make use of the fact that (for connected, non-bipartite graphs) thedistribution of vt tends to the stationary distribution � as t!1. In most(though not all) cases, G is regular of some degree d, so � is the uniformdistribution. A node of the random walk after su�ciently many steps istherefore essentially uniformly distributed.It is perhaps surprising that there is any need for a non-trivial wayof generating an element from such a simple distribution as the uniform.But think of the �rst application of random walk techniques in real world,namely shu�ing a deck of cards, as generating a random permutation of 52elements from the uniform distribution over all permutations. The problemis that the set we want a random element from is exponentially large (withrespect to the natural size of the problem). In many applications, it has inaddition a complicated structure; say, we consider the set of lattice pointsin a convex body or the set of linear extensions of a partial order.



Random Walks on Graphs: A Survey 33Enumeration and volume computationThe following general scheme for approximately solving enumeration prob-lems, called the product estimator, is due to Jerrum, Valiant and Vazirani[39], and also to Babai [10] for the case of �nding the size of a group. LetV be the set of elements we want to enumerate. The size of V is typicallyexponentially large in terms of the natural \size" k of the problem. Assumethat we can �nd a chain of subsets V0 � V1 � : : : Vm = V such that for eachi,(a) jV0j is known (usually jV0j = 1);(b) jVi+1j=jVij is polynomially bounded (in k);(c) m is polynomially bounded;(d) we have a subroutine to generate a random element uniformly dis-tributed over Vi, for each 1 � i � m.Then we can estimate the ratios jVi+1j=jVij by generating a polynomialnumber of elements of Vi+1 and counting how often we hit Vi. The productof these estimates and of jV0j gives an estimate for jV j. This scheme leadsto a randomized polynomial time approximation algorithm (provided (a),(b), (c) and (d) are satis�ed and the subroutine in (d) is polynomial).The crucial issue is how to generate a random element of Vi in polyno-mial time. We discuss this question for Vm = V ; in virtually all applicationsof the method, every Vi itself is of the same type as V , and so the samearguments apply (this phenomenon is called \self-reducibility").As mentioned above, random walks provide a general scheme for this.We de�ne a connected graph G = (V;E) on which a random walk can beimplemented, i.e., a random neighbor of a given node can be generated (mostoften, the nodes have small (polynomial) maximum degree). By addingloops, we can make the graph regular and non-bipartite. Then we knowthat if we stop after a large number of steps, the distribution of the lastnode is very close to uniform. Our results about the mixing rate tell us howlong we have to follow the random walk; but to �nd good estimates of themixing rate (on the spectral gap, or on the conductance) is usually the hardpart.This method for generating a random element from a combinatorialstructure was initiated by Broder [14] for the problem of approximating thenumber of perfect matchings in a graph. A proof of the polynomiality ofthe method was given by Jerrum and Sinclair [36] for the case of graphs



34 L. Lov�aszwith minimum degree at least n=2. Whether the method can be modi�edto handle the case of sparse graph is an open problem.Let us sketch this important result. Let G be a graph on n nodes withall degrees at least n=2. We want to generate a random perfect matchingof a graph G on n nodes (n even), approximately uniformly. Therefore, wewant to de�ne a graph whose nodes are the perfect matchings, and do arandom walk on this graph. However, there is no easy way to step from oneperfect matching to another; therefore, we extend the set we consider andinclude also all near-perfect matchings (i.e., matchings with n=2� 1 edges).We connect two near-perfect matchings by an edge if they have n=2�2 edgesin common, and connect a perfect matching to all near-perfect matchingscontained in it, to obtain a graph H . The degrees in H are bounded by 3n;we add loops at the nodes to make H regular of degree 3n.Now one can construct a multicommodity 
ow (basically following thetranformation of one matching to the other by alternating paths) to showthat 1=�(H) is polynomially bounded in n. Hence we can generate anessentially uniformly distributed random node ofH by walking a polynomialnumber of steps. If this node corresponds to a perfect matching, we stop.Else, we start again. The assumption about the degrees can be used to showthat the number of perfect matchings is at least a polynomial fraction ofthe number of near-perfect matchings, and hence the expected number ofiterations before a perfect matching is obtained is polynomially bounded.Other applications of this method involve counting the number of lin-ear extensions of a partial order (Khachiyan and Karzanov [41]), eulerianorientations of a graph (Mihail and Winkler [59]), forests in dense graphs(Annan [7]), and certain partition functions in statistical mechanics (Jerrumand Sinclair [37]). See Welsh [66] for a detailed account of fully polynomialrandomized approximation schemes for enumeration problems.As another example, consider the fundamental problem of �nding thevolume of a convex body. The exact computation of the volume is di�cult,which can be stated, and in some sense proved, in a mathematically exactway. Dyer and Frieze [26] and Khachiyan [43] proved that computing thevolume of an n-dimensional convex polytope is #P-hard. Other results byElekes [29] and B�ar�any and F�uredi [12] show that for general convex bodies(given by, say, a separation oracle; see (Gr�otschel, Lov�asz and Schrijver [35])for background information on the complexity of geometric algorithms) evento compute an estimate with bounded relative error takes exponential time,and the relative error of any polynomial time computable estimate growsexponentially with the dimension.



