
15-745 Lecture 3

© Seth Copen Goldstein 2001-2 1

Lecture 3 15-745 © Seth Copen Goldstein 2001-2 1

15-745 Lecture 3

Basic Blocks
Local Opts

Control Flow Graphs

Copyright © Seth Copen Goldstein 2001-2

Lecture 3 15-745 © Seth Copen Goldstein 2001-2 2

Optimizations
• Register Allocation
• Common subexpression elimination
• Constant Propagation
• Copy propagation
• Dead-code elimination
• Loop optimizations

– Hoisting
– Induction variable elimination

Lecture 3 15-745 © Seth Copen Goldstein 2001-2 3

Scope of Optimization
• Local

Within a basic block
• Global

Within a function, across basic blocks
• Interprocedural

The entire program, across functions and basic
blocks.

Lecture 3 15-745 © Seth Copen Goldstein 2001-2 4

Basic Blocks
• What is a basic block?
• How do we create basic blocks?

– leaders
– Other definitions of leaders

Lecture 3 15-745 © Seth Copen Goldstein 2001-2 5

Local Opts: E.g., CSE

B5: t6 = 4*i
x = a[t6]
t7 = 4 * i
t8 = 4 * j
t9 = a[t8]
a[t7] = t9
t10 = 4*j
a[t10] = x
jump B2

Lecture 3 15-745 © Seth Copen Goldstein 2001-2 6

Local Opts: E.g., CSE

B5: t6 = 4*i
x = a[t6]
t7 = 4 * i
t8 = 4 * j
t9 = a[t8]
a[t7] = t9
t10 = 4*j
a[t10] = x
jump B2

B5: t6 = 4*i
x = a[t6]

t8 = 4 * j
t9 = a[t8]
a[t6] = t9

a[t8] = x
jump B2

15-745 Lecture 3

© Seth Copen Goldstein 2001-2 2

Lecture 3 15-745 © Seth Copen Goldstein 2001-2 7

Dags & Stmts
a+a*(b-c)+(b-c)*d

Lecture 3 15-745 © Seth Copen Goldstein 2001-2 8

Dags & Blocks
a = b + c;
b = a – d;
c = b + c;
d = a – d;

Lecture 3 15-745 © Seth Copen Goldstein 2001-2 9

Dags & Blocks
a = b + c;
b = a – d;
c = b + c;
d = a – d;

• Must track assignments

• Must keep track of time

Lecture 3 15-745 © Seth Copen Goldstein 2001-2 10

Build a DAG

B5: t6 = 4*i
x = a[t6]
t7 = 4 * i
t8 = 4 * j
t9 = a[t8]
a[t7] = t9
t10 = 4*j
a[t10] = x
jump B2

i 4

*
t6

• For each var & constant
not seen before create a
leaf

• For each op, create a
node and label with lvalue

Lecture 3 15-745 © Seth Copen Goldstein 2001-2 11

Build a DAG

B5: t6 = 4*i
x = a[t6]
t7 = 4 * i
t8 = 4 * j
t9 = a[t8]
a[t7] = t9
t10 = 4*j
a[t10] = x
jump B2

ia 4

*

[]

t6

x

• For each var & constant
not seen before create a
leaf

• For each op, create a
node and label with lvalue

Lecture 3 15-745 © Seth Copen Goldstein 2001-2 12

Build a DAG

B5: t6 = 4*i
x = a[t6]
t7 = 4 * i
t8 = 4 * j
t9 = a[t8]
a[t7] = t9
t10 = 4*j
a[t10] = x
jump B2

ia 4

*

[]

t6,t7

x

• If you have seen all
rvalues before see if an
interior node with same
“op” and operands has
already been created. If
so, add a label.

15-745 Lecture 3

© Seth Copen Goldstein 2001-2 3

Lecture 3 15-745 © Seth Copen Goldstein 2001-2 13

Build a DAG

B5: t6 = 4*i
x = a[t6]
t7 = 4 * i
t8 = 4 * j
t9 = a[t8]
a[t7] = t9
t10 = 4*j
a[t10] = x
jump B2

i ja 4

*

[]

t6,t7 * t8

x

Lecture 3 15-745 © Seth Copen Goldstein 2001-2 14

Build a DAG

B5: t6 = 4*i
x = a[t6]
t7 = 4 * i
t8 = 4 * j
t9 = a[t8]
a[t7] = t9
t10 = 4*j
a[t10] = x
jump B2

i ja 4

*

[]

*t6,t7 t8

x

[]
t9

Lecture 3 15-745 © Seth Copen Goldstein 2001-2 15

Build a DAG

B5: t6 = 4*i
x = a[t6]
t7 = 4 * i
t8 = 4 * j
t9 = a[t8]
a[t7] = t9
t10 = 4*j
a[t10] = x
jump B2

i ja 4

*

[]

*

[]

t6,t7 t8

x

t9,a[t7]?

• Assigning to array or
pointer “kills” all
possible memory lvalues.
(I.e., they can’t get any
more labels.)

