
Hot Cold Optimization of Large Windows/NT Applications 

Robert Cohn (rc@vssad.hlo.dec.com) 
P. Geoffrey Lowney (lowney@vssad.hlo.dec.com) 

Digital Equipment Corporation 
Hudson, Massachusetts 

Abstract 
A dynamic instruction trace often contains many 
unnecessary instructions that are required only by the 
unexecuted portion of the program. Hot-cold 
optimization (HCO) is a technique that realizes this 
peeormance opportunity. HCO uses profile information 
to partition each routine into frequently executed (hot) 
and infrequently executed (cold) parts. Unnecessary 
operations in the hot portion are removed, and 
compensation code is added on transitions from hot to 
cold as needed. We evaluate HCO on a collection of 
large Windows NT applications. HCO is most effective on 
the programs that are call intensive and have flat profiles, 
providing a 3-896 reduction in path length beyond 
conventional optimization. 

1. Introduction 

Typically, compiler writers study code listings to look 
for optimization opportunities. However, we have found 
that a dynamic view, studying instruction traces, gives a 
very different perspective on code quality[Sites95]. High 
quality code often looks unoptimized when viewed as a 
dynamic instruction trace. 

Below, we list an instruction trace fragment from the 
Windows NT kernel running on a Digital Alpha 
[Sites95]. The register ra is used to hold the return ad- 
dress when a call is made, sp is the stack pointer, a0 is 
an argument register, v0 is 
scratch register (caller saved), 
registers (callee saved). 

bsr ra, 8009e3fO ; 
Ida w-3O(SP) ; 
stq SO,O(SP) ; 
stq sl,8(sp) ; 
stq S2,lO(SP) ; 
stq ra, 18Cs.p) ; 
bis zero,aO,sO ; 
Id1 to, 9b8 (gp) ; 
cmpult to, #13,vO ; 
bne vO,8009e42 ; 
bis zero,zero,vO ; 

the return value, t0 is a 
and so-s2 are preserved 

call 
grow the stack 
save the old value 

of some preserved 
registers 

copy a0 to SO 
load,.. 
compare, . . . 
branch 
clear v0 

br zero,8009e4f4 ; branch 

107%4451/96$5.00@1996IEEE 

1% SO,O(SP) ; restore the old 
1% sl,8(sp) ; value of some 
1% S2,lO(SP) ;preserved registers 
1% ra,l8(s~) ; load ret address 
Ida SP,3O(SP) ; shrink the stack 
ret zero, (ra) ; return 

The trace appears to execute many unnecessary in- 
structions. However, looking at the full function listing, 
they all are necessary. The return address (ra) is saved 
and restored but never modified. This function contains a 
call, but this code path does not execute it. The preserved 
registers sl and s2 are also saved and restored but never 
used. Somewhere in the function, sl and s2 are 
modified, but the trace does not go there. The function 
does modify the preserved register SO with a copy, but the 
value stored in SO is never read in the instruction trace so 
the copy and the save/restore of SO are unnecessary. The 
only truly necessary instructions is the load, compare, 
branch, copy sequence, which form an excellent inline 
candidate. 

An insight into how an optimizer can take advantage 
of this type of situation came from a tool called NT OM, 
that arranges code for instruction cache performance+. 
Using profile information, NT OM lays out code so that 
the fall-through path is the common path and also splits 
routines into a frequently executed (hot) part and 
infrequently executed (cold) part [Pettis90, Calder94, 
Hwu89, McFarling891. If there is only one path through a 
routine, the instruction trace and the hot part are identical. 
Usually, there are several common paths through the 
routine, and the hot part is the collection of these paths. 

