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LLVM, in Greater Detail

Thanks to Gabe Weisz for some content.
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Outline

● Navigating and changing the IR
● The machine type system
● Using and writing passes
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LLVM Overview

● C++-based compiler framework
● (Fairly) well documented API
● Structures to help you process programs

– Iterators for modules, functions, blocks, uses
– Functions to inspect data types and constants
– Many classes have dump() member functions that print 

instances to standard error
● In GDB, use p obj->dump() to see the contents of obj
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LLVM IR

● Mostly machine-independent assembly
– Target triples define alignment, pointer sizes

● Arbitrary number of “registers”
– Really, stack locations or SSA values
– Virtual registers appear in lower-level IRs

● Locals start with %, globals with @
– Instructions that produce values can be named
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Iterators – navigating the IR
● Module::iterator

– Modules are translation 
units

– Iterates through functions 
in the module

● Function::iterator

– Iterates through a 
function's basic blocks

● BasicBlock::iterator

– Iterates through 
instructions in a block

● Value::use_iterator

– Iterates through uses

– Instructions are values; so 
are constants

– How does SSA help?
● User::op_iterator

– Iterates over operands. 
(Instructions are users!)

– Many instruction classes 
define convenient accessors

– LoadInst::getPointerOperand
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More Iterators

● Some iterators wrap other iterators
– inst_iterator walks over all instructions in a function
– for (inst_iterator II = inst_begin(f), IE = inst_end(f);

    II != IE; ++II)

– In Transforms/Utils/FunctionUtils.h
● Prefer ++i over i++ and precompute the end iterator

– Especially for fancier iterators
● Most iterators automatically cast to a pointer to the 

object type (inst_iterator does not)
● Be careful about modifying the object you're iterating 

over during iteration
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Instructions

● Instruction is subclassed for various types of 
operation
– LoadInst, StoreInst, CmpInst, BranchInst, etc

● Most arithmetic operations are BinaryOperators 
that contain a code for the operation

● Some instructions can only appear in certain 
places
– Branches are only at the end of a basic block
– Phi instructions are only at the beginning
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(Re)moving Instructions
● eraseFromParent()

– Remove from basic block, drop all references, delete
● removeFromParent()

– Remove from basic block
– Use if you will re-attach the instruction
– Does not drop references (or clear the use list), so if you don't 

re-attach it Bad Things will happen
● moveBefore/insertBefore/insertAfter are also 

available
● ReplaceInstWithValue and 
ReplaceInstWithInst are also useful to have
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IR Types

● Primitive types
– Integers (iN of N bits, N from 1 to 223-1)
– Floating point (half, float, double, x86_fp80, ...)
– Weirdos (x86mmx, void, …)

● Derived types
– Arrays ([# elements (>= 0) x element type])
– Functions (returntype (paramlist))
– Pointers (type*, type addrspace(N)*)
– Vectors (<# elements (> 0) x element type>)
– Structures ({ typelist }) ...
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IR Types

● getelementptr instruction gives you the address 
of a field or an array cell (why have this?)

● Types in the LLVM IR are structural
– Mostly compared by shape, not by name

● Once allocated, there is only one 32-bit integer until the end 
of time

– Only one instance of a given shape exists at once
● Benefit?

– Exception: “identified” structures
● Problem: how do you write down the type of a singly-linked 

list?
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Identified Structs

● LLVM 3 came with a redesign of the IR type system mainly 
over the issue of recursive and abstract types

● Literal structs are compared by shape and must not be 
recursive; all fields must be known
– {i32, i32}; StructType::get

● Only identified structs can be recursive; declaration and 
definition of fields is separate
– %T1 = type { type list }; StructType::create
– type list may directly or indirectly refer to %T1
– %T1 = type opaque - “I'll fill in the fields later.”

● LLVM may rename your identifiers
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Examples of Types

[40 x i32]

[3 x [4 x i32]]

%sll =
  type { i32, %sll* }

i32 (%sll*)*

%struct.a =
  type { %struct.b* }
%struct.b =
  type opaque

{ i32, [0 x float] }
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Last words about opaque types

● Opaque types are not void* (C void* is i8*)
● Consider %local_a = alloca %a, align 4

– %a = type { %b* }
%b = type opaque

● OK!

