

1

LLVM, in Greater Detail

Thanks to Gabe Weisz for some content.

2

Outline

● Navigating and changing the IR
● The machine type system
● Using and writing passes

3

LLVM Overview

● C++-based compiler framework
● (Fairly) well documented API
● Structures to help you process programs

– Iterators for modules, functions, blocks, uses
– Functions to inspect data types and constants
– Many classes have dump() member functions that print

instances to standard error
● In GDB, use p obj->dump() to see the contents of obj

4

LLVM IR

● Mostly machine-independent assembly
– Target triples define alignment, pointer sizes

● Arbitrary number of “registers”
– Really, stack locations or SSA values
– Virtual registers appear in lower-level IRs

● Locals start with %, globals with @
– Instructions that produce values can be named

5

Iterators – navigating the IR
● Module::iterator

– Modules are translation
units

– Iterates through functions
in the module

● Function::iterator

– Iterates through a
function's basic blocks

● BasicBlock::iterator

– Iterates through
instructions in a block

● Value::use_iterator

– Iterates through uses

– Instructions are values; so
are constants

– How does SSA help?
● User::op_iterator

– Iterates over operands.
(Instructions are users!)

– Many instruction classes
define convenient accessors

– LoadInst::getPointerOperand

6

More Iterators

● Some iterators wrap other iterators
– inst_iterator walks over all instructions in a function
– for (inst_iterator II = inst_begin(f), IE = inst_end(f);

 II != IE; ++II)

– In Transforms/Utils/FunctionUtils.h
● Prefer ++i over i++ and precompute the end iterator

– Especially for fancier iterators
● Most iterators automatically cast to a pointer to the

object type (inst_iterator does not)
● Be careful about modifying the object you're iterating

over during iteration

7

Instructions

● Instruction is subclassed for various types of
operation
– LoadInst, StoreInst, CmpInst, BranchInst, etc

● Most arithmetic operations are BinaryOperators
that contain a code for the operation

● Some instructions can only appear in certain
places
– Branches are only at the end of a basic block
– Phi instructions are only at the beginning

8

(Re)moving Instructions
● eraseFromParent()

– Remove from basic block, drop all references, delete
● removeFromParent()

– Remove from basic block
– Use if you will re-attach the instruction
– Does not drop references (or clear the use list), so if you don't

re-attach it Bad Things will happen
● moveBefore/insertBefore/insertAfter are also

available
● ReplaceInstWithValue and
ReplaceInstWithInst are also useful to have

9

IR Types

● Primitive types
– Integers (iN of N bits, N from 1 to 223-1)
– Floating point (half, float, double, x86_fp80, ...)
– Weirdos (x86mmx, void, …)

● Derived types
– Arrays ([# elements (>= 0) x element type])
– Functions (returntype (paramlist))
– Pointers (type*, type addrspace(N)*)
– Vectors (<# elements (> 0) x element type>)
– Structures ({ typelist }) ...

10

IR Types

● getelementptr instruction gives you the address
of a field or an array cell (why have this?)

● Types in the LLVM IR are structural
– Mostly compared by shape, not by name

● Once allocated, there is only one 32-bit integer until the end
of time

– Only one instance of a given shape exists at once
● Benefit?

– Exception: “identified” structures
● Problem: how do you write down the type of a singly-linked

list?

11

Identified Structs

● LLVM 3 came with a redesign of the IR type system mainly
over the issue of recursive and abstract types

● Literal structs are compared by shape and must not be
recursive; all fields must be known
– {i32, i32}; StructType::get

● Only identified structs can be recursive; declaration and
definition of fields is separate
– %T1 = type { type list }; StructType::create
– type list may directly or indirectly refer to %T1
– %T1 = type opaque - “I'll fill in the fields later.”

● LLVM may rename your identifiers

12

Examples of Types

[40 x i32]

[3 x [4 x i32]]

%sll =
 type { i32, %sll* }

i32 (%sll*)*

%struct.a =
 type { %struct.b* }
%struct.b =
 type opaque

{ i32, [0 x float] }

13

Last words about opaque types

● Opaque types are not void* (C void* is i8*)
● Consider %local_a = alloca %a, align 4

– %a = type { %b* }
%b = type opaque

● OK!

