Basic Pipelining

21 March 2017

Topics
- Objective
» Instruction formats
* Instruction processing
* Principles of pipelining
- Inserting pipe registers

Welcome back!

Mid-semester grades
Median: A-
6rade steps with +0.5 in z-score

Exam stats (15% of grade)
Range: 6350 - 19500
Average: 13407
Median: 13375
Std dev: 3230
Will aim for slightly shorter exam next time

Happy to discuss in office hours!

Objective

Design Processor for Alpha Subset
- Interesting but not overwhelming quantity
- High level functional blocks

Initial Design
* One instruction at a time
- Single cycle per instruction

Refined Design
- 5-stage pipeline
- Similar to early RISC processors
* Goal: approach 1 cycle per instruction but with shorter cycle time

ALPHA INSTRUCTION SET

-4 - 740 S'17

Alpha Arithmetic Instructions

RR-type instructions (addq, subq, xor, bis, cmplt): rc <-- ra funct rb

Op ra rb 000 |Of funct rc
31-26 25-21 20-16 15-13 12 11-5 4-0
RI-type instructions (addq, subq, xor, bis, cmplt): rc<-- ra funct ib
Op ra ib 1|1 funct rc
31-26 25-21 20-13 12 11-5 4-0
Encoding
- ib is 8-bit unsigned literal
Operation Op field funct field
addg 0x10 0x20
subg 0x10 0x29
or/bis 0x11 0x20
Xor 0x11 0x40
cmoveq 0x11 0x24 (32b conditional move)

cmplt 0x11 0x4D (compare less-than)

Alpha Load/Store Instructions

Load: Ra <-- Mem[Rb +offset]
Store: Mem[Rb + offset] <-- Ra

Op ra rb offset
31-26 25-21 20-16 15-0
Encoding
- offset is 16-bit signed offset
Operation Op field
1dq 0x29
stq 0x2D

740 S'17

Branch Instructions

Cond. Branch: PC <-- Cond(Ra) ? Pisp*4 :PC+4
aisp

Op ra
31-26 25-21 20-0
Encoding Why PC + 4?
- disp is 21-bit signed displacement Is ALPHA designed
Operation Op field Cond for compilers