If we could optimize the hot part of the routine, ignor- 
ing the cold part, we could eliminate all the unnecessary 
instructions. We create a “hot” routine by copying the fre- 
quently executed basic blocks of a function. All calls to 
the original routine are redirected to the hot routine. Flow 
paths in the hot routine that target basic blocks that were 
not copied are redirected to the appropriate basic block in 

’ NT OM is Digital’s executable optimization technology 
[Srivastava94,Wilson96] written for NT 
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the original “cold’ routine; that is, they jump into the 
middle of the original routine. We then optimize the hot 
routine, possibly at the expense of the flows that pass 
through the cold path. The process is called Hot Cold 
Optimization (HCO). 

2. Overview of HCO optimization 

We describe HCO in detail later; in this section we 
work through an example, a simplified version of the 
function associated with the above trace. 

1. foo: Ida sp,l6(sp) ; grow stack 
2. stq SO,O(SP) ; save SO 
3. stq ra,8(sp) ; save ra 
4. add1 aO,l,sO ; SO = aO+l 
5. add1 aO,al,aO ; aO= aO+al 
6. bne sO,L2 ;brnch if so!=0 
7. Ll: bsr fl ; call fl 
8. add1 sO,aO,tl ; tl=aO+sO 
9. stl tl,40(gp) ; store tl 
10. L2: ldq sO,O(sp) ; restore s0 
11. 1% ra, 8 (sp) ; restore ra 
12. Ida sp,-16(sp); pop stack 
13. ret (x-a) ; return 

Assume that the branch in line 6 is almost always 
taken and that lines 7-9 are almost never executed. When 
we copy the hot part of the routine we exclude lines 7-9 as 
follows: 

a) foo2: Ida sp,l6(sp) 
b) SW SO,O(SP) 
c) stq ra. 8 (sp) 
d) add1 aO,l,sO 
e) add1 a0, al, a0 
f) beq sO,Ll 
9) ldq sO,O(SP) 
h) ldq ra, 8 (sp) 
i) Ida sp,-16(sp) 
j) ret (ra) 

Note that the sense.of the branch was reversed and its 
target was changed to Ll in the original routine. All calls 
to foo are redirected to the hot routine foo2, including 
indirect calls. If the branch in line f is taken, then control 
transfers to line 7, which is in the middle of the original 
routine. Once control passes to the original routine, it 
never passes back to the hot routine. This feature of HCO 
enables optimization; when optimizing the hot routine, we 
can relax some of the constraints imposed by the cold 
routine. 

So far, we have set up the hot routine for optimization, 
but have not made it any faster. Now we show how to op- 
timize the routine. The hot routine no longer contains a 
call; we can delete the save and restore of the return ad- 
dress in lines c and h. If the branch transfers control to ~1 
in the cold routine, we must arrange for ra to be saved on 
the stack. In general, whenever we enter the original rou- 

tine from the hot routine, we must fix up the state to 
match the expected state. We call the fix-up operations 
compensation code. To insert compensation code, we 
create a stub, and redirect the branch in line f to branch to 
the stub. The stub saves ra on the stack and branches to 
Ll. 

Next, we see that the instruction in line e writes a0, 
but the value of a0 is never read in the hot routine. 
However, it is not truly dead because it is still read if the 
branch in line f is taken. We delete the instruction from 
the hot routine and place a copy on the stub. 

HCO tries to eliminate the uses of preserved registers 
in a routine. Preserved registers can be more expensive 
than scratch registers because they must be saved and re- 
stored if they are used. Preserved registers are typically 
used when the lifetime of the value crosses a call. In the 
hot routine, no lifetime crosses a call and the use of a pre- 
served register is unnecessary. We rename all uses of SO 
in the hot routine to use a free scratch register t2. We 
insert a copy on the stub from t2 to SO. We can now 
eliminate the save and restore in lines b and g and place 
the save on the stub. 

We have eliminated all references to the stack in the 
hot routine. The stack adjusts can be deleted from the hot 
routine and the initial stack adjust placed in the stub. The 
final code and the stub are listed below. The number of 
instructions executed in the frequent path has been re- 
duced from 10 to 3. If the stub is taken, then the full 10 
instructions and an extra copy and branch are executed. 

