
CS 740, Spring 2017

Homework Assignment 1

Assigned: Thursday, January 19
Due: Tuesday, January 31, 9:00AM

The purpose of this assignment is to develop techniques for measuring code performance,
to practice reasoning about low-level code optimization, and to develop your own performance
analysis tool using binary instrumentation.

Policy

You will work in groups of two or three people in solving the problems for this assignment. Turn
in a single writeup per group, indicating all group members as indicated below.

Logistics

Any clarifications and revisions to the assignment will be posted on the class “assignments” web
page.

To get started, download assignment1-handout.tar from Autolab (https://autolab.cs.
cmu.edu) to a directory accessible only to your team. We recommend using AFS space and
the cluster machines ghc01.ghc.andrew.cmu.edu – ghc50.ghc.andrew.cmu.edu (you can log
in with your Andrew credentials). In the following, ASSTDIR refers to the directory that is
unpacked with tar xvf assignment1-handout.tar .

When you are ready to hand in your solution, upload it to Autolab. Your submission should
be a .tar file consisting of the following:

1. writeup.txt or writeup.pdf, your writeup in plain text or PDF.

2. func time.c for Problem 3

3. cachemiss.c for the Cache Misses portion of Problem 5

4. strcat-x64-annotated.dis for Problem 6

5. a folder called pintool, your cache profiling tool for Problem 8

To make your submission, do a make submit.

Please hand in your assignment using Autolab. You may submit as many times as you would
like. This is a long assignment—start early, and note that the last question is worth 45 points.
Finally, most questions involve both implementation and analysis. Do not disregard the analysis
portions! They make up a considerable portion of the allotted points.

Using Interval Timers

Measuring performance is fundamental to the study of computer systems. When comparing
machines, or when optimizing code, it is often useful to measure the amount of time that it

1

Δ
OP

Tactual

TfTs

Tobserved = Tf - Ts

Figure 1: Time Measurement with an Interval Timer

takes (preferably at the resolution of processor clock cycles) to execute a particular operation
or procedure. Some machines have special facilities to assist in measuring performance. Even
without such facilities, almost all machines provide interval timers—a relatively crude method
of computing elapsed times. In this assignment, you will investigate how to reason about and
control the accuracy of timing information that can be gathered using interval timers. One of
the goals is to develop a function timer which accurately measures the execution time of any
function on any machine.

The overall operation of an interval timer is illustrated in Figure 1. The system maintains a
(user-settable) counter value which is updated periodically. That is, once every ∆ time units, the
counter is incremented by ∆. Using the Unix library routine getitimer, the user can poll the
value of this counter. Thus, to measure the elapsed time of some operation Op, the user can poll
the counter to get a starting value Ts, perform the operation, and poll the counter to get a final
value Tf . The elapsed time for the operation can be approximated as Tobserved = Tf −Ts. As the
figure illustrates, however, the actual elapsed time Tactual may differ from Tobserved significantly,
due to the coarseness of the timer resolution. Since the value of ∆ is around 10 milliseconds for
most systems, this error can be very significant.

We have encapsulated the Unix interval timer routines for you in a as part of a package
called ASSTDIR/perf.c. You should use this package for the measurements in the assignment.
One notable feature is that it converts the measurements to units of seconds, expressed as a C
long double. The procedure for timing operation Op is then:

init_etime();

Ts = get_etime();

Op;

Tf = get_etime()

T_observed = Tf - Ts;

See ASSTDIR/example.c for a simple example of how to use the interval timer. Note: This
code has been tested to work on the general purpose Linux machines (linux.andrew.cmu.edu
and linux.gp.cs.cmu.edu) using GCC.

Problem 1: Bounded Measurement Error (5 points)

2

Consider a processor with a 2 GHz clock rate where precisely one addition operation can be
performed every clock cycle, and where the value of ∆ for the interval timer is 10 milliseconds.
You would like to time a section of code (Op) consisting purely of a sequence of back-to-back
additions.

If your code sequence consists of 105 additions, what will the relative measurement error of
Tobserved with respect to Tactual be? How about for 109 additions? As always, show all of your
work.

Problem 2: Measuring ∆ for Your Timer (10 points)

Write a C procedure that uses measurements to estimate (as accurately as possible) the
value of ∆ on any UNIX machine. Provide a listing of your code along with a brief description
of your scheme.

