Their
Algorithms

Harry R. Lewis
Harvard University

Larry Denenberg
Harvard University

& HarperCollinsPublishers

Al iiilld L}

200 LIST AND TREE IMPLEMENTATIONS OF SETS

procedure BinaryTreeDelete(key K, locative P):
{K is the key value of the item to be deleted}
{P is a locative that points to the root of the tree}
while P # A and Key(P) # K do
if K < Key(P) then P — LC(P) else P — RC(P)
if P = A then return {Key K is not in the tree}
if RC(P) = A then P < LC(P)
else if LC(P) = A then P < RC(P)
else {Locative P points to the node to be deleted}
{Find the inorder successor. @ is a locative}
Q — RC(P)
while LC(Q) # A do Q — LC(Q)
{Replace the node P to be deleted by its inorder successor Q}

P Q
Q | _|rRc@

LC(@Q) LC(P)

RCQ) RC(P)

Algorithm 6.9 Deletion of an item from a binary search tree.

6.5 STATIC BINARY SEARCH TREES

The assumption that LookUps are uniformly distributed across keys is likely
to be inaccurate in many applications, so it is worth considering strategies that
lessen the search time to find the more frequently accessed keys. On page 177
we considered such a strategy for organizing a list implementation of a dic-
tionary, and concluded that the best possible ordering keeps the keys in order
by frequency of access. The analogous line of thought in the case of binary
trees suggests that more frequently accessed keys ought to be kept closer to the
root. This is a plausible principle; it is the essential idea behind Huffman codes
(§5.4). However, this idea cannot be put into effect naively, since the inorder
traversal of the nodes must be maintained (unlike in the case of Huffman cod-
ing). Conflicting objectives can come into play, since the dictionary ordering of
the keys can be at odds with their frequency ordering.

Consider, for example, the keys A, B, and C, and assume that their fre-
quencies are 0.35, 0.3, and 0.35, respectively. There are five possible bi-
nary search trees on these three nodes (Figure 6.5). The symmetric tree (Fig-
ure 6.5(c)), which would clearly minimize the expected search time if all keys
were equiprobable, has the low-frequency key at the root. On the other hand,
if a higher-frequency key is moved to the root then the height of the tree is
increased. As it turns out in this particular case, the symmetric tree is the best;
the expected number of comparisons is

2:-035+1-03+2-035=1.7.

tmi s e e+t i b

st et e i S

6.5 STATIC BINARY SEARCH TREES 201

ATt o

(@) (b) (© (d) ©)
Figure 6.5 The five binary search trees on three keys.

But with other probability distributions the advantage of having a high-frequency
key at the root outweighs the disadvantage of increasing the depth of some nodes
of the tree. For example, if A, B, and C have frequencies 0.45, 0.1, and 0.45,
respectively, then Figure 6.5(b) and (d) are superior to Figure 6.5(c).

Optimal Trees

An optimal binary search tree is one that minimizes the expected search time-
How can we find an optimal tree, given the access frequency of each key? (There
can be more than one optimal tree; for example, in the example just given, thé
trees of Figure 6.5(b) and (d) are both optimal.) A brute-force approach that
checks each of the possible binary search trees is impractical, because there are
far too many trees to check. (The number of binary trees on n nodes turns out
to be (2:) /(n+1), where (™) = m!/n!(m — n)!. The number of binary trees
is therefore in ©(4"n=3/2).) A little planning cuts down the work considerably
however.

Let the keys be K| < K, < --- < K, in their dictionary order, and let p:
be the probability of accessing K;. Thus) .-, p; = 1. (We omit consideration
of unsuccessful searches; these techniques can be extended to optimize thé
tree when the external nodes also have known probabilities, that is, when the
probability of searching for a key between K; and K, is known for each i.)

Now let 1 < j < k < mn, and let T be any tree constructed from the keys
Kj, ..., Kx. As on page 148, we define Depth(K;), where j < i < k, to bé
the depth in T of the node where K; is stored, and define the cost of T' to be

k
C(D) = Y _ piDepthp(Ki) +1).
i=j
If = 1 and k = n then the cost is the expected number of comparisons to find
a key in the tree; if 7" holds only a subset of the keys then C(T') represents thé
cost of searching within the tree for only those keys, with searches for other
keys regarded as free. We extend our previous terminology by saying that any
tree 7' is optimal if its cost is as small as the cost of any other tree with the
same keys.

i
N

ik ERSIR
- 9
Pt | iy
FEne muﬁ
&
-
Muhp‘

N

-

202 LIST AND TREE IMPLEMENTATIONS OF SETS

The expression for the cost of a tree is very similar to that on page 148 for
the cost of a Huffman tree. There are two significant differences. First, in the
present case all nodes contribute to the sum since all nodes represent keys (in a
Huffman tree only the leaves represent character codes). Second, the frequency
is multiplied by the depth plus 1, not the depth itself, since even testing the
root requires one comparison (in weighing Huffman trees path length from the
root measures the number of bits, while here the number of nodes encountered
measures the number of comparisons performed).