Random Walks on Graphs: A Survey 35It was a breakthrough in the opposite direction when Dyer, Frieze andKannan [27] designed a randomized polynomial time algorithm (i.e., an al-gorithm making use of a random number generator) which computes anestimate of the volume such that the probability that the relative error islarger than any prescribed positive number is arbitrarily small. Randomiza-tion reduces the relative error of a polynomial time approximation algorithmfrom exponentially large to arbitrarily small!Several improvements of the original algorithm followed; here are somecontributions and their running time estimates (we count the number of callson the separation oracle; the � after the O means that we suppress factorsof logn, as well as factors depending on the error bounds): Dyer, Friezeand Kannan [27] O�(n27), Lov�asz and Simonovits [50] O�(n16), Applegateand Kannan [8] O�(n10), Lov�asz [49] O�(n10), Dyer and Frieze [28] O�(n8),Lov�asz and Simonovits [52] O�(n7), Kannan, Lov�asz and Simonovits [40]O�(n5).Here is the general idea. Let K be a convex body in Rn. Using knowntechniques from optimization, we may assume that K contains the unit balland is contained in a ball with radius R � n3=2. Let Ki be the intersectionof K and the ball about 0 with radius 2i=n (i = 0; 1; : : : ; m = d2n logne).Then K0 � K1 � : : : � Km = K, vol(Ki+1)=vol(Ki) � 2, and vol(K0)is known. Thus the general scheme for enumeration described above canbe adapted, provided we know how to generate a random point uniformlydistributed in a convex body.For this, we use random walk techniques. There is some technicaldi�culty here, since the set of points in a convex body is in�nite. Onecan either consider a su�ciently �ne grid and generate a random gridpointin K, or extend the notions and methods discussed above to the case of anin�nite underlying set. Both options are viable; the second takes more workbut leads to geometrically clearer arguments about mixing rates.We de�ne the random walk as follows. The �rst point is generateduniformly from the unit ball B. Given vt, we generate a random pointu uniformly from the ball vt + B0 with center vt and radius � (here theparameter � depends on the version of the algorithm, but typically it isabout "=pn with some small positive constant "; B0 = �B). If u 2 Kthen we let vt+1 = u; else, we generate a new point u and try again. Thisprocedure corresponds to the random walk on the graph whose vertex setis K, with two points x; y 2 K connected by an edge i� jx� yj � �.The stationary distribution of this random walk is not the uniformdistribution, but a distribution whose density function is proportional to



36 L. Lov�aszthe \degrees" `(x) = vol(K \ (x+ B0))=vol(B0). This quantity `(x) is alsocalled the \local conductance" at x; it is the probability that we can makea move after a single trial. If the stepsize is su�ciently small then thisquantity, however, is constant on most of K, and the error committed isnegligible.(In several versions of the algorithm, the graph is padded with \loops"to make it regular. More exactly this means that if u is chosen uniformlyfrom vt + B0 and u =2 K, then we set vt+1 = vt. So the two random walksproduce the same set of points, but in one, repetition is also counted. Itturns out that for the description as given above, the conductance can beestimated in a very elegant way as in Theorem 6.2 below, while in the otherversion, points with small local conductance cause a lot of headache.)Putting these together, we have the outline of the volume algorithm.The analysis of it is, however, not quite easy. The main part of the analysis isthe estimation of the conductance of the random walk inK. The proof of thefollowing theorem involves substantial geometric arguments, in particularisoperimetric inequalities.Theorem 6.2. The conductance of the random walk in a convex body Kwith diameter D is at least const � �=(pnD).This implies that it takes only O�(nR2=�2) steps to generate a randompoint in K.This theorem suggests that one should choose the stepsize as large aspossible. In fact, choosing � = R would give us a random point in K in asingle step! The problem is that if � is large, we have to make too manytrials before we can move to the next point. It is easy to calculate that ina stationary walk, the average \waiting time", i.e., the average number ofpoints u to generate before we get one in K isvol(K)�ZK `(x) dxOne can prove that this quantity is bounded from above by 1=(1 � �pn),and hence it is O(1) if � is chosen less than 1=(2pn). This means that thenumber of unsuccessful trials is only a constant factor more than that thenumber of steps in the random walk, which is O�(R2n2) for this choice ofthe stepsize.The issue of achieving an R that is as small as possible is crucial butdoes not belong to this survey. With somewhat elaborate tricks, we can



