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ABSTRACT 
Linked data structures are characterised by sequence of linked data records organized by value              
and one or more references (pointers) from one record to another. The irregular memory access               
pattern lacks spatial locality and don’t work well for LRU. We compare and analyze the existing                
cache replacement policies (DIP, DRRIP and Hawkeye) for dynamically constructed linked data            
structures. We suggest a program counter based linked data structure access detection and victim              
cache placement for such lines to avoid pollution of primary workload cache behavior. 
 
 
PROBLEM STATEMENT/MOTIVATION 
Use of Linked Data Structures (LDS) such as linked list, tree, hash table etc. is a common thing                  
in database, graphics and graph applications. The data structures are generally of the form of data                
and associated one or more pointers which define the next data item address to be used for                 
processing. The usability of LDS comes from their flexibility, not their performance. LDS             
access, often referred to as pointer-chasing, entails chains of data dependent loads that serialize              
address generation and memory access. In traversing an LDS, these loads often form the              
program’s critical path. Consequently, when they miss in the cache, they can severely limit              
parallelism and degrade performance.  
 

 
Figure 1. Pointer chasing in a traditional architecture​[1] 

 
The memory accesses generated due to pointer chasing are prone to memory latency and              
frequent cache and TLB misses due to highly irregular memory access. Caches only exploit              
spatial and temporal locality in a set of address referenced in a program. Linked data structures                
provide exibility of creating and deleting nodes dynamically, and hence avoid the overhead of              
bothering about the size of the data structure in advance. However, due to dynamic construction,               
they are difficult to cache as the spatial locality between the nodes is highly dependent on the                 
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data layout. Such accesses don’t benefit much from prefetching due to low accuracy in              
pre-fetching and poor locality of data being accessed.  
 
RELATED WORK 
We found several efforts for implementation of hardware/software based prefetchers for LDS in             
academia. Some of the literatures talk about prefetching techniques to improve the performance             
of LDS. Roth et. al ​[2] suggest exploitation of the dependency between the consecutive accesses               
of LDS in a program and feed this information to the prefetcher to hide the memory latency.                 
Such approaches depend highly on the amount of work in a program that can be interleaved with                 
this latency. Luk and Mowry ​[3] proposed and evaluated a greedy compiler algorithm for              
scheduling software prefetching for linked data structures. It uses type information to identify             
recurrent pointer accesses, including those accessed via arrays, and may have advantages in             
tailoring a prefetch schedule to a particular traversal. Another popular paper by Roth and Sohi               
[4] talks about instrumenting the code itself to fill the special queue or array by a mechanism                 
called jump pointers, which is then fed to software/hardware based prefetchers to get the next               
node of LDS, effectively reducing the memory access latency.  
 
There is a fair amount of research that has been done to improve cache efficiency with adaptive                 
cache replacement policies or predicting future accesses to evict the line (Hawkeye), but there is               
no fair comparison for their performance for LDS available. IMPICA paper by Hsieh et. al​[1]               
talk about doing the pointer chasing inside the 3D stacked PIM core and only getting the final                 
search result back to the program, this way it saves latency incurred by many intermediate               
accesses to memory back and forth from processor. That said, we couldn’t find anything that               
discusses a cache replacement technique for linked data structures that could help in performing              
better for such structures, and thought about giving a fair try at developing the cache replacement                
policy without the overhead of prefetcher or PIM mechanism for the pointer chasing.  
 
So the goal of the project is twofold: 

1. Compare and analyze the existing cache replacement policies namely DIP ​[5]​, DRRIP​[6]            
and Hawkeye​[7] for dynamically constructed linked data structures and compare with           
Belady’s OPT ​[8]​. 

2. Try to overcome the shortcomings of existing policies with a better cache policy to              
accommodate pointer chasing. 