1. foo2: add1 aO,l,t2 
2. beq t2,stubl 
3. ret (ra) 
4. stubl: Ida sp,l6(sp) 
5. SW SO,O(SP) 
6. stq ra, 8 (sp) 
7. add1 aO,al,aO 
8. mov t2, SO 
9. br Ll 

Finally, we would like to inline the hot function. 
Copies of instructions 1 and 2 can be placed inline. For 
the inlined branch, we must create a new stub that 
materializes the return address into ra before transferring 
control to stubl. Except for partial inlining, we have 
implemented all of these optimizations in our system. 

In the following section, we present the NT 
applications we used to evaluate HCO and discuss the re- 
sults. We then present the details of our method. We 
close the paper with a discussion of related work, and our 
conclusions. 
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3. Characteristics of NT Applications 

For our experiments, we use programs that are repre- 
sentative of the types of applications run on high perform- 
ance personal computers (PC’s). We also include some 
programs from SpecInt95 for comparison, although our 
discussion in the paper focuses on the PC applications. 
Table 1 identifies the programs and the workloads used to 
exercise them. All programs are optimized versions of 
Digital Alpha binaries and are compiled with the same 
highly optimizing back end that is used on Unix and 
VMS[Blickstein92]. 

For our profile-directed optimization, we use the same 
input for training and timing so that we can know the 
limits of our approach. Others have shown that a 
reasonably chosen training input will give reliable 
speedups for other input sets [Calder95]. Our experience 
with program layout optimizations for our benchmark 
programs confirms this result. 

Table 2 lists some static and dynamic characteristics of 
the single executable or dynamically linked library (DLL) 
responsible for a majority of the execution time for each 
application. The smallest PC application is three times 
larger than the largest SpecInt95 program in our list, and 
the largest PC application, ACAD, is twenty times larger. 
All of them have thousands of functions. Call overhead is 
high and ranges born 7%-16%, except for the more loop 
intensive TEXIM and MAXFDA. We approximate call 
overhead by measuring time spent in procedure prologs 
and epilogs, which is mostly stack adjusts and saving and 
restoring of preserved registers. The time spent in leaf 
routines-is low, with the exception of WINWORD. 

1 Texim 2.0 
MAXEDA 1 OrCad electronic cad ] BAPCO 

Table 1: Benchmark programs and their workloads 

In Table 2, we list the percent of execution time spent 
in the top 5 routines for each routine. VC, SQLSERVR, 
ACAD, and EXCEL tend to have flat profiles, while the 
other PC applications have a single routine responsible for 
a large portion of the execution time. 

The focus of our work is programs that have flat 
profiles and are more call intensive than loot, intensive. In 

Program 

A 1 

Text Size Routines Call Leaf % thne spent in the 5 most frequently executed 
MB overhead routines routines 

2.08 1 2139 I 11% 5.5 5.5 1 

1.13 , lo”, , A,” , 7,” , J.L , 

VORTEX 1 .47 1 820 1 23% 1 2% 16.2 12.3 8.6 8.5 5.2 
GO .29 462 5% 30% 19.8 14.4 9.5 5.9 4 
M88KSIM .17 382 12% 43% 27.5 12.8 11.3 7.7 5.9 
r, I? APO 7AoA lfw% l?A l?? 97 8.8 8.7 
COMPRESS ] .06 122 1% Lll% 1 L3.I L3.Y 1 17-J , 9.4 6.4 
IJPEG I .18 408 2% 56% 1 14.5 14.3 1 13.4 1 11.6 10.7 

Table 2: Static and dynamic characteristics of benchmark programs 
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Optimization Coverage Reduction in Path Length 
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Figure 1: HCO coverage by execution time 

these programs, loops typically include function calls and 
span multiple procedures. The most frequently executed 
basic block in a function is often the entry point and call 
overhead tends to be high. Our experience with these 
programs has shown that optimizations that do not 
preserve the locality of the instruction stream can 
adversely affect performance. They all speed up from 5% 
to 15% when we apply code layout techniques [PettisBO, 
Calder94, Wilson961. 