– %a = type { %b }
%b = type opaque

● “Cannot allocate unsized type”

– %a = type { %b }
%b = type { %a }

● “Segmentation fault”

14

Passes

● For assignments, don't use provided LLVM passes
unless instructed to
– We want you to implement them yourself to

understand how they really work
● For projects, use whatever you want
● Two major kinds of passes

– Analysis: provide information
– Transform: modify the program

15

Module Verifier (-verify)

● opt runs this automatically unless you disable it
● Sanity-checks passes

– You may need to break module invariants while
operating on them, eg:

● Types of binary operator parameters are the same
● Terminators (branches) only at the end of basic blocks
● Functions are called with correct argument types
● Instructions belong to basic blocks
● Constants in a switch are the right type
● Entry node has no predecessors (and so on...)

16

The mem2reg transform pass

● The LLVM IR is natively SSA
– An Instruction is the same thing as the Value it

produces
– %foo = inst in the LLVM IR just gives a name to inst

in the syntax; %foo does not exist inside the compiler

● It may be nontrivial for frontends to emit SSA
directly

● mem2reg understands certain use patterns that
frontends use to emit “variables”

17

mem2reg conventions

int ssa1() {
 int z = f() + 1;
 return z;
}

define i32 @ssa1() nounwind {
entry:
 %z = alloca i32, align 4
 %call = call i32 @f()
 %add = add nsw i32 %call, 1
 store i32 %add, i32* %z, align 4
 %0 = load i32* %z, align 4
 ret i32 %0
}

only used by load and store

alloca in the entry block

define i32 @ssa1() nounwind {
entry:
 %call = call i32 @f()
 %add = add nsw i32 %call, 1
 ret i32 %add
}

18

mem2reg might add SSA features

int ssa2() {
 int y, z;
 y = f();
 if (y < 0)
 z = y + 1;
 else
 z = y + 2;
 return z;
}

define i32 @ssa2() nounwind {
entry:
 %call = call i32 @f()
 %cmp = icmp slt i32 %call, 0
 br i1 %cmp, label %if.then, label %if.else

if.then:
 %add = add nsw i32 %call, 1
 br label %if.end

if.else:
 %add1 = add nsw i32 %call, 2
 br label %if.end

if.end:
 %z.0 = phi i32 [%add, %if.then], [%add1, %if.else]
 ret i32 %z.0
}

19

Rules for Phi instructions
● phi type [val1, inedge1], [val2, inedge2]

– Select val1 if coming from inedge1; val2 if from inedge2
● Phi nodes may refer to themselves (loops!) and may select

undef (undefined) values for certain in-edges

● Placement requirements:

– must be at the beginning of the block

– must have one entry for each predecessor

– must have at least one entry

20

mem2reg confuses easily

int ssa3() {
 int z;
 return *(&z + 1 - 1);
}

define i32 @ssa3() nounwind {
entry:
 %z = alloca i32, align 4
 %add.ptr = getelementptr inbounds i32* %z, i32 1
 %add.ptr1 = getelementptr inbounds i32* %add.ptr, i32 -1
 %0 = load i32* %add.ptr1, align 4
 ret i32 %0
}

getelementptr
abstracts away

offset calculation

Why not make mem2reg smarter?
(note that compiling with -O2 optimizes this down to ret undef)

21

Loop information (-loops)

● Analysis/LoopInfo.h
● Basic blocks in a loop
● Headers and pre-headers
● Exit and exiting blocks
● Back-edges
● “Canonical induction variable”

– Starts at 0 and counts up by 1?
– Starts at some number and counts down to 0

● Loop count

22

Using an analysis pass
● #include "llvm/Analysis/LoopInfo.h"

● AU.addRequired<LoopInfo>();
 in getAnalysisUsage()

● LoopInfo& LI = getAnalysis<LoopInfo>(F);
 in a function called from runOnModule
 with function F inside that module

● LI.dump()
“Loop at depth 1 containing:
%for.cond<header><exiting>,%for.body,
%for.inc<latch>” (from loop.c)

● PassManager sequences both kinds of passes using
getAnalysisUsage()

23

Scalar Evolution (-scalar-evolution)