 
OUR APPROACH 
Our approach (we call it CaRP) is based on the observation that compiler generated assembly               
will have a limited range of instructions in which the accesses to linked data structure with high                 
miss based loads are happening (Fig 2). We try to track these instruction addresses and try to                 
place them in a dedicated victim cache to improve cache miss rate. 
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Pointer Chase Detection 
If we consider a program which accesses a linked data structure with a piece of code for some                  
form of traversal or access. The program is most likely to be written in iterative loop or recursion                  
where the different records of data structure say linked list or tree would be referenced by                
traversing the reference to next data record. The compilation of such a code would result in                
assembly basic block which would have load instruction with some form of offset from a fixed                
memory location or from the address contained in a register. For a highly irregular memory               
access with little or no locality, would cause high number of misses on the particular instruction. 
 
We consider the above property of data access in program execution as our invariant of pointer                
chase based memory access and try to exploit the behavior for placing such accesses in a victim                 
cache. Consider an code snippet below for inorder traversal of a binary tree and its assembly                
code. The accesses to next node and data of a node in binary tree is translated in ‘mov’                  
instruction to load the data from some memory location pointed by register into a register. For a                 
highly irregular memory access of node pointers, these ‘mov’ instructions will generate high             
number of cache misses. These ‘mov’ instructions can be traced by the program counter (PC)               
based on some heuristic for which this behaviour occurs and hence, can be used to have a special                  
actions for such PC occurrences or insert those in victim cache in our case. 
 
 

 
Figure 2. Example code and its assembly version for pointer chasing 

 
 
Replacement Policy for Pointer Chasing 
We augment the existing cache policies such as LRU, DRRIP, Hawkeye for pointer chasing type               
of workloads using the variant discussed above by adding a special LRU based fully associative               
victim cache. 
 
For checking whether a particular data has a hit in the cache, we check the main cache (L2) tag                   
array followed by victim cache array and declare cache hit if found in either one. For cache miss,                  
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we call the predicate function f​predicate in cache replacement policy with PC and line address of                
memory request as an arguments. The replacement policy decides whether to insert the given              
line in victim cache or the actual cache. The augmented cache replacement policy keeps track of                
the consecutive misses encountered for last unique 1024 instructions executed. If the number of              
consecutive misses on particular PC are greater than threshold T​H​, then the particular miss is               
handled by the victim cache, or by the main cache otherwise. 
 

 
 

Figure 3. PC based tracking mechanism deployed in CaRP. The predicate function will decide whether to 
place next line in victim cache or in L2. 

 
To ensure that the replacement policy doesn’t capture the cold misses for the beginning of               
execution, we make sure that all the lines in the particular set to which the memory request maps                  
to contains no unused lines.  
 
We also make sure that for a given PC, if memory accesses are within some range and display                  
some sort of locality, we put the next accesses to the same PC for which the miss is encountered                   
in main cache rather than in victim cache. Since out victim cache array is very small (64 lines),                  
this helps us saving the thrashing that might have happened if we had placed this sort of accesses                  
in victim cache itself.  
 
For deciding the value of threshold T​H,​ we use three different approaches : 

1. Static T​H​ value manually fitted to all benchmarks (A1). 
2. Self adjusting workload based threshold where the threshold are adjusted based on the the              

number of misses encountered are greater or less than the threshold value capped at min               
and max values (A2). 

3. T​H values always set at (misses_encountered - 1) where misses_encountered is the            
number of consecutive misses for the line last inserted in victim cache (A3). 
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METHODOLOGY 
Simulation 
We are using ZSim[3] simulator running on Ubuntu 12.04.2 (Precise Pangolin) to simulate the              
cache policies. ZSim uses Pin for dynamic binary instrumentation. Our baseline processor is             
single simple in-order core with three level cache hierarchy. Our cache hierarchy is roughly              
similar to that of Intel Core i7. The L1 instruction and data cache are 4-way 32 KB each. L2 and                    
L3 cache are unified 8-way 256KB and 16-way 2MB respectively. We model 5, 12 and 35 cycle                 
latency for L1, L2 and L3 cache respectively. All the caches use 64B line size. We target our                  
evaluation and experimentation for cache policies on L2 cache with L1 cache replacement policy              
always kept LRU, since LRU for L1 is efficient and less expensive in terms of overhead and                 
implementation. L3 cache is always kept LRU as well. 
 