In this paper, all statistics based on execution time and 
speedups use path lengths (number of instructions 
executed) for the dominant executable or DLL. Path 
lengths are calculated by multiplying the number of 
instructions in a basic block by the number of times the 
block is executed. Using path lengths rather than 
measured times allows us to provide more detailed 
information about the contribution of each type of 
optimization. Since it is possible to reduce the path length 
at the expense of more cache misses, we used simulation 
and other techniques to verify that instruction cache 
misses were not affected for LI, VC, ACAD, and 
SQLSERVR. For the full set of HCO optimizations 
together, we verified that path length reductions resulted 
in equivalent run-time speedups for LI, VC, and ACAD. 
For SQLSERVR, the run-time speedup is less than the 
path length reduction (8%), and we continue to 
investigate this discrepancy. 

4. Results 

We present the results for the full suite of HCO 
optimizations, except for partial inlining, which has not 
yet been implemented. The optimizations are partial 
dead code elimination, which is the removal of code dead 
in the hot routine; stack pointer adjust elimination, which 

q save/restore 

Figure 2: Reduction in path length 

is the removal of the stack adjusts in the hot routine; 
preserved register elimination, which is the removal of the 
save and restore of preserved registers in the hot routine; 
and peephole optimization, which is the removal in the 
hot routine of self-assignments and conditional branches 
with an always-false condition. The optimizations were 
implemented in NT OM, an optimizer that operates on 
Alpha NT executables. 

In Figure 1, we show coverage statistics for the HCO 
optimization. Coverage represents the percentage of 
execution time spent in each category. To compute 
coverage, we first assign each function to a category, and 
then for each category sum the execution time of its 
functions. The category “optimized” is the portion of the 
execution time that is in functions optimized by HCO. 
Optimization coverage is typically 60%, but is often 
higher. The category “too small” is the set of functions 
where the execution time is so small (< .l% of total time) 
it did not appear worthwhile to optimize them. Ignoring 
functions with small execution time allows us to optimize 
less than 5% of the program text, a significant reduction 
in optimizer time. The category “no split” represents the 
functions that we could not split into a hot and cold part 
because all basic blocks had similar execution counts. The 
category “sp modified” is for functions where the stack 
pointer is modified after the initial stack adjust in the 
prolog. We decided not to optimize these functions, but it 
is possible to do so with extra analysis. It was infrequent 
except for VC, where it is 7% of the program and occurs 
in 2 functions. Finally, the category “no advantage” is for 
the functions that were split but the optimizer wasn’t able 
to make any faster. 

In Figure 2, we show the overall reduction in path 
length for HCO, broken down by optimization. Most of 
the reduction in path length comes equally from removal 
of unnecessary save/restores and partial dead code. 
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Time Spent In Lea1 RoUtlneS 

Figure 3: Time spent in leaf routines before and after HCO 

Removing stack pointer adjusts and peephole 
optimizations are a smaller additional gain. When the 
peephole category is large it is usually because there is a 
save and restore of a preserved register that is made 
unnecessary by HCO, and the restore is converted to a self 
assignment by copy propagation, which is then removed 
by peephole optimization. 

HCO is most effective on call intensive programs such 
as VC, SQLSERVR, and ACAD, where we eliminate calls 
when creating the hot routines. For WINWORD, the 
speedup is small because coverage is low; we could not 
find a way to split the routines. For EXCEL, HCO was 
able to split the routines, but there is often a call in the hot 
path. Inlining may help here, but frequently the call is to a 
shared library. 

HCO is less effective on loop intensive programs such 
as USTATION, MAXEDA, and TEXIM. HCO provides a 
framework for optimizing loops, and Chang has shown 
that eliminating the infrequent paths in loops enables 
additional optimizations such as loop invariant removal 
[Chang91]. However, our current implementation has 
almost no information about the aliasing of memory 
operations and it can only optimize operations to local 
stack locations, such as spills of registers. 