We can improve the accuracy of the measurements by making sure that the activity we
measure has sufficient duration to overcome the imprecision of interval timers. That is, we can
accurately measure the time required by Op by executing it n times for a sufficiently large value
of n:

init_etime();

Ts = get_etime();

for (i=0; i<n; i++) {

Op;

}

Tf = get_etime()

T_aggregate = Tf - Ts;

T_average = T_aggregate/n;

How do we choose a large enough value of n? The idea is that n must be large enough
such that Taggregate is larger than the minimum value (Tthreshold) which guarantees a relative
measurement error less than the desired upper bound of E. The value of Tthreshold can be
computed based on ∆ and E. However, since the elapsed time for Op is unknown, we cannot
compute the minimum value of n ahead of time.

One approach is to start with n = 1, and continue doubling it until the observed Taggregate

is large enough to guarantee sufficient accuracy (i.e. it is larger than Tthreshold).

Problem 3: Implementing a Function Timer (5 points)

Implement a function timer in C that uses the doubling scheme outlined above to accurately
measure the running time of any function on any system. Your function timer should have the
following interface

typdef void (*test_funct)(void);

double func_time(test_funct P, double E);

where P is the function to be timed and E is the maximum relative measurement error. These
prototypes are already defined for you in ASSTDIR/func time.h. Implement your func time()

function in a separate file called func time.c.

3

Your function timer should: (1) determine the timer period ∆ using the scheme from the
previous problem; (2) calculate Tthreshold as a function of ∆ and E; and then (3) repeatedly
double n until Taggregate ≥ Tthreshold. It should work for any function on any system, regardless
of the running time of the function or the timer period of the system.

Problem 4: Testing Your Function Timer (5 points)

Test your function timer using the program ASSTDIR/freq.c, which uses func_time() to
estimate the clock frequency of your machine. This routine assumes that your machine executes
an integer addition in one clock cycle. This is a safe assumption for most modern processors.

Turn in the output string from freq.c and the type of system you ran it on.

Problem 5: Using Hardware Counters (10 points)

Modern CPUs provide a variety of counters that enable us to get more data when measuring
performance. Here we will experiment with timing and cache miss instrumentation.

Time
Another way to improve the accuracy of our measurements is to use a more precise timer. In
addition to the interval timer (get etime()), ASSTDIR/perf.c provides a similar hardware-
based timer: get etime hw().

Modify your func time.c to include a function

double func_time_hw(test_funct P, double E);

that uses get etime hw(). Since the hardware counter resolution is smaller, you may find it
helpful to measure k∆ and divide by k for k � 1 to obtain a useful ∆.

Cache Misses
We saw in class that cache interactions can influence performance. ASSTDIR/perf.c contains
functions start cachemiss count and get cachemiss count that can be used as follows:

start_cachemiss_count();

Ops;

misses = get_cachemiss_count();

Write two blocks of code that perform the same number of loads and stores, but that produce
different numbers of cache misses. Explain why you think they will behave differently, and mea-
sure cache misses for each with start cachemiss count and get cachemiss count, reporting
the mean for each over 10 runs.

Optimizing the strcat() Routine

Our interest is in being able to understand and measure the machine code generated by a
compiler. This is a far more useful skill than being able to churn out pages of assembly code by
hand. Parts of this assignment involve compiling, disassembling, and running x86 code. In the
next several problems, we will be focusing on the performance of the strcat() routine, which is

4

part of the C library. The following paraphrased excerpts from the strcat() man page describe
its interface and behavior:

char *strcat(char *dest, const char *src);

• The strcat() function appends the src string to the dest string, overwriting the ‘\0’
character at the end of dest. A pointer to the resulting string, dest, is returned.

• The src and dest strings must not overlap, and the dest string must have enough space
for the result.

• If you pass an out of bounds or NULL pointer to strcat, the function generates a segmen-
tation violation.

• There are no return values reserved to indicate an error.

The file ASSTDIR/strcat naive.c contains a straightforward (but naive, from a per-
formance perspective) implementation of strcat() in C called “my strcat()”. The file
ASSTDIR/strcat naive.s contains the x86 assembly code generated using the command:
gcc -O -S strcat_naive.c

The file ASSTDIR/strcat-x64.dis contains a disassembled version of the strcat() routine
taken from the Unix library /lib64/libc.so.6 on an x64 machine. (This was disassembled with
objdump.)

Problem 6: Understanding the strcat() Assembly Code (10 points)

Generate an “annotated” version of both ASSTDIR/strcat naive.s and ASST-
DIR/strcat-x64.dis using the following conventions:

• Put comments at the top of a code segment describing register usage and initial conditions.