We first use trace generation mode of ZSim, where we generate trace files for accesses from L1                 
to L2 with maximum simulation time set to 12 minutes. This allows us to capture enough                
execution for the benchmarks being evaluated such that the L2 cache miss rates come to a steady                 
state for majority of execution time (Fig 4). The traces captured in previous step are replayed on                 
L2 cache with ZSim in trace driven mode with cache policy changed on L2 and hence, allowing                 
us to compare the performance of different cache policies on different benchmarks. Trace driven              
execution becomes useful in getting theoretical minimum miss rates possible using Belady’s            
MIN (OPT) where we require the knowledge of future to do optimal cache replacement. 
 

 
Figure 4. Showing the miss ratio for perimeter, bh, and btree benchmarks reaching to steady state after 

initial cache warm up 
 
Benchmark 
We use Olden benchmark ​[9] to evaluate performance for LDS. The Olden benchmarks are a               
collection of programs that includes small and medium sized scientific codes (bh and em3d),              
process simulations (power), graph optimization routines (tsp), graphics utilities (perimeter and           
voronoi) and a toy tree benchmark (treeadd). Additionally, we use btree and llu benchmarks from               
the IMPICA paper. 
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Table 1: Description of benchmarks used for the project ​[10] 

 
 
Results 
We implemented and evaluated cache policies i.e. MIN, DIP, DRRIP, Hawkeye on ZSim. We              
first describe the comparison between various cache policies and then compare the performance             
of our approach by implementing it with LRU, DRRIP and Hawkeye. 
 
Comparison Between Existing Cache Policies 
Fig 5 shows the performance of different cache policies with respect to OPT. Majority of               
benchmarks perform better in terms of miss ratio on DRRIP. We see that LRU on an average                 
performs worse by 20.97% maximum wrt OPT on power benchmark. This difference is             
drastically reduced to approx 1.77% by use of DRRIP. The benchmarks on which DRRIP              
performs worse than LRU are graphics utilities benchmarks i.e. voronoi and perimeter by 4.3%              
and 1.7% respectively. DIP policy shows behavior similar to LRU on multiple benchmarks, but              
helps in reducing miss rate on benchmarks such as bh (5.8% improvement), em3d (4.8%              
improvement) and tsp (3% improvement). We found the behavior of Hawkeye to be quite erratic               
and it sometimes performs very well on few of the benchmarks or goes to very bad performance.                 
For example, Hawkeye exhibits 81.8% miss rate on perimeter, which is worst of all policies               
including LRU. On the other hand, it performs best with power benchmark with miss rate of                
75.16%. However, it would be better to use DRRIP which gives miss rate of 75.43% on power,                 
with much regular and better improvements on other workloads. 
 
Overall, the performance of DRRIP was found to be consistent and very well on multiple               
benchmarks. The difference between DRRIP and OPT remains at average of 5.08% except the              
performance on voronoi as discussed above. The results give us a pretty tight bounds of               
improvement for cache policies with respect to OPT. 
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Figure 5: Comparing miss rate with different policies for linked-data structure driven workload. 

 
Comparison of CaRP with Existing Policies 
We implemented a new strategy by extending the target cache policy (such as LRU, DRRIP,               
Hawkeye) with PC based predictor which tracks the consecutive misses on a particular PC with               
the last memory access address and timestamp on the particular instruction. If the newer memory               
address maps to conflicting memory address, and the number of consecutive misses on             
corresponding PC are greater than a threshold, then the particular miss is handled by putting new                
access in 64 line wide fully associative victim cache. The value of threshold is decided using                
previously discussed 3 approaches. We use the threshold value of 4 as static threshold value. 
 