– %a = type { %b }
%b = type opaque

● “Cannot allocate unsized type”

– %a = type { %b }
%b = type { %a }

● “Segmentation fault”
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Passes

● For assignments, don't use provided LLVM passes 
unless instructed to
– We want you to implement them yourself to 

understand how they really work
● For projects, use whatever you want
● Two major kinds of passes

– Analysis: provide information
– Transform: modify the program
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Module Verifier (-verify)

● opt runs this automatically unless you disable it
● Sanity-checks passes

– You may need to break module invariants while 
operating on them, eg:

● Types of binary operator parameters are the same
● Terminators (branches) only at the end of basic blocks
● Functions are called with correct argument types
● Instructions belong to basic blocks
● Constants in a switch are the right type
● Entry node has no predecessors (and so on...)
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The mem2reg transform pass

● The LLVM IR is natively SSA
– An Instruction is the same thing as the Value it 

produces
– %foo = inst in the LLVM IR just gives a name to inst 

in the syntax; %foo does not exist inside the compiler

● It may be nontrivial for frontends to emit SSA 
directly

● mem2reg understands certain use patterns that 
frontends use to emit “variables”
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mem2reg conventions

int ssa1() {
  int z = f() + 1;
  return z;
}

define i32 @ssa1() nounwind {
entry:
  %z = alloca i32, align 4
  %call = call i32 @f()
  %add = add nsw i32 %call, 1
  store i32 %add, i32* %z, align 4
  %0 = load i32* %z, align 4
  ret i32 %0
}

only used by load and store

alloca in the entry block

define i32 @ssa1() nounwind {
entry:
  %call = call i32 @f()
  %add = add nsw i32 %call, 1
  ret i32 %add
}
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mem2reg might add SSA features

int ssa2() {
  int y, z;
  y = f();
  if (y < 0)
    z = y + 1;
  else
    z = y + 2;
  return z;
}

define i32 @ssa2() nounwind {
entry:
  %call = call i32 @f()
  %cmp = icmp slt i32 %call, 0
  br i1 %cmp, label %if.then, label %if.else

if.then:
  %add = add nsw i32 %call, 1
  br label %if.end

if.else:
  %add1 = add nsw i32 %call, 2
  br label %if.end

if.end:
  %z.0 = phi i32 [ %add, %if.then ], [ %add1, %if.else ]
  ret i32 %z.0
}
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Rules for Phi instructions
● phi type [ val1, inedge1 ], [ val2, inedge2 ]

– Select val1 if coming from inedge1; val2 if from inedge2
● Phi nodes may refer to themselves (loops!) and may select 

undef (undefined) values for certain in-edges

● Placement requirements:

– must be at the beginning of the block

– must have one entry for each predecessor

– must have at least one entry
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mem2reg confuses easily

int ssa3() {
  int z;
  return *(&z + 1 - 1);
}

define i32 @ssa3() nounwind {
entry:
  %z = alloca i32, align 4
  %add.ptr = getelementptr inbounds i32* %z, i32 1
  %add.ptr1 = getelementptr inbounds i32* %add.ptr, i32 -1
  %0 = load i32* %add.ptr1, align 4
  ret i32 %0
}

getelementptr
abstracts away

offset calculation

Why not make mem2reg smarter?
(note that compiling with -O2 optimizes this down to ret undef)
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Loop information (-loops)

● Analysis/LoopInfo.h
● Basic blocks in a loop
● Headers and pre-headers
● Exit and exiting blocks
● Back-edges
● “Canonical induction variable”

– Starts at 0 and counts up by 1?
– Starts at some number and counts down to 0

● Loop count
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Using an analysis pass
● #include "llvm/Analysis/LoopInfo.h"

● AU.addRequired<LoopInfo>();
  in getAnalysisUsage()

● LoopInfo& LI = getAnalysis<LoopInfo>(F);
  in a function called from runOnModule
  with function F inside that module

● LI.dump()
“Loop at depth 1 containing: 
%for.cond<header><exiting>,%for.body,
%for.inc<latch>” (from loop.c)

● PassManager sequences both kinds of passes using 
getAnalysisUsage()



  

23

Scalar Evolution (-scalar-evolution)