Random Walks on Graphs: A Survey 37achieve R = O(pn) and hence the cost of generating a random point inK is O�(n3). One has to generate O�(n) points to estimate each ratiovol(Ki)=vol(Ki+1) with su�cient accuracy, and there are O�(n) such ratios.This gives the total of O�(n5) steps (oracle calls).In virtually all applications of this method, the key issue is to estimatethe conductance of the appropriate graph. This is usually a hard problem,and there are many unsolved problems. For example, is the conductanceof a \matroid basis graph" polynomially bounded from below? (A matroidbasis graph has all bases of a matroid (E;M) as nodes, two being connectedi� their symmetric di�erence has cardinality 2.) This is proved for graphicmatroids (Aldous [2], Broder [15], cf. the proof of Theorem 6.6), and fora larger class of matroids called balanced (Mihail and Feder [30]). It isinteresting to note that the property of graphic matroids that allows thisproof to go through is inequality (4.1) for the number of spanning trees.Metropolis �lterIn many applications of random walks, the distribution we want to gen-erate a random element from is not uniform. For example, a randomizedoptimization algorithm may be considered as a method of generating a ran-dom feasible solution from some probability distribution Q that is heavilyconcentrated on optimal and near-optimal solutions. To be more speci�c,let f : V ! R+ be the objective function; then maximizing f over V isjust the extreme case when we want to generate a random element from adistribution concentrated on the set of optimum solutions. If, instead, wegenerate a random point w from the distibution Q in which Q(v) is propor-tional to (say) exp(f(v)=T ), where T is a very small positive number, thenwith large probability w will maximize f .The elegant method of random walk with Metropolis �lter (Metropolis,Rosenbluth, Rosenbluth, Teller and Teller [58]) describes a simple way tomodify the random walk, so that it converges to an arbitrary prescribedprobability distribution.Let G = (V;E) be a graph; for simplicity, assume that G is d-regular.Let F : V ! R+, and let v0 be any starting point for the random walk. Letvt be the node where we are after t steps. We choose a random neighbor uof vt. If F (u) � F (vt) then we move to u; else, we 
ip a biased coin andmove to u only with probability F (u)=F (vt), and stay at v with probability1� F (u)=F (vt).It is clear that this modi�ed random walk is again a Markov chain; infact, it is easy to check that it is also time-reversible (and so it can be con-



38 L. Lov�aszsidered as a random walk on a graph with edge-weights). The \miraculous"property of it is the following:Theorem 6.3. The stationary distribution QF of the random walk on agraph G �ltered by a function F is given by the formulaQF (v) = F (v)Pw2V F (w) :An additional important property of this algorithm is that in order tocarry it out, we do not even have to compute the probabilities QF (v); itsu�ces to be able to compute the ratios F (u)=F (vt) = QF (u)=QF (vt). Thisproperty of the Metropolis �lter is fundamental in some of its applications.Unfortunately, techniques to estimate the mixing time (or the conduc-tance) of a Metropolis-�ltered walk are not general enough, and not toomany succesful examples are known. One notable exception is the workof Applegate and Kannan [8], who proved that random walks on the lat-tice points in a convex body, �ltered by a smooth log-concave function,mix essentially as fast as the corresponding un�ltered walk. They appliedthis technique to volume computation. Diaconis and Hanlon [22] extendedcertain eigenvalue techniques to walks on highly symmetric graphs, �lteredby a function which is \smooth" and \log-concave" in some sense. Somenegative results are also known (Jerrum [38]).Exact stopping rulesLet us start with the following funny fact.Fact 6.4. Let G be a circuit of length n and u any starting node. Thenthe probability that a random walk starting at u visits every node beforehitting v is the same for each v 6= u.Clearly, if we replace the circuit with the complete graph, we get asimilar result. Answering a question of Graham, it was proved by Lov�aszand Winkler [53] that no other graph has such a property. This followsfrom the next result, which veri�es in a sense the intuition that the lastnode visited is more likely to be \far" than \near". Let p(u; v) denote theprobability that a random walk starting at u visits every node before v.Theorem 6.5. If u and v are two non-adjacent nodes of a connected graphG and fu; vg is not a cutset, then there is a neighbor w of u such thatp(w; v)< p(u; v).