Figure 6, 7 and 8 below show the comparison of LRU, DRRIP and Hawkeye respectively with                
the three approaches for adjusting threshold. In the second approach we are dynamically             
adjusting the threshold value .i.e if threshold is less than the recorded consecutive misses on               
given PC, it is increased by 1 and decreased by 1 in the same manner with threshold value                  
capped with (MIN, MAX) = (3,25) with initial threshold value of 5. We found that static                
threshold value and dynamic threshold value perform moreover the same across multiple            
policies. But, we see some slight improvements in perimeter, voronoi, em3d and llu. 
 
With respect to original cache policies, we found btree and power to be only benchmark               
performing significantly better by 4% and 9% respectively. We see very less improvements(less             
than 1%) on bh, em3d and llu. Interestingly, the power benchmark tends to approximate the               
performance equivalent to MIN with the help victim cache (less than 0.5% difference to MIN).               
In our intermediate results during poster session, we were getting majority of workloads to be               
performing very bad with victim cache, which we solved using intuition of using the last               
accessed memory address on PC to improve the overall behavior. 
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Figure 6: Comparing miss rate with LRU and MIN against the first approach(static value across all 

benchmarks) for T​H ​manipulation. 
 

 
Figure 7: Comparing miss rate with DRRIP and MIN against the second approach(self-adjusting value 

across all benchmarks) for T​H ​manipulation. 
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Figure 8: Comparing miss rate with Hawkeye and MIN against the third approach(self-adjusting value 
with T​H​ dependent on misses incurred in the previous run across all benchmarks) for T​H ​manipulation. 

 
In the third approach, the threshold value to detect pointer chasing is dependent on the number of                 
misses incurred in the previous run. (T​H < misses; T​H = misses-1). This approach however               
performed similar or worse for most of the benchmarks. This could be due to the ad-hoc                
behaviour between the previous and the next run. The fact that we simply set the threshold value                 
according to previous behavior might have been too aggressive and hence, even worsened the              
original cache policy performance. 
 
CONCLUSION 
It is seen that even though LRU is very popular policy employed in modern caches, other                
policies perform better than LRU when it comes to pointer chasing benchmarks. It has been               
proven in [5], [6] and [7] that these policies also perform better than LRU on general class of                  
workloads altogether. We found that there is a very little scope of improvement (6-7%) when it                
comes to pointer chasing benchmarks. Hence, it would be better to use much better strategy such                
as DRRIP to get better miss rates on L2 cache. 
 
We tried to improve these by detecting pointer chasing behavior by exploiting how memory              
access happen during program execution, by tracking consecutive misses on a particular PC and              
declaring it as pointer chasing instruction if the number goes above a certain threshold. We saw a                 
little improvement on btree and power benchmarks, very minor improvement in em3d, bh, and              
llu. However, we did not see any significant improvement overall behavior. 
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We think that the 6-7% bound of possible performance improvement imposed by MIN is very               
high and conservative to find any significant improvement for our particular scenario and come              
up with one fits-all solution. If one wants to improve any further, they might have to do very                  
specific policy with respect to type of data structure and its access parameters. 
 
REFERENCES  

[1] K. Hsieh ​et al.​, “Accelerating pointer chasing in 3D-stacked memory: Challenges, mechanisms, 
evaluation,” in ​2016 IEEE 34th International Conference on Computer Design (ICCD)​, 2016. 

[2] A. Roth, A. Moshovos, and G. S. Sohi, “Dependence based prefetching for linked data structures,” 
ACM SIGPLAN Notices​, vol. 33, no. 11, pp. 115–126, 1998. 

[3] C.-K. Luk and T. C. Mowry, “Compiler-based prefetching for recursive data structures,” ​ACM 
SIGPLAN Notices​, vol. 31, no. 9, pp. 222–233, 1996. 

[4] A. Roth and G. S. Sohi, “Effective jump-pointer prefetching for linked data structures,” ​ACM 
SIGARCH Computer Architecture News​, vol. 27, no. 2, pp. 111–121, 1999. 