• Put comments along the right hand side describing what each instruction does.

NOTE: Comments of the form:

The following 2 instructions use registers eax, ecx, edx.

add %ecx, %edx # edx = edx + ecx

mov (%eax), %ecx # ecx = Mem[eax]

are useless and will receive little (if any) credit. Instead, we would like to see comments
like the following:

Throughout the loop: eax holds i, ecx holds n

At the beginning of the loop: edx = &v[0]

add $1, %eax # i = i + 1

mov (%edx, %eax, 4), %ecx # n = v[i]

In other words, your comments should convey semantic information from the source code,
and not simply reiterate what would be obvious to anyone who can read x86 assembly
code.

5

Note: for full credit, you must identify the goal of the operations involving
0xfefefefefefefeff. For extra credit (5 points), you may explain how it works, including
the significance of each operation.

Problem 7: Measuring the Performance of the strcat() Routines
(10 points)

Use the performance code you have written above to instrument both the strcat naive()

routine in ASSTDIR/strcat naive.c and C library implementation of strcat() on the various
strcat() calls contained in ASSTDIR/strcat test.c. For each call, produce the following:

1. Time as measured by your interval timer code

2. Time as measured by the hardware timer code

3. Cache misses

Note that you should produce separate timing numbers for each of these individual calls to
strcat(), and be sure to call the initialization routine in this file before you start timing things
to ensure that the cache is warm.

Discuss the relative performance differences between the two versions of the routine, and
whether they make sense given your analysis of the assembly code.

Problem 8: Writing Your Own Performance Analysis Tool using Pin
(45 points)

Dynamic binary instrumentation (DBI) is a powerful technique for writing program analysis
tools. DBI works by rewriting an executable on-the-fly to insert instrumentation code. DBI
infrastructures also provide an interface for specifying user code (i.e. a tool) to be invoked as
the program executes, as well exactly where and when this code should be invoked.

In this assignment, you will be using Pin (a DBI infrastructure for x86) to write your own
tool for analyzing cache performance. Pin (http://www.pintool.org) is a publicly available
(but not open source) tool developed by Intel. There is a nice tutorial on how to use Pin 1; we
highly recommend you read at least the first half. There are also a number of example tools in
the Pin distribution.

Your goal is to develop (and use) your own tool to analyze cache performance. The goal
of this tool is not simply to report overall cache misses, but to help identify which memory
references (and which dynamic instances of those instructions) are responsible for causing the
most cache misses.

While the Pin distribution already includes a cache analysis tool, that tool is overkill for
our purposes in terms of the sophistication of its cache model, and it is also lacking some key
functionality that we would like for you to implement for the sake of understanding when cache
misses occur. Hence we would like you to write your own tool from scratch. (You are free to
look at the existing tool, but you are better off starting with a clean slate, given how little of
that code you will want to reuse.)

Regarding your cache model, we would like you to implement the following:

1https://software.intel.com/sites/landingpage/pintool/docs/76991/Pin/html/

6

• Single-level “split” (i.e. separate) instruction and data caches, such that all instruction
references go to the instruction cache, and all data references go to the data cache. (Note
that a realistic cache hierarchy would have multiple levels of cache, but we are only asking
you to model a single level in this assignment.)

• The cache size, line size, cache miss penalty and associativity should be parameters to your
simulator. Assume that the configuration of both the instruction and data caches is the
same. These are the only cache parameters that you need to support. It is safe to assume
that cache size and line size are powers of two.

• For the associativity parameter, you only need to support direct-mapped and 2-way set
associative. If a cache is 2-way set associative configuration, you should implement a
least-recently-used (LRU) replacement policy within each set.

• Assume the following regarding the time that it takes the processor to execute each in-
struction. Ignoring cache misses, the normal execution of each instruction takes 1 cycle. In
addition, if a given instruction suffers either an instruction cache miss or a data cache miss
(it is possible for one instruction to suffer either or both of these types of cache misses),
then the processor suffers an additional M cycles per cache miss. Hence an instruction
that suffers no cache misses executes in 1 cycle, an instruction that suffers an instruction
cache miss but not a data cache miss (or vice versa) executes in 1 + M cycles, and an
instruction that suffers both instruction and data cache misses executes in 1 + 2M cycles.
Assume that the processor executes only one instruction at a time, and that none of these
times are overlapped with the execution times of other instructions.

• An instruction may have multiple memory reads and/or a memory write. Write your
simulator to service the first read, then the second read, and then the write (of course,
omitting the operations of this sequence that do not occur).