● Tracks changes to variables through multiple loop
nests

● Gives start value, step size, kind of evolution
– Constant
– Add a value each iteration
– Multiply a value each iteration
– More complicated relationships as well

● Useful to aggregate accesses into arrays into larger
blocks or to improve cache performance

24

Target Data (-targetdata)

● Endian-ness
● Pointer sizes
● Alignment
● Actual size (in bits) of variables
● Actual layout of structures

– (taking into account platform alignment requirements)

25

Alias Analyses

%1 = load i32* %A
store i32 5, i32* %B
%3 = add i32 %1, i32 9
store i32 %3, i32* %C

● LLVM includes a number of passes that collect various
kinds of alias information

● Can get information about both global and local variables
● Included passes take into account the behavior of the C

standard library (eg, sin() will not make new aliases)

If we know that
%A != %B != %C

we have more freedom to
reorder code,

promote to registers, etc.

26

Simplify CFG

● A cleanup pass
● Removes unnecessary basic blocks by merging

unconditional branches if the second block has only
one predecessor

● Removes unreachable blocks
● Removes Phi instructions in blocks with single

predecessors

27

Other useful passes
● Liveness-based dead code elimination

– Assumes code is dead unless proven otherwise
● Sparse conditional constant propagation

– Aggressively search for constants
● Correlated propagation

– Replace select instructions that select on a constant
● Loop invariant code motion

– Move code out of loops where possible
● Dead global elimination
● Canonicalize induction variables

– All loops start from 0
● Canonicalize loops

– Put loop structures in standard form

28

Notes on Writing Passes

● Declare which passes you use (and what your pass
mutates) in getAnalysisUsage

● The CommandLine library allows you to add
command line parameters very quickly
– Conflicts in parameter names won't show up until

runtime, since passes are loaded dynamically
● Be mindful of correctness; the module verifier is

like a syntax checker
– Does your pass make sense in a multithreaded

environment?

29

Transformations and memory

● For regular loads/stores, LLVM forbids introducing new
stores to externally observable locations:

● volatile marks memory operations that cannot be
reordered (wrt volatile operations) or removed

● To support new features in C++11, LLVM provides other
atomic orderings that can be applied to loads and stores

int x;
void f(int* a) {
 for (int i = 0; i < 100; i++) {
 if (a[i])
 x += 1;
 }
}

int x;
void f(int* a) {
 int xtemp = x;
 for (int i = 0; i < 100; i++) {
 if (a[i])
 xtemp += 1;
 }
 x = xtemp;
}

30

Projects using LLVM

● Just a few from llvm.org:
– Clang: a C-family language frontend
– LLDB: an improved debugger using Clang data
– vmkit: building Java/.NET VMs
– klee: a symbolic virtual machine for LLVM IR

● Emscripten: LLVM bitcode → JavaScript
– http://emscripten.org/

● Vellvm: a formalization of the LLVM IR
– http://www.cis.upenn.edu/~jianzhou/Vellvm/

31

Links

● When in doubt, read the documentation—and the
code!
– http://llvm.org/doxygen/

● Articles on the LLVM site are very useful
– http://llvm.org/docs/Passes.html
– http://llvm.org/docs/ProgrammersManual.html
– http://llvm.org/docs/Atomics.html
– http://llvm.org/docs/LangRef.html

32

Supplemental

33

High-level view of atomic orderings
● NotAtomic – ordinary loads/stores; races are undefined
● Unordered – races have “somewhat sane” results

– A load cannot see a value which was never stored
– May not be supported for all types on all platforms
– Used for shared variables in Java, “safe” languages

● Monotonic – single locations have consistent order
● Acquire/Release – when paired together, strong enough to

write a lock
● SequentiallyConsistent – Acquire loads, Release stores, and

all SequentiallyConsistent operations have a total order
– Java volatile

34

Atomic orderings and you

● If your project is about fine-grained parallelism or
lock-free data structures, you need to think about
these things
– LLVM also exposes cmpxchg, atomicrmw, fence
– LLVM does not expose LL/SC

● If not, just don't, in general:
– reorder LLVM volatile operations wrt other volatile

operations
– introduce new stores to (shared) locations that would not

have been previously stored to
● More details at http://llvm.org/docs/LangRef.html#memmodel