Random Walks on Graphs: A Survey 39Consequently, if G is e.g. 3-connected, then for each v, the nodes u forwhich p(u; v) is minimal are neighbors of v.As another result leading up the question of \exact stopping rules",let us describe a method due to Aldous [2] and Broder [15], generating arandom spanning tree in a graph, so that each spanning tree is returnedwith exactly the same probability.Theorem 6.6. Consider a random walk on a graph G starting at node u,and mark, for each node di�erent from u, the edge through which the nodewas �rst entered. Let T denote the set of marked edges. With probability1, T is a spanning tree, and every spanning tree occurs with the sameprobability.Of course, only the second assertion needs proof, but this is not quitetrivial. Our discussion below contains a proof based on a certain couplingidea; for a more direct proof, see Lov�asz [48], problem 11.58 (or work it outyourself!)Consider a spanning tree T with root u, and draw a (directed) edgeto each spanning tree T 0 with root v if uv 2 E(G) and T 0 arises from Tby deleting the �rst edge on the path from v to u and adding the edgeuv. Let H denote the resulting digraph. Clearly each tree with root v hasindegree and outdegree d(v) in H , and hence in the stationary distributionof a random walk on H , the probability of a spanning tree with a givenroot is proportional to the degree of the root (in G). If we draw a spanningtree from this distribution, and then forget about the root, we get everyspanning tree with the same probability.Now observe that a random walk on G induces a random walk on H asfollows. Assume that we are at a node v of G, and at a node (T; v) in H ,where T is a spanning tree. If we move along an edge vw in G, then we canmove to a node (T 0; w) in H by removing the �rst edge of the path from wto v and adding the edge vw to the current spanning tree.Also observe that by the time the random walk in G has visited allnodes (or at any time thereafter), the current spanning tree in H will bethe tree formed by the last exits from each node, and the root is the lastnode visited. To relate this procedure to Theorem 6.6, let us consider therandom walk on G for N steps (where N is much larger than the cover timeof G. Viewing this backward is also a legal random walk on G, since Gis undirected. If we follow that corresponding random walk on H , then itends up with a rooted tree (T; vN), which is the tree of �rst entries for thisreverse walk, unless not all nodes of G were visited during the N returns to



40 L. Lov�aszv0. Letting N ! 1, the probability of this exception tends to 0, and thedistribution of (T; vN) tends to the stationary distribution on H which, for�xed vN , is uniform on spanning trees. This proves Theorem 6.6.Looking at this proof, it is natural to ask: can we get rid of the smallerror arising from the possibility that not all nodes are visited during Nsteps? After all, this is easily recognized, so perhaps in these cases weshould walk a bit longer. More generally, given a random walk on a graph(or a Markov chain), can we de�ne a \stopping rule", i.e., a function thatassigns to every walk on the graph (starting at a given node u) either\STOP" or \GO", so that (a) with probability 1, every random walk isstopped eventually and (b) the distribution of the node where the randomwalk is stopped is the stationary distribution. We also consider randomizedstopping rules, where coins may be 
ipped to determine whether we shouldstop.Our �rst example above shows that for circuits and complete graphs,the "last node visited" rule provides an answer to the problem (we have tomodify it a bit if we want to include the starting node too). In the case ofthe second example, we want to make the stopping time N dependent on thehistory: we only want to stop after we have seen all nodes of the graph G,but also want to maintain that the walk backward from the last node couldbe considered a random walk. Such a rule can be devised with some work(we omit its details). In what follows, we give some general considerationsabout this problem.Of course, one has to be careful and avoid trivial rules like generatinga node v from the stationary distribution, and then stopping when we �rstvisit v. I don't know of any clean-cut condition to rule out such trivialsolutions, but one should aim at rules that don't use global computations,in particular, don't make use of an a priori knowledge of the stationarydistribution.Stopping rules exist for quite general Markov chains. Asmussen, Glynnand Thorisson [9] describe a randomized algorithm that generates an ele-ment from the stationary distribution of a �nite irreducible Markov chain,which needs only the number of states and a \black box" that accepts a stateas an input and then simulates a step from this state. Lov�asz and Winkler[54] have found a randomized stopping rule that generates an element fromthe stationary distribution of any irreducible Markov chain, and only needsto know the number of states. This rule can be made deterministic underthe assumption that the chain is aperiodic.