You will be recording not only the total cache misses for the instruction and data caches, but
also a profile of the cache behavior for individual instructions and data references. Regarding
the output of your tool, you should present summary statistics for each cache as well as a
rank ordering of the most significant data references and instruction references according to
their contribution to absolute misses for that particular cache. At minimum, your tools should
present the information illustrated in Figure 2 for each entry in this rank-ordered table, including
the program counter (PC) value of the given instruction. Given the rank-ordered cache miss
profile illustrated in Figure 2, you could look up the PC values in disassembled code to match
these behaviors back to the application source code.

There are a number of machines available with Pin installed for building and run-
ning this portion of the assignment: log in to any of ghc01.ghc.andrew.cmu.edu –
ghc50.ghc.andrew.cmu.edu with your Andrew credentials. To build your Pintool, run

make obj-intel64/pin_cache.so

in the pintool directory. To run your Pintool, run

PIN_ROOT=/afs/cs.cmu.edu/academic/class/15740-s17/public/pin-3.0

$PIN_ROOT/pin -t obj-intel64/pin_cache.so [args...] -- binary

where binary is the program you wish to instrument. You may want to export PIN ROOT from
your .bash profile.

7

Overall Performance Breakdown:

==============================

Instruction Execution: 2724M cycles (4.2%)

Data Cache Stalls: 40700M cycles (63.5%)

Instruction Cache Stalls: 20700M cycles (32.3%)

--

Total Execution Time: 64124M cycles (100.0%)

Data Cache:

===========

Configuration: size = 64KB, line size = 32B, associativity = 2-way,

miss latency = 100 cycles

Overall Performance: 1324M References, 407M Misses, Miss Rate = 30.7%,

Data Cache Stalls = 40700M cycles

Rank ordering of data references by absolute miss cycles:

Total Contribution

Miss Miss to Total Data

PC Type References Misses Rate Cycles Miss Cycles

---------- ---- ---------- ------ ----- ------ ------------

1. 0x47601208 Load 201.7M 53.1M 26.3% 5310M 13.0%

2. 0x4769148c Store 349.2M 46.5M 13.3% 4650M 11.4%

3. 0x476327c0 Load 71.0M 39.2M 55.2% 3920M 9.6%

4. 0x47842074 Load 101.2M 32.8M 32.4% 3280M 8.1%

...

20. 0x47832148 Store 68.2M 5.3M 7.8% 530M 1.3%

Instruction Cache:

==================

Configuration: size = 64KB, line size = 32B, associativity = 2-way

miss latency = 100 cycles

Overall Performance: 2724M References, 207M Misses, Miss Rate = 7.6%,

Inst Cache Stalls = 20700M cycles

Rank ordering of instruction references by absolute miss cycles:

Total Contribution

Miss Miss to Total Inst

PC References Misses Rate Cycles Miss Cycles

---------- ---------- ------ ----- ------ ------------

1. 0x41621378 171.7M 88.1M 51.3% 8810M 42.6%

2. 0x41486910 43.2M 31.7M 73.4% 3170M 15.3%

...

Figure 2: Example of output from the initial cache miss profiling tool.

Your mission is the following:

Part 1: Build a Pin-based cache profiling tool (from scratch) that can generate output as il-
lustrated in Figure 2 (your output does not have be perfectly aligned, but it must be
readable, e.g., columns clearly delineated). Using micro-benchmarks (i.e. small patholog-
ical programs that you write yourself), start cachemiss count/get cachemiss count,

8

and possibly the output from other cache simulators, verify that it is working correctly.
Describe the process that you went through to do this, and show your micro-benchmarks
along with your analysis of their behavior on your cache profiling tool.

Part 2: Run your Pin-based cache profiling tool on the test programs in the directory AS-
STDIR/pintool/cache test using the four configurations shown in Table 1. Show the
results of your tool for each of these four configurations. Discuss how the differences be-
tween successive configurations affect performance, and whether there are any surprises
regarding how the profile of important cache misses changes, etc.

Table 1: Configurations to use when profiling the test programs.

Parameter Configuration 1 Configuration 2 Configuration 3 Configuration 4

Cache size 8 KB 8 KB 8 KB 32 KB

Line size 64 B 64 B 128 B 128 B

Cache Miss penalty 100 cycles 100 cycles 100 cycles 100 cycles

Associativity Direct-Mapped 2-way Set Assoc. 2-way Set Assoc. 2-way Set Assoc.

9