4.1 Leaf routines 

Figure 3 compares the amount of time spent in leaf 
routines before and after HCO is applied. By eliminating 
infrequent code, HCO is able to eliminate all calls in 
functions that represent lo-20% of the execution time in 
VC, ACAD, SQLSERVR, and MAXEDA. The change in 
time spent in leaf routines for the other PC applications is 
very small. Most of the PC applications spend much less 
than half of the time in leaf routines. Since so much time 

Figure 4: Overall increase in text size 

is spent in code with calls in the frequent path, it is 
important to optimize well in the presence of calls. 

4.2 Code size 

Code size and its effect on cache behavior is a major 
concern for us. In large applications, locality for 
instructions is present but not high. If an optimization 
decreases path length but also decreases locality as a side 
effect, the net result can be a loss in performance. 

Figure 4 shows the total increase in text size from 
optimization. “Hot+cold” is the part of increase that 
comes from replacing a single routine with the original 
routine plus a copy of the hot part. “Stub” is the increase 
attributed to stub routines. Overall the increase in size is 
small. The maximum increase is 7.1% for VC. Sqlservr 
has the best speedup and is only 2.6% bigger. Looking at 
the increase in total text size is misleading, however. 
HCO is not applied to routines that are executed 
infrequently, which typically accounts for more than 95% 

Size of Optimized Routines 

Figure 5: Size of optimized routines 
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of the program text, so tripling the size of optimized 
routines would only result in a modest increase in text 
size. However, tripling the size of the active part of an 
application will usually have a disastrous effect on 
performance. 

For this reason, we also measure size increases based 
on the routines that are optimized. In Figure 5, we 
compare the total size of all the hot routines to the total 
size of the original routines they were derived from. By 
copying just the frequently executed part of the routine, 
we exclude about 50% of the original routine. Next, we 
eliminate code that is frequently executed, but is only 
reachable through an infrequently executed path and is 
therefore unreachable in the hot routine. This is usually 
only 1%. Finally, we optimize the hot routine, reducing 
the remaining code size by about 10% (5% of the size of 
the original routine). The final size of the hot routines as a 
percentage of the size of the original routines is shown in 
the line labeled “hot.” By making the most frequently 
executed part of the program 50-80% smaller one would 
expect a big improvement in instruction cache behavior. It 
does; however, it would be misleading to attribute this 
improvement to HCO since a simpler optimization in NT 
OM already achieves the same result. As part of the 
optimization for instruction cache behavior, NT OM splits 

Figure 6: Distribution of routine size and execution time 

routines into two parts, one for the frequently executed 
code and another for infrequently executed code. The 
frequently executed parts are packed together so that they 
are less likely to conflict in a direct mapped cache. When 
HCO is turned on, the cache layout optimizations are run 
after HCO. The baseline we compare against also has 
cache optimizations turned on, so improvements 
attributed to HCO are improvements beyond what the 
other optimizations can do. HCO does make the 
frequently executed parts 10% smaller, but we did not see 
better instruction cache behavior when we ran programs 
with a cache simulator. 

If we were to do partial inlining, only the hot routine 
would be copied. Since the hot routine is less than half 
the size of the original routine, this would greatly reduce 
the growth in code size due to inlining. 

The line labeled “cold’ in Figure 5 shows how the size 
of the cold routine is affected by HCO. When we redirect 
all calls to the hot routine, some of the code in the original 
routine becomes unreachable. This is usually less than 
lo%, which is much smaller than the 50% of the code we 
copied to create the hot routine. Apparently, the 
infrequent paths in a routine often rejoin the frequent 
paths, which makes it necessary to have a copy of both in 
the original routine. 
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The line labeled “stub” is the code size of the stubs, 
which is very small. We also implemented a variation of 
HCO that avoided stubs by re-executing the procedure 
from the beginning instead of trying to use a stub to fix up 
the state and jump into the middle. It usually isn’t possible 
to re-execute the procedure because arguments had 
already been overwritten. Given the small cost of stubs, 
we did not pursue this method. 