Random Walks on Graphs: A Survey 41To indicate the 
avor of the result, let us describe the case when theMarkov chain has two states. The general case follows by a (not quitetrivial) recursive construction (similarly as in the work of Asmussen, Glynnand Thorisson [9]).So let v0; v1; v2; : : : (6:1)be an irreducible aperiodic Markov chain on states fu; vg. Irreducible meansthat the transition probabilities puv , pvu are positive; aperiodocity meansthat at least one of puu and pvv is also positive. It is easy to check that thestationary distribution is given by�(u) = pvupuv + pvu ; �(v) = puvpuv + pvu ;The following randomized stopping rule generates a random element from�, without knowing any value pij or �(i), only looking at the sequence (6.1):Rule 1. Flip a coin. If the result is head, let i = 0; else, let i be the �rstindex for which vi 6= v0. If vi+1 6= vi then output vi+1; else, discard the �rsti+ 1 elements and repeat.If you don't like that we use coin 
ipping, you can use the Markov chainitself to simulate it, making the rule entirely deterministic.Rule 2. Wait for the �rst pair i < j with the following properties: (i)vj = vi, (ii) vj+1 6= vi+1, (iii) vj+2 6= vj+1, and moreover, (iv) the state vioccurs an even number of times before vi and (v) not at all between vi andvj . Output vj+2.If this sounds mysterious, note that for each of the �rst, second, etc.occurence of a pair of indices with (i), (ii), (iv) and (v), vj+1 can be eitherof the states with probability 1=2.The stopping rule sketched above takes a lot of time; we don't even knowhow to make the expected number of steps of the random walk polynomialin the maximum access time, let alone comparable with the mixing time(that we know may be logarithmic in n). On the other hand, if we allowglobal computation, we can get a stopping rule which needs, on the average,at most twice as many steps as the mixing time � . We follow the randomwalk for � steps, then \
ip a biased coin"; with probability �(v�)=2P�(v�),we stop; with probability 1� �(v�)=2P�(v�), we forget about the past andstart from v� a random walk of length � etc. It is easy to see that the



42 L. Lov�aszprobability that we stop at v after k rounds is 2�k�(v), which adds up to�(v). Also, the expected number of steps is 2� .A threshold rule is a (relatively) simple kind of stopping rule. It isspeci�ed by a function t : V ! R+, depending on the staring point v0, andworks as follows:if t(vk) � k, then stop;if t(vk) � k + 1, go on;if k < t(vk) < k+1 then \
ip a biased coin" and move with probabilityt(vk)� k but stop with probability k + 1� t(vk).Lov�asz and Winkler [55] have shown that there is a function t that givesa threshold rule that is optimal among all stopping rules in a very strongsense: it minimizes the expected number of steps among all randomizedstopping rules (for a �xed starting node). It also minimizes the expectednumber of times any given node is visited. Every threshold rule is of course�nite, in the sense that there is a �nite time T such that it is guaranteedto stop within T steps (in fact, T � maxi t(i)). The optimal threshold ruleminimizes this bound among all �nite rules.The expected number of steps for the optimal threshold rule, startingat node v, is �� = maxu H(u; v)�Xu �(u)H(u; v):It follows from the description of the stopping rule using the mixing timethat �� � 2�:Since the de�nition of the mixing time � has an arbitrarily chosen constant1=2 in it, while the de�nition of �� is \canonical", it should be more naturalto call the quantity �� the mixing time.Since this optimal stopping rule has many nice properties, it would begood to have an e�cient implementation. The threshold function is polyno-mially computable; but this is not good enough since we want to apply theserules to exponentially large graphs. However, one can describe simple, easilyimplementable stopping rules with comparable expected time that achieveapproximate mixing on the exponentially large graphs of interest discussedabove.
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