15-745 Lecture 3

15-745 Lecture 3

Basic Blocks
Local Opts
Control Flow Graphs

Copyright © Seth Copen Goldstein 2001-2

15745 © 0012

Optimizations

+ Register Allocation
+ Common subexpression elimination
+ Constant Propagation
+ Copy propagation
- Dead-code elimination
+ Loop optimizations
- Hoisting
- Induction variable elimination

LLLLLL 3 15745 © seth 0012

Scope of Optimization

+ Local

Within a basic block

+ Globadl

Within a function, across basic blocks

* Interprocedural
The entire program, across functions and basic

Basic Blocks

+ What is a basic block?

+ How do we create basic blocks?
- leaders
- Other definitions of leaders

blocks.
Lecn 5.745 © seth
Local Opts: E.g., CSE
B5: t6 = 4*i
x = alté]
t7 =4 * i
t8 =4 * 3
t9 = alts8]
alt7] = t9
t10 = 4§
altlo] = x
jump B2

15745 © 0012

Local Opts: E.g., C

B5: t6 = 4*i B5: t6
x = alté] x
t7 =4 * i
t8 =4 % 5 t8
t9 = alt8] t9
alt7] = t9 alt6]
t10 = 4%
altl0] = x alts]
jump B2 Jump

Lecture 3 15745 © seth 0012

SE

4%i
al[té]

4 * 3
a[t8]
t9

[
i

© Seth Copen Goldstein 2001-2

15-745 Lecture 3

Dags & Stmts

a+a*(b-c)+(b-c)*d

15745 © 0012

Dags & Blocks

Dags & Blocks
a=b+c)
b + Must track assignments
=a-
+ Must keep track of time
c=b+c
d=a-d;
Build a DAG
+ For each var & constant
not seen before create a
y leaf
BEr s =i + For each op, create a
7 =4 *i node and label with Ivalue
t8 =4 *3j
t9 = alts8]
alt7] = t9
£10 = 4%j
altlo] = x
jump B2

a=b+c;
b=a-d;
c=b+c
d=a-d;
LLLLLL) s7i5 0 5o .
Build a DAG
+ For each var & constant
not seen before create a
. leaf
. = *q
B o * For eachop, create a
7 =4 % i node and label with Ivalue
t8 =4 %3
t9 = a[t8]
alt7] = t9
tl0 = 4%j
altlo] = x
jump B2 t6 °
- st o
Build a DAG
+ If you have seen all
rvalues before see if an
interior node with same
B5: t6 = 4%i “op" and operands has
x - alté]
Ty -4 i already been created. If
t8 =4 %3 s0, add a label.
t9 = al[t8]
alt7] = t9
t10 = 4%j
altl0o] = x
jump B2

15745 © seth 0012

© Seth Copen Goldstein 2001-2

15-745 Lecture 3

Build a DAG

Build a DAG
B5: t6 = 4%i
x = alté]
t7 =4 * i
t8 =4 % 5
t9 = a[t8]
alt7] = t9
t10 = 4%j
altl0] = x
jump B2
Build a DAG
B5: t6 = 4%*i
x = a[t6]
t7 =4 * i
t8 =4 %3
t9 = alts8]
alt7] = t9
£10 = 4%5
altl0] = x
Jump P
* Assigning to array or
pointer “kills" all
possible memory Ivalues.
(T.e., they can't get any
more labels.)
Build a DAG
B5: t6 = 4%i
x = a[té6
t7 =4 * i
t8 =4 *
t9 = a[t8
alt7] = t9
£10 = 4%5
altlo] = x
jump B2
Assighment to an array creates a new node with children:
- index
- old value of array
- value assigned

© Seth Copen Goldstein 2001-2

B5: t6 = 4*i
x = a[té]
t7 =4 * i
t8 =4 %3
t9 = alts]
alt7] = t9
t10 = 4%j
altlo] = x
jump B2
LLLLLL s 15745 0 sen o012 u
Memory References
x = alil
aljl =y
z = alil
Becomes:

B5:

t6

t7

t8

t9
alt7]
t10
altlo0]
jump

Build a DAG

4*i
a[t6]

[T R T R T T
N
®

15745 © seth 0012

15-745 Lecture 3

Build a DAG
B5: t6 = 4*i
x = alté]
t7 =4 * i
t8 =4 * 3
t9 = alts8]
alt7] = t9
£10 = 4%§
altl0] =
jump B2 £8,t10

15745 © 0012

Other uses for DAGs

+ Can determine those variables that canbe live
at end of a block.

+ Can determine those variables that are live at
start of block.
B8: t6

t7

t9

LLLLLL 3 15745 © seth 0012

Dead code to0?

+ Can determine those variables that can be live

at end of a block.

+ Can determine those variables that are live at

start of block.

Using the DAG to recreate blocks

+ Order of evaluation is any topological sort

+ We pick a node. Assign it to ONE of the labels
(hopefully one needed later in the program)

+ If we end up with identifiers that are needed
after this block, insert move statements.

+ If a node has no identifiers, make up a new one.
+ Caveats:

- Procedure calls kill nodes

- A[] = and *p = kill nodes

B8: t6 = 4%*i
x = alté]
t7 =4 * i
x =4 *3j
t9 = alx]
Memory References
Ingeneral,
+ No memory references
x = ali] may cross each other
aljl =y

* No instructions can move
across a procedure call

15745 © 0012

Value Numbering

+ Don't actually build DAG

+ Track value of variable in time as a
“value humber"

+ compute valueOf(var) and valueOf(val, op, val)

+ Scan stmts: d<- a op b, computing
- a, = valueOf(a)
- b, = valueOf(b)
- op, = valueOf(a,, op, b,)
- set valueOf(d) = op,

Lecture 3 15745 © seth 0012

© Seth Copen Goldstein 2001-2

15-745 Lecture 3

VN example

Lecture 3 15745 © 0012 2

VN uses

+ Same as DAGs (live in, live out, CSE)
+ How about constant folding?

Scope of Optimization

+ Local

Within a basic block
+ Globadl

Within a function, across basic blocks
* Interprocedural

The entire program, across functions and basic
blocks.

Control Flow Graph

+ Each BB is a node in the graph
- Distinguished nodes: Entry & Exit
- Edge between B1 & B2 iff

- B2 can follow Bl in some execution of the
program
+ B2 is a target of a jump/branch at end of Bl
+ B2 follows B1 and B1 does not end with an unconditional jump

- Blis Entry and B2 is first instruction
- B2 is Exit and B1 can exit procedure

Lecture 3 15745 © 0012 2

© Seth Copen Goldstein 2001-2

a=1

b=2

c=a+b

The Optimizer
Code Code

Front End Optimizer i Generator
Control-Flow Data-Flow Trans-

Analysis Analysis formations

Terms

+ Bl is Predecessor of B2

- B2 is successor of Bl
+ B2 isa join node @ @

Lecture 3 15745 © seth 0012

15-745 Lecture 3

uuuuuuu

Unreachable Code Elimination

© Seth Copen Goldstein 2001-2

Straigtening