The line labeled “total” shows that HCO makes the 
total ccde(hot+cold+stub) 20-50% bigger. A routine is 
partitioned so that there is less than a 1% chance that the 
stub and cold part are executed so their size shouldn’t 
have a significant effect on cache behavior as long as the 
profile is representative. 

Figure 6 shows how splitting affects the distribution of 
time spent among different routine sizes for two programs 
where HCO is effective (VC and SQLSERVR), and two 
programs where it is not (MAXEDA and WINWORD). 
For each graph, the horizontal axis is the routine size in 
number of instructions and the vertical axis is the 
percentage of execution time spent in routines of the 
maximum size or smaller. The farther apart the two lines, 
the better HCO was at shifting the distribution from large 
routines to smaller routines. It is interesting to note that 
most of the programs spend a large percentage of the time 
in large functions, which suggests that compilers need to 
handle complex control flow well, even if profile infor- 
mation is used to eliminate infrequent paths. 

5. Optimization 

In this section, we describe in more detail how NT OM 
constructs the hot routine and how it is optimized. HCO 
was implemented as part of NT OM, a tool for optimizing 
executables and dynamically loaded libraries (DLLs) for 
Alpha Windows/NT [Srivastava94, Wilson96, Larus95]. 
NT OM reads in an executable, identifies the code and 
data, optimizes the code, and writes out a new executable. 
Because NT OM can examine the entire executable, it is 
able to do optimizations that a compiler cannot easily do. 
For example, NT OM can see the entire call graph, which 
makes it possible to lay out code to minimize instruction 
cache misses. However, NT OM does not have some 
information that is available to a compiler. Currently, NT 
OM derives the dataflow from the code itself; it does not 
use extra information from the compiler. The biggest 
limitation is the lack of memory alias information, which 
restricts the type of optimizations that can be done on 
instructions that touch memory. 

NT OM can instrument executables to collect profile 
information in a manner similar to ATOM[Srivastava94b, 

Wilson961, and uses profile information when optimizing 
a program, as is done for code layout and HCO. 

5.1 Partitioning a routine into hot and cold 

Deciding what code to include in the hot routine is a 
tradeoff between two factors. When we exclude code from 
the hot routine (especially calls) we create opportunities 
for optimizations that decrease path length. However, the 
more code we exclude from the hot routine, the higher the 
probability that we enter the original routine. The 
transition from hot to cold is expensive because it is likely 
to cause cache misses. 

We use the probability of exiting the hot routine 
through a stub to decide how much code to include in the 
hot routine. The exit probability is the number of times 
the program exits a hot routine through a stub for each 
time the routine is called. It is calculated from profile 
information. 

Our experiments showed that path length reductions 
are not that sensitive to exit probability, but that cache 
misses and real performance are very sensitive. Doubling 
the exit probability results in a small improvement in 
cycles eliminated because of path length reduction but a 
large increase in additional cycles spent in cache misses. 
For this reason we tuned HCO to get the biggest reduction 
in path length that doesn’t cause a significant increase in 
cache misses. We found that using a very low probability 
of 1% works best for most programs. 

We tuned HCO to avoid cache misses by adjusting the 
exit probability for maximum measured speedup, rather 
than path length reduction. For the programs with short 
execution times, we confirmed that extra cache misses are 
not a problem through simulation. 

5.2 Partially Dead Code 

Sometimes, instructions are live on one path and dead 
on others. This is called partially dead code[Knoop94]. 
When an operation in the hot part computes a value that is 
only consumed in the cold part, we optimize this by 
moving the instruction from the hot routine to some or all 
of the stubs, which are less frequently executed. 

The candidates for partially dead code are found by 
ignoring the branches to stubs when computing liveness. 
We do not eliminate dead stores or loads because we only 
have limited information on aliasing of memory 
operations. 

