15-745 Advanced Optimizing Compilers: Task 2
Due 2/23/2006 5pm

February 10, 2006

1 Task Description

In this assignment, you will implement at least one classical loop optimization.

2 Task Specifics

Please implement loop-invariant code motion (hoisting) as described in class. Note that this op-
timization uses reaching definitions and liveness, which you should have already implemented in
Task 1. Implement the optimizations on top of your existing compiler from Task 1. Implementing
this optimization will be sufficient to earn you full credit on this assignment.

Additionally, we will be running a small contest during this assignment. There are eight “challenge
tests” (listed below) from the big subdirectory in the test suite that we will use to evaluate your
compiler. Your performance relative to other groups in the class will determine in what order
you get to select time slots for your project proposal presentation. You may implement any other
loop-based optimizations you want (Induction Variable Elimination, Bounds Check Elimination,
Null-Check Elimination, etc). We will be posting a running leaderboard, as well as instructions for
submitting your times, during the second week of the assignment. Details will be announced via
the website and RSS feed.

13_test2.13: prime number generation. simple arrays

e 13 test3.13: cellular automata. good array test

e 13 test8.13: designed specifically for bounds-check elimination
e 13 test10.13: simple loops that access an array

e 13 test11.13: pi to 1000 digits. simple array access, plus CSE
e 13 test13.13: n-queens. array and struct element access

e 13_test14.13: n’-queens. much more demanding

e 13_test20.13: busy arrays



Use the algorithm descriptions given in class, or in Muchnick. You may work in groups of one or
two (we suggest two). Once you have completed the task, please turn in (by email to mderosa@cs)
the a tarball of your modified source code and the results.txt file from a full test suite run (using
the original Task 0 test suite).



