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Optimizations
• Register Allocation
• Common subexpression elimination
• Constant Propagation
• Copy propagation
• Dead-code elimination
• Loop optimizations

– Hoisting
– Induction variable elimination
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Scope of Optimization
• Local

Within a basic block
• Global

Within a function, across basic blocks
• Interprocedural

The entire program, across functions and basic 
blocks.
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Basic Blocks
• What is a basic block?
• How do we create basic blocks?

– leaders
– Other definitions of leaders
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Local Opts: E.g., CSE

B5: t6 = 4*i
x = a[t6]
t7 = 4 * i
t8 = 4 * j
t9 = a[t8]
a[t7] = t9
t10 = 4*j
a[t10] = x
jump B2
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Local Opts: E.g., CSE

B5: t6 = 4*i
x = a[t6]
t7 = 4 * i
t8 = 4 * j
t9 = a[t8]
a[t7] = t9
t10 = 4*j
a[t10] = x
jump B2

B5: t6 = 4*i
x = a[t6]

t8 = 4 * j
t9 = a[t8]
a[t6] = t9

a[t8] = x
jump B2
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Dags & Stmts
a+a*(b-c)+(b-c)*d
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Dags & Blocks
a = b + c;
b = a – d;
c = b + c;
d = a – d;
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Dags & Blocks
a = b + c;
b = a – d;
c = b + c;
d = a – d;

• Must track assignments

• Must keep track of time
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Build a DAG

B5: t6 = 4*i
x = a[t6]
t7 = 4 * i
t8 = 4 * j
t9 = a[t8]
a[t7] = t9
t10 = 4*j
a[t10] = x
jump B2

i 4

*
t6

• For each var & constant 
not seen before create a 
leaf

• For each op, create a 
node and label with lvalue
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Build a DAG

B5: t6 = 4*i
x = a[t6]
t7 = 4 * i
t8 = 4 * j
t9 = a[t8]
a[t7] = t9
t10 = 4*j
a[t10] = x
jump B2

ia 4

*

[]

t6

x

• For each var & constant 
not seen before create a 
leaf

• For each op, create a 
node and label with lvalue
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Build a DAG

B5: t6 = 4*i
x = a[t6]
t7 = 4 * i
t8 = 4 * j
t9 = a[t8]
a[t7] = t9
t10 = 4*j
a[t10] = x
jump B2

ia 4

*

[]

t6,t7

x

• If you have seen all
rvalues before see if an 
interior node with same 
“op” and operands has 
already been created. If 
so, add a label.
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Build a DAG

B5: t6 = 4*i
x = a[t6]
t7 = 4 * i
t8 = 4 * j
t9 = a[t8]
a[t7] = t9
t10 = 4*j
a[t10] = x
jump B2

i ja 4

*

[]

t6,t7 * t8

x
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Build a DAG

B5: t6 = 4*i
x = a[t6]
t7 = 4 * i
t8 = 4 * j
t9 = a[t8]
a[t7] = t9
t10 = 4*j
a[t10] = x
jump B2

i ja 4

*

[]

*t6,t7 t8

x

[]
t9
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Build a DAG

B5: t6 = 4*i
x = a[t6]
t7 = 4 * i
t8 = 4 * j
t9 = a[t8]
a[t7] = t9
t10 = 4*j
a[t10] = x
jump B2

i ja 4

*

[]

*

[]

t6,t7 t8

x

t9,a[t7]?

• Assigning to array or 
pointer “kills” all 
possible memory lvalues. 
(I.e., they can’t get any 
more labels.)
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Memory References

x = a[i]
a[j] = y
z = a[i]

Becomes:

x = a[i]
z = x
a[j] = y

i ja

[]
[]

x,z

y
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Build a DAG

B5: t6 = 4*i
x = a[t6]
t7 = 4 * i
t8 = 4 * j
t9 = a[t8]
a[t7] = t9
t10 = 4*j
a[t10] = x
jump B2

i ja 4

*

[]

*

[]

t6,t7 t8

x

t9

[] a[t7]

Assignment to an array creates a new node with children:
- index
- old value of array
- value assigned
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Build a DAG

B5: t6 = 4*i
x = a[t6]
t7 = 4 * i
t8 = 4 * j
t9 = a[t8]
a[t7] = t9
t10 = 4*j
a[t10] = x
jump B2

i ja 4

*

[]

*

[]

t6,t7 t8

x

t9

[] a[t7]

,t10
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Build a DAG

B5: t6 = 4*i
x = a[t6]
t7 = 4 * i
t8 = 4 * j
t9 = a[t8]
a[t7] = t9
t10 = 4*j
a[t10] = x
jump B2

i ja 4

*

[]

*

[]

t6,t7 t8

x

t9

[] a[t7]

,t10

[]
a[t10]
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Other uses for DAGs
• Can determine those variables that can be live 

at end of a block.
• Can determine those variables that are live at 

start of block.
B8: t6 = 4*i

x = a[t6]
t7 = 4 * i
x = 4 * j
t9 = a[x]
…

i ja 4

*

[]

*t6,t7 x

x

t9[]
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Dead code too?
• Can determine those variables that can be live 

at end of a block.
• Can determine those variables that are live at 

start of block.
B8: t6 = 4*i

x = a[t6]
t7 = 4 * i
x = 4 * j
t9 = a[x]
…

i ja 4

*

[]

*t6,t7 x

x

t9[]
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Using the DAG to recreate blocks
• Order of evaluation is any topological sort
• We pick a node. Assign it to ONE of the labels

(hopefully one needed later in the program)
• If we end up with identifiers that are needed 

after this block, insert move statements.
• If a node has no identifiers, make up a new one.
• Caveats:

– Procedure calls kill nodes
– A[] = and *p = kill nodes
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Memory References

x = a[i]
a[j] = y
z = a[i]

i ja

[]

[]

x

y

[] z

In general,

• No memory references 
may cross each other

• No instructions can move 
across a procedure call
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Value Numbering
• Don’t actually build DAG
• Track value of variable in time as a 

“value number”

• compute valueOf(var) and valueOf(val, op, val)

• Scan stmts: d <- a  op b, computing
– an = valueOf(a)
– bn = valueOf(b)
– opn = valueOf(an, op, bn)
– set valueOf(d) = opn
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VN example
a = b + c;
b = a – d;
c = b + c;
d = a – d;
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VN uses
• Same as DAGs (live in, live out, CSE)
• How about constant folding?

a = 1
b = 2
c = a + b
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Scope of Optimization
• Local

Within a basic block
• Global

Within a function, across basic blocks
• Interprocedural

The entire program, across functions and basic 
blocks.
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The Optimizer

Code 
OptimizerFront End Code 

Generator

Control-Flow 
Analysis

Data-Flow 
Analysis

Trans-
formations
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Control Flow Graph
• Each BB is a node in the graph
• Distinguished nodes: Entry & Exit
• Edge between B1 & B2 iff 

– B2 can follow B1 in some execution of the 
program

• B2 is a target of a jump/branch at end of B1
• B2 follows B1 and B1 does not end with an unconditional jump

– B1 is Entry and B2 is first instruction
– B2 is Exit and B1 can exit procedure
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Terms
• B1 is Predecessor of B2
• B2 is successor of B1
• B2 is a join node B1

B2

Bx
x ≠ 1
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Unreachable Code Elimination
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Straigtening