Next, we find the set of stubs where the definition 
generated by the dead candidate may reach the stub, and 
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Dead Coda Removal 

Figure 7: Potential improvements for dead code removal 

the register holding the value is live at the stub. If the 
definition does not reach any stub where the register is 
live, then it is truly dead and we can eliminate it without 
any further work. 

For all the stubs that the definition may reach, we 
check if the inputs or output of the dead candidate are 
possibly redefined on any path from the dead candidate to 
the stub. If this happens, the dead candidate cannot be 
removed. If not, then we eliminate the dead candidate in 
the hot routine and place a copy on every stub that the 
definition reaches. 

With register reallocation, we could weaken the 
condition that requires that the inputs and output of the 
dead candidate not be overwritten in the path from the 
operation to the stub. To gauge how much better we could 
be doing, we estimated the path length reduction possible 
by assuming that all dead candidates could be eliminated. 
The results are in Figure 7. The bottom bar is what is 
actually achieved, and the top bar represents the results of 
this optimistic assumption. Our results slightly 
underestimate the gain, because we do not consider the 
effect of this optimization enabling other optimizations. 
The potential gain appears to be fairly small and we 
decided it was not worthwhile trying to remove these extra 
instructions. From looking at programs, the dead 
operations that cannot be eliminated are often copies of 
the argument registers into preserved registers. 
Inter-procedural register allocation or inlining is probably 
the best way to attack this problem. 

5.3 Lifetime Splitting 

Often, a lifetime will start in the frequent part of the 
code and cross into the infrequent part. If the lifetime 
crosses a call, then it is typically assigned a preserved 
register, which requires a save and restore. If the call is 
only in the infrequent part, then it would be better to keep 

the value in a scratch register in the frequent part, then 
transfer it to a preserved register in the infrequent part. 
Then, the save and restore are not executed if the code 
stays in the frequent part. 

5.4 Copy propagation 

When we only copy the hot part of a routine, we 
eliminate some flow paths, making copy propagation legal 
where it was not before. For example, an argument 
register may be copied to a preserved register so that its 
value will be live across a call (e.g. mov aO,sO). However, 
if the call is eliminated because it is in the infrequent 
path, then applying copy propagation replaces uses of the 
preserved register with the original argument registers 
(e.g. add1 SO, 1 ,tO becomes add1 aO,l ,tO). Copy propagation 
often eliminates all uses of a preserved register, which 
leads to further optimization. 

5.5 Eliminating unnecessary preserved registers 

Often HCO eliminates all uses of a preserved register 
by partitioning or by the optimizations described above. If 
the save and restore is made unnecessary, then it is 
eliminated in the hot routine and a copy of the save is 
placed on every stub. 

5.6 Eliminating unnecessary stack adjusts 

If all references to the stack pointer are removed from a 
routine, then the stack adjusts on entrance and exit can be 
removed. For compensation code, a stack adjust to grow 
the stack is placed on every stub. 

5.7 Phase ordering 

The order that the optimizations are applied is 
important for the final result. A sequence of copy 
propagation, dead code removal, and peephole 
optimizations is run repeatedly until no further progress is 
made. Each of these optimizations create opportunities for 
the others and themselves, and we have found that one to 
three passes is usually sufficient. Note that profile 
information allows us to apply optimization to less than 
5% of the program text, so optimizer time is not large. 

Next, lifetime splitting is applied once. Lifetime 
splitting uses an extra scratch register and introduces a 
copy on the stub, so it is better to eliminate the use of a 
preserved register with one of the previous optimizations 
than to split the lifetime. 
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Running the previous optimizations often eliminates 
all uses of a preserved register, and now the unnecessary 
saves and restores of preserved registers are eliminated. 
Finally, if all references to the stack pointer have been 
removed, we remove the stack adjusts. 