35

Your module, post-IL

● LLVM still has to generate machine code!
● Your module goes through ~3 more stages:

LLVM IL

SelectionDAG

MachineFunction

Object File

36

LLVM IL → SelectionDAG
define i32 @foo(i32 %a, i32 %b) nounwind {
entry:
 %cmp = icmp sgt i32 %a, %b
 br i1 %cmp, label %if.then, label %if.else

if.then:
 %add = add nsw i32 %a, %b
 br label %return

if.else:
 %sub = sub nsw i32 %a, %b
 br label %return

return:
 %retval.0 = phi i32 [%add, %if.then],
 [%sub, %if.else]
 ret i32 %retval.0
}

37

LLVM IL → SelectionDAG
if.then:
%add = add nsw i32 %a, %b
br label %return

return:
%retval.0 = phi i32 ...
ret i32 %retval.0

38

SelectionDAG transformations

● Build initial DAG from LLVM IR
● Simplify!
● Legalize types (vectors → scalars)
● Simplify!
● Legalize ops (x86 doesn't do byte-size CMOVs)
● Simplify!
● Select instructions
● Schedule instructions

39

Instruction selection

40

Target-Independent Code Generation

● There are a lot of different machines!
– And even on x86, there are a lot of different ADDs!

● Make the process data-driven

tablegen

X86.td

ARM.td

PPC.td

...

Register information

Instruction selector

Scheduling information

...

41

tablegen

● The tablegen tool is run when compiling the
LLVM library for each target

● It accepts a custom text-based record description
format and generates C++ definitions using various
backends
– defm ADD : ArithBinOp_RF<0x00, 0x02, 0x04, "add", MRM0r,

MRM0m, X86add_flag, add, 1, 1>;

– ArithBinOp_RF is actually another macro...

● There is still a lot of human-written code in the
backends (X86 instruction encoding, for one)

42

ADD32rr
def ADD32rr {
 Format BinOpRR:f = MRMDestReg;
 Domain I:d = GenericDomain;
 string Namespace = "X86";
 dag OutOperandList = (outs GR32:$dst);
 dag InOperandList = (ins GR32:$src1, GR32:$src2);
 string AsmString = "add{l} {$src2, $src1|$src1, $src2}";
 list<dag> Pattern =
 [(set GR32:$dst, EFLAGS,
 (X86add_flag GR32:$src1, GR32:$src2))];
 list<Register> Uses = [];
 list<Register> Defs = [EFLAGS];
 list<Predicate> Predicates = [];
 InstrItinClass Itinerary = IIC_BIN_NONMEM;
 string Constraints = "$src1 = $dst";
 bits<8> Opcode = { 0, 0, 0, 0, 0, 0, 0, 1 };
 Format Form = MRMDestReg;
 bits<6> FormBits = { 0, 0, 0, 0, 1, 1 };
 ... lots more ...

43

Scheduling

We have choices to make
(here, which CopyFromReg executes first?)

44

Scheduling

Chains add control dependency.
Glue forbids breaking up instructions.

45

Lowering to MC
BB#1: derived from LLVM BB %if.then

%vreg0<def,tied1> = ADD32rr
 %vreg3<tied0>,
 %vreg4,
 %EFLAGS<imp-def,dead>;
 GR32:%vreg0,%vreg3,%vreg4

JMP_4 <BB#3>

BB#3: derived from LLVM BB %return
%vreg2<def> = PHI

 %vreg1, <BB#2>, %vreg0, <BB#1>;
 GR32:%vreg2,%vreg1,%vreg0

%EAX<def> = COPY %vreg2; GR32:%vreg2
RET

Virtual registers

Register classes

Tied registers

Still in SSA

46

MC transformations

● SSA-based MC optimizations
● Register allocation

– 2AC correction and Leave SSA; copy coalescing; add
spillcode

● Prolog/epilog insertion
● Stack layout
● Last-chance MC optimizations/spillcode scheduling
● Encoding

47

Thanks, abstraction!

FRONTEND

OBJECT FILE

LLVM

IR

IR

You don't have to look here!
(Unless you're studying it...)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47