● Tracks changes to variables through multiple loop 
nests

● Gives start value, step size, kind of evolution
– Constant
– Add a value each iteration
– Multiply a value each iteration
– More complicated relationships as well

● Useful to aggregate accesses into arrays into larger 
blocks or to improve cache performance
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Target Data (-targetdata)

● Endian-ness
● Pointer sizes
● Alignment
● Actual size (in bits) of variables
● Actual layout of structures

– (taking into account platform alignment requirements)
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Alias Analyses

%1 = load i32* %A
store i32 5, i32* %B
%3 = add i32 %1, i32 9
store i32 %3, i32* %C

● LLVM includes a number of passes that collect various 
kinds of alias information

● Can get information about both global and local variables
● Included passes take into account the behavior of the C 

standard library (eg, sin() will not make new aliases)

If we know that
%A != %B != %C

we have more freedom to
reorder code,

promote to registers, etc.
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Simplify CFG

● A cleanup pass
● Removes unnecessary basic blocks by merging 

unconditional branches if the second block has only 
one predecessor

● Removes unreachable blocks
● Removes Phi instructions in blocks with single 

predecessors
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Other useful passes
● Liveness-based dead code elimination

– Assumes code is dead unless proven otherwise
● Sparse conditional constant propagation

– Aggressively search for constants
● Correlated propagation

– Replace select instructions that select on a constant
● Loop invariant code motion

– Move code out of loops where possible
● Dead global elimination
● Canonicalize induction variables

– All loops start from 0
● Canonicalize loops

– Put loop structures in standard form
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Notes on Writing Passes

● Declare which passes you use (and what your pass 
mutates) in getAnalysisUsage

● The CommandLine library allows you to add 
command line parameters very quickly
– Conflicts in parameter names won't show up until 

runtime, since passes are loaded dynamically
● Be mindful of correctness; the module verifier is 

like a syntax checker
– Does your pass make sense in a multithreaded 

environment?
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Transformations and memory

● For regular loads/stores, LLVM forbids introducing new 
stores to externally observable locations:

● volatile marks memory operations that cannot be 
reordered (wrt volatile operations) or removed

● To support new features in C++11, LLVM provides other 
atomic orderings that can be applied to loads and stores

int x;
void f(int* a) {
 for (int i = 0; i < 100; i++) {
   if (a[i])
     x += 1;
 }
}

int x;
void f(int* a) {
  int xtemp = x;
  for (int i = 0; i < 100; i++) {
    if (a[i])
      xtemp += 1;
  }
  x = xtemp;
}
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Projects using LLVM

● Just a few from llvm.org:
– Clang: a C-family language frontend
– LLDB: an improved debugger using Clang data
– vmkit: building Java/.NET VMs
– klee: a symbolic virtual machine for LLVM IR

● Emscripten: LLVM bitcode → JavaScript
– http://emscripten.org/

● Vellvm: a formalization of the LLVM IR
– http://www.cis.upenn.edu/~jianzhou/Vellvm/
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Links

● When in doubt, read the documentation—and the 
code!
– http://llvm.org/doxygen/

● Articles on the LLVM site are very useful
– http://llvm.org/docs/Passes.html
– http://llvm.org/docs/ProgrammersManual.html
– http://llvm.org/docs/Atomics.html
– http://llvm.org/docs/LangRef.html
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Supplemental
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High-level view of atomic orderings
● NotAtomic – ordinary loads/stores; races are undefined
● Unordered – races have “somewhat sane” results

– A load cannot see a value which was never stored
– May not be supported for all types on all platforms
– Used for shared variables in Java, “safe” languages

● Monotonic – single locations have consistent order
● Acquire/Release – when paired together, strong enough to 

write a lock
● SequentiallyConsistent – Acquire loads, Release stores, and 

all SequentiallyConsistent operations have a total order
– Java volatile
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Atomic orderings and you

● If your project is about fine-grained parallelism or 
lock-free data structures, you need to think about 
these things
– LLVM also exposes cmpxchg, atomicrmw, fence
– LLVM does not expose LL/SC

● If not, just don't, in general:
– reorder LLVM volatile operations wrt other volatile 

operations
– introduce new stores to (shared) locations that would not 

have been previously stored to
● More details at http://llvm.org/docs/LangRef.html#memmodel
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Your module, post-IL