[5] M. K. Qureshi, A. Jaleel, Y. N. Patt, S. C. Steely, and J. Emer, “Adaptive insertion policies for high 
performance caching,” ​ACM SIGARCH Computer Architecture News​, vol. 35, no. 2, p. 381, 2007. 

[6] A. Jaleel, K. B. Theobald, S. C. Steely, and J. Emer, “High performance cache replacement using 
re-reference interval prediction (RRIP),” ​ACM SIGARCH Computer Architecture News​, vol. 38, no. 
3, p. 60, 2010. 

[7] A. Jain and C. Lin, “Back to the Future: Leveraging Belady’s Algorithm for Improved Cache 
Replacement,” in ​2016 ACM/IEEE 43rd Annual International Symposium on Computer Architecture 
(ISCA)​, 2016. 

[8] L. A. Belady, “A study of replacement algorithms for a virtual-storage computer,” ​IBM Syst. J.​, vol. 
5, no. 2, pp. 78–101, 1966. 

[9] M. C. Carlisle and A. Rogers, “Supporting Dynamic Data Structures with Olden,” in ​Lecture Notes 
in Computer Science​, 2001, pp. 709–749. 

[10] “Olden benchmarks simulations.” [Online]. Available: 
https://www.irisa.fr/caps/people/truong/M2COct99/Benchmarks/Olden/Welcome.html​. [Accessed: 
11-May-2018]. 

Page 10 

http://paperpile.com/b/ZvXro7/16CN
http://paperpile.com/b/ZvXro7/16CN
http://paperpile.com/b/ZvXro7/16CN
http://paperpile.com/b/ZvXro7/16CN
http://paperpile.com/b/ZvXro7/16CN
http://paperpile.com/b/ZvXro7/16CN
http://paperpile.com/b/ZvXro7/Lj5V
http://paperpile.com/b/ZvXro7/Lj5V
http://paperpile.com/b/ZvXro7/Lj5V
http://paperpile.com/b/ZvXro7/KZKw
http://paperpile.com/b/ZvXro7/KZKw
http://paperpile.com/b/ZvXro7/KZKw
http://paperpile.com/b/ZvXro7/KZKw
http://paperpile.com/b/ZvXro7/SqVn
http://paperpile.com/b/ZvXro7/SqVn
http://paperpile.com/b/ZvXro7/SqVn
http://paperpile.com/b/ZvXro7/SqVn
http://paperpile.com/b/ZvXro7/obPm
http://paperpile.com/b/ZvXro7/obPm
http://paperpile.com/b/ZvXro7/obPm
http://paperpile.com/b/ZvXro7/obPm
http://paperpile.com/b/ZvXro7/m2c8
http://paperpile.com/b/ZvXro7/m2c8
http://paperpile.com/b/ZvXro7/m2c8
http://paperpile.com/b/ZvXro7/m2c8
http://paperpile.com/b/ZvXro7/m2c8
http://paperpile.com/b/ZvXro7/z0Nx
http://paperpile.com/b/ZvXro7/z0Nx
http://paperpile.com/b/ZvXro7/z0Nx
http://paperpile.com/b/ZvXro7/z0Nx
http://paperpile.com/b/ZvXro7/z0Nx
http://paperpile.com/b/ZvXro7/l7av
http://paperpile.com/b/ZvXro7/l7av
http://paperpile.com/b/ZvXro7/l7av
http://paperpile.com/b/ZvXro7/l7av
http://paperpile.com/b/ZvXro7/CNrN
http://paperpile.com/b/ZvXro7/CNrN
http://paperpile.com/b/ZvXro7/CNrN
http://paperpile.com/b/ZvXro7/CNrN
http://paperpile.com/b/ZvXro7/NZhx
https://www.irisa.fr/caps/people/truong/M2COct99/Benchmarks/Olden/Welcome.html
http://paperpile.com/b/ZvXro7/NZhx
http://paperpile.com/b/ZvXro7/NZhx