Thus our objective is to find that tree T" on all n keys that minimizes C(T").
The crucial observation in reducing the number of trees to be considered is that
every subtree of an optimal tree is itself optimal. That is, if T' is an optimal
tree for K, ..., Ky and its root is Kj, then its left subtree must be an optimal
tree for K, ..., K;_1, and its right subtree must be an optimal tree for Kj,,
..., Ki. For if the left and right subtrees of T" are T, and Tg, then the depth
of each node of T, or Tg increases by one when it is viewed as a node of T’
for example,

Depthy(K;) = 1+ Depthy, (K;)

for any ¢ such that K; is in T7,. So it follows that if K is at the root of T then

-1 k
C(T) =pi+ Y piDepthp(Ki)+ 1)+ > pi(Depthy(K;) +1)
1=j i=l+1
-1 k
=p+ Y pi+CAL)+ Y pi+C(TR)
i=j i=l+1
k .
=Y " pi+C(TL)+ C(TR). 2)

i=j
Therefore replacing T, or Tr by any tree on the same nodes with lower cost
would result in a tree of lower cost than T.
If d > 0 and we know an optimal tree for each set of nodes K., ..., K ks
where k' — j' < d, then for any j < n — d we can find an optimal tree for K,
..» Kj+q by evaluating the cost (2) for each [such that j < | < j +d and
choosing the trees Ty, and Tk to be optimal for the keys K, ..., K;_; and
K41, ..., Ky, respectively. This approach suggests a recursive procedure for
finding optimal subtrees, but implementing this approach directly would lead to
a great deal of repeated computation. Instead the computation can be organized
as a dynamic programming algorithm, so that each optimal subtree is determined
only once.
Let T'(3, k) denote an optimal subtree for the keys K, ..., K, where
k > j — 1. There are ©(n?) of these subtrees T(j, k) in all, and they can be
found by induction on k — j. When k — j = —1, the tree T'(j,j — 1) contains

6.5 STATIC BINARY SEARCH TREES 203

procedure OptimalBinarySearchTree(py, . ..,Pn):
{Construct optimal search tree}
{Here p(j, k) = pj + -+ pk}
for ¢ from 1 to n do
rli,i] « ¢
Cli,i—1] <0
for d from O to n — 1 do
for j from 1 to n — d do
k—j+d
T[4, k] « Minindex(C, j, k)
Clj, k1l < p(G, k) + Cly, 7[5, k1 — 11+ Clr[j, k] + 1,]

Algorithm 6.10 Computation of optimal binary search tree on Kj, ..., Kj.
The input to the algorithm is the sequence of probabilities py, ..., pn, with
0 < p; <1 for each 7 and Z?:lpi = 1; the arrays r and C are filled
in by the algorithm as explained in the text. The function MinIndex(C), j, k)
returns an index ! such that j < ! < k and C[j,l — 11+ C[l + 1, k] is min-
imized; the order in which calls on Minlndex occur in this algorithm ensures
that the necessary entries of C' have already been calculated when they are
needed.

no keys and therefore must be A; and when k — j = O, the tree T'(j, j) consists
of the single node with key K;. For k — j > 0, T'(j, k) is, for some [such
that j <[l < k, a tree with K at the root, T'(j,l — 1) as the left subtree, and
T(l+1, k) as the right subtree; and these subtrees have been determined already,
since((—1)—j<k—-—jandk—(+1)<k—j. When k—j =n—1 there is
only one tree to be determined, namely, T'(1, n), the optimal tree for the entire
set of keys.

To be specific, Algorithm 6.10 computes C[j,k] = C(T'(5, k)), the cost
of any optimal tree for K, ..., Ki, and r[j, k], the root of T'(j, k). (There
may be several choices for r[j, k] since there may be several for T'(j, k); it
does not matter which one the algorithm selects.) The tree can be recov-
ered from the r[j, k], since its root is r[1,n], the root of its left subtree is
r[1,7[1,n] — 1], etc. In the algorithm, we let p(j,k) = Zfzj pi; these val-
ues can be computed iteratively in the algorithm’s doubly nested loop (Prob-
lem 42).

Algorithm 6.10 has much better performance than the brute-force method,
but it is still not fast enough to be useful for large n. If function Minlndex(j, k),
which finds an index [between j and k£ minimizing C[j,l — 1]+ C[l + 1, k],
is implemented simply by searching through all the possibilities j, j+1, ...,
k, then the total number of different triples j, k, [that are considered in the

204 LIST AND TREE IMPLEMENTATIONS OF SETS

minimizing step is

n—ln—d n—1
YN d+n=> n-d@d+1)
d=0 j=1 d=0

=n-1+(n—-1)-2+--+2-(n—1)+1-n.

This sum can be rewritten as

n + (n—-1) + --- +
+ n-1) + - +
+ + 1
+ 1
n J n
_ _\Ju+h
=2 k=3 =5
j=1 k=1 j=1

which involves the sum of the first n squares and is therefore in O(n?) as
follows from the Sum of Successive k™ Powers Theorem (page 24). Actually,
the algorithm can be sped up by a factor of n quite easily; it can be shown
(Problem 43) that an [that minimizes the cost falls in the range r[j,k — 1] <
r[j,k] < r[j + 1,k], and that restricting the search for r[j, k] to this range
reduces the running time to ©(n?).

Probability-Balanced Trees

For larger numbers of nodes, two alternatives can be suggested for the con-
struction of static binary search trees. The first is a balancing heuristic: in the
notation used earlier, it directs that the key at the root K; be chosen so that

p(lvl - 1) ~ P(l"' 17”)1

and that the roots of successive subtrees be chosen to equalize the probabilities of
access to their subtrees in the same way. Let us call a tree constructed in this way
probability-balanced. Probability-balanced trees are a natural generalization of
optimal search trees for a uniform distribution; there the tree is constructed so
as to have approximately equal numbers of keys in each subtree, and here, with
the access probabilities known, we equalize instead the access probabilities to
the subtrees. This heuristic works well in practice, and typically yields trees
whose expected search times are within a few percent of the optimum; it yields
even better trees if the keys one or two away from the one that balances the
access probabilities are also tried as possible roots. (This refinement attempts to
take advantage of placing a high-frequency key at the root, in case the next or
previous key is a low-frequency key that happens to be the one around which
the probabilities balance.)