Lecture 3 15-745 © Seth Copen Goldstein 2001-2 16

Memory References

x = a[i]
a[j] = y
z = a[i]

Becomes:

x = a[i]
z = x
a[j] = y

i ja

[]
[]

x,z

y

Lecture 3 15-745 © Seth Copen Goldstein 2001-2 17

Build a DAG

B5: t6 = 4*i
x = a[t6]
t7 = 4 * i
t8 = 4 * j
t9 = a[t8]
a[t7] = t9
t10 = 4*j
a[t10] = x
jump B2

i ja 4

*

[]

*

[]

t6,t7 t8

x

t9

[] a[t7]

Assignment to an array creates a new node with children:
- index
- old value of array
- value assigned

Lecture 3 15-745 © Seth Copen Goldstein 2001-2 18

Build a DAG

B5: t6 = 4*i
x = a[t6]
t7 = 4 * i
t8 = 4 * j
t9 = a[t8]
a[t7] = t9
t10 = 4*j
a[t10] = x
jump B2

i ja 4

*

[]

*

[]

t6,t7 t8

x

t9

[] a[t7]

,t10

15-745 Lecture 3

© Seth Copen Goldstein 2001-2 4

Lecture 3 15-745 © Seth Copen Goldstein 2001-2 19

Build a DAG

B5: t6 = 4*i
x = a[t6]
t7 = 4 * i
t8 = 4 * j
t9 = a[t8]
a[t7] = t9
t10 = 4*j
a[t10] = x
jump B2

i ja 4

*

[]

*

[]

t6,t7 t8

x

t9

[] a[t7]

,t10

[]
a[t10]

Lecture 3 15-745 © Seth Copen Goldstein 2001-2 20

Other uses for DAGs
• Can determine those variables that can be live

at end of a block.
• Can determine those variables that are live at

start of block.
B8: t6 = 4*i

x = a[t6]
t7 = 4 * i
x = 4 * j
t9 = a[x]
…

i ja 4

*

[]

*t6,t7 x

x

t9[]

Lecture 3 15-745 © Seth Copen Goldstein 2001-2 21

Dead code too?
• Can determine those variables that can be live

at end of a block.
• Can determine those variables that are live at

start of block.
B8: t6 = 4*i

x = a[t6]
t7 = 4 * i
x = 4 * j
t9 = a[x]
…

i ja 4

*

[]

*t6,t7 x

x

t9[]

Lecture 3 15-745 © Seth Copen Goldstein 2001-2 22

Using the DAG to recreate blocks
• Order of evaluation is any topological sort
• We pick a node. Assign it to ONE of the labels

(hopefully one needed later in the program)
• If we end up with identifiers that are needed

after this block, insert move statements.
• If a node has no identifiers, make up a new one.
• Caveats:

– Procedure calls kill nodes
– A[] = and *p = kill nodes

Lecture 3 15-745 © Seth Copen Goldstein 2001-2 23

Memory References

x = a[i]
a[j] = y
z = a[i]

i ja

[]

[]

x

y

[] z

In general,

• No memory references
may cross each other

• No instructions can move
across a procedure call

Lecture 3 15-745 © Seth Copen Goldstein 2001-2 24

Value Numbering
• Don’t actually build DAG
• Track value of variable in time as a

“value number”

• compute valueOf(var) and valueOf(val, op, val)

• Scan stmts: d <- a op b, computing
– an = valueOf(a)
– bn = valueOf(b)
– opn = valueOf(an, op, bn)
– set valueOf(d) = opn

15-745 Lecture 3

© Seth Copen Goldstein 2001-2 5

Lecture 3 15-745 © Seth Copen Goldstein 2001-2 25

VN example
a = b + c;
b = a – d;
c = b + c;
d = a – d;

Lecture 3 15-745 © Seth Copen Goldstein 2001-2 26

VN uses
• Same as DAGs (live in, live out, CSE)
• How about constant folding?

a = 1
b = 2
c = a + b

Lecture 3 15-745 © Seth Copen Goldstein 2001-2 27

Scope of Optimization
• Local

Within a basic block
• Global

Within a function, across basic blocks
• Interprocedural

The entire program, across functions and basic
blocks.

Lecture 3 15-745 © Seth Copen Goldstein 2001-2 28

The Optimizer

Code
OptimizerFront End Code

Generator

Control-Flow
Analysis

Data-Flow
Analysis

Trans-
formations

Lecture 3 15-745 © Seth Copen Goldstein 2001-2 29

Control Flow Graph
• Each BB is a node in the graph
• Distinguished nodes: Entry & Exit
• Edge between B1 & B2 iff

– B2 can follow B1 in some execution of the
program

• B2 is a target of a jump/branch at end of B1
• B2 follows B1 and B1 does not end with an unconditional jump

– B1 is Entry and B2 is first instruction
– B2 is Exit and B1 can exit procedure

Lecture 3 15-745 © Seth Copen Goldstein 2001-2 30

Terms
• B1 is Predecessor of B2
• B2 is successor of B1
• B2 is a join node B1

B2

Bx
x ≠ 1

15-745 Lecture 3

© Seth Copen Goldstein 2001-2 6

Lecture 3 15-745 © Seth Copen Goldstein 2001-2 31

Unreachable Code Elimination

Lecture 3 15-745 © Seth Copen Goldstein 2001-2 32

Straigtening