6. Related work 

Dead code elimination in HCO is closely related to 
partial dead code elimination[Knoop94], which uses code 
motions to move an instruction later to avoid computing 
it. When moving an instruction, partial dead code 
elimination finds the optimal points in the flow graph to 
minimize execution, while we take the simpler approach 
of using profile information to decide if it is profitable to 
move the instruction to a stub. There is a limited form of 
partial dead code elimination for superblocks[Chang91], 
but we have found that the scope of a superblock is too 
small for effective optimization, even when using 
techniques that expand their scope such as 
predication[Mahlke92]. 

Partial dead code elimination does not alter the flow 
graph when placing operations. This is done by HCO 
when it copies the hot part of a routine, which allows us to 
do better than the “optimal” method in some cases. For 
example, in Figure 8, the value of b is computed outside 
of a loop and is only used inside of the conditional inside 
of the loop. Techniques that don’t alter the program 
structure can either leave the computation of b outside of 
the loop where it is always computed once, or put it inside 
of the conditional, where it is computed once for every 
time that p[i] is true. If the condition p[i] is rarely true, 
then HCO moves the computation of b to the stub. If p[i] 
is never true, b is never computed. The first time p[i] is 
true, we jump to the stub, compute b and then jump into 
the middle of the loop, so b is never computed again. 

Much work has gone into profile directed 
interprocedural register allocation [Wa1186, 
Santhanam90, Kurlander961. We consider HCO to be a 
framework for optimization, and a register allocator for 
this framework is being implemented. Optimizations 
such as shrink wrapping [Chow881 and ORA 
[Goodwin961 have sought to reduce unnecessary spills and 
reloads by placing them in the program where they are 
executed less often. Many possible placements are not 
permitted by the Alpha NT run-time model’. HCO 

’ The Alpha NT software run-time model defines where in 
a routine the stack adjusts and the saving of preserved 
registers can be performed; this enables the exception 
handler to unwind the stack efficiently[CALLSTD]. 

Original routine 
b=e+c*d 
for (i = 0; i < n; i++) 

if (p[il) 
output(b); 

return; 
After HCO 

for (i = 0; i < n; i++) 
if tp[il) 

goto stub; 
return; 
stub: 
b=e+c*d; 
got0 inloop; 

b=e+c*d; 
for (i = 0; i < n; i++) 

if (p[il) 
inloop: output(b); 
return; 

Figure 8: Altering program structure gives HCO more 
flexibility 

considers a smaller set of permissible locations, the stul b 
Like partial dead code elimination, these techniques do 
not alter the flow graph, and the ability to alter the flow 
graph can enable HCO to find opportunities that other 
methods cannot. 

Region-based compilation[Hank95] uses profile 
information and aggressive inlining to expose more 
optimization candidates to the compiler. It then 
repartitions a program into regions to make compilation 
of the much larger program tractable. Our approach is 
similar in that we partition each routine into a hot and 
cold region. However, the subject of our work is 
optimizations that push work out of the hot region into the 
cold region and transformations that make it possible. If 
we were to add aggressive partial inlining to NT OM, we 
could use Hank’s methods to partition the program into 
multiple hot regions. 

7. Conclusions and future work 

Many commonly used Alpha NT applications spend 
most of their time in non-leaf routines and in loops that 
span multiple procedures. For these applications, the most 
frequently executed basic block in a procedure is often the 
first basic block. Knowing this, it is not surprising that 
about 10% of the time is spent in procedure prologs and 
epilogs, which is essentially procedure call overhead. 

The optimization in this paper is effective in 
eliminating path length from these types of programs. It 
does this by optimizing the frequently executed parts of a 
procedure at the expense of the less frequently executed 
parts. Much of the gain is dependent upon optimizations 
that eliminate partially dead code or change the register 
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assignment, splitting lifetimes and changing preserved 
registers into scratch registers. 

HCO is an attractive framework for profile-directed 
optimization. In the future, we expect to add partial 
inlining, interprocedural register allocation, speculative 
scheduling, prefetching, and other optimizations. HCO 
also provides a practical solution for applying advanced 
compiler technology to large application programs. We 
can look beyond the SPECmarks and address the 
problems in real applications that are in day-to-day use. 
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