● LLVM still has to generate machine code!
● Your module goes through ~3 more stages:

LLVM IL

SelectionDAG

MachineFunction

Object File



  

36

LLVM IL → SelectionDAG
define i32 @foo(i32 %a, i32 %b) nounwind {
entry:
  %cmp = icmp sgt i32 %a, %b
  br i1 %cmp, label %if.then, label %if.else

if.then:
  %add = add nsw i32 %a, %b
  br label %return

if.else:
  %sub = sub nsw i32 %a, %b
  br label %return

return:
  %retval.0 = phi i32 [ %add, %if.then ],
      [ %sub, %if.else ]
  ret i32 %retval.0
}
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LLVM IL → SelectionDAG
if.then:
%add = add nsw i32 %a, %b
br label %return

return:
%retval.0 = phi i32 ...
ret i32 %retval.0
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SelectionDAG transformations

● Build initial DAG from LLVM IR
● Simplify!
● Legalize types (vectors → scalars)
● Simplify!
● Legalize ops (x86 doesn't do byte-size CMOVs)
● Simplify!
● Select instructions
● Schedule instructions
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Instruction selection
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Target-Independent Code Generation

● There are a lot of different machines!
– And even on x86, there are a lot of different ADDs!

● Make the process data-driven

tablegen

X86.td

ARM.td

PPC.td

...

Register information

Instruction selector

Scheduling information

...
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tablegen

● The tablegen tool is run when compiling the 
LLVM library for each target

● It accepts a custom text-based record description 
format and generates C++ definitions using various 
backends
– defm ADD : ArithBinOp_RF<0x00, 0x02, 0x04, "add", MRM0r, 

MRM0m, X86add_flag, add, 1, 1>;

– ArithBinOp_RF is actually another macro...

● There is still a lot of human-written code in the 
backends (X86 instruction encoding, for one)



  

42

ADD32rr
def ADD32rr {
  Format BinOpRR:f = MRMDestReg;
  Domain I:d = GenericDomain;
  string Namespace = "X86";
  dag OutOperandList = (outs GR32:$dst);
  dag InOperandList = (ins GR32:$src1, GR32:$src2);
  string AsmString = "add{l} {$src2, $src1|$src1, $src2}";
  list<dag> Pattern =
    [(set GR32:$dst, EFLAGS,
       (X86add_flag GR32:$src1, GR32:$src2))];
  list<Register> Uses = [];
  list<Register> Defs = [EFLAGS];
  list<Predicate> Predicates = [];
  InstrItinClass Itinerary = IIC_BIN_NONMEM;
  string Constraints = "$src1 = $dst";
  bits<8> Opcode = { 0, 0, 0, 0, 0, 0, 0, 1 };
  Format Form = MRMDestReg;
  bits<6> FormBits = { 0, 0, 0, 0, 1, 1 };
  ... lots more ...
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Scheduling

We have choices to make
(here, which CopyFromReg executes first?)
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Scheduling

Chains add control dependency.
Glue forbids breaking up instructions.
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Lowering to MC
BB#1: derived from LLVM BB %if.then

%vreg0<def,tied1> = ADD32rr
        %vreg3<tied0>,
        %vreg4,
        %EFLAGS<imp-def,dead>;
        GR32:%vreg0,%vreg3,%vreg4

JMP_4 <BB#3>

BB#3: derived from LLVM BB %return
%vreg2<def> = PHI

        %vreg1, <BB#2>, %vreg0, <BB#1>; 
        GR32:%vreg2,%vreg1,%vreg0

%EAX<def> = COPY %vreg2; GR32:%vreg2
RET

Virtual registers

Register classes

Tied registers

Still in SSA
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MC transformations

● SSA-based MC optimizations
● Register allocation

– 2AC correction and Leave SSA; copy coalescing; add 
spillcode

● Prolog/epilog insertion
● Stack layout
● Last-chance MC optimizations/spillcode scheduling
● Encoding
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Thanks, abstraction!

FRONTEND

OBJECT FILE

LLVM

IR

IR

You don't have to look here!
(Unless you're studying it...)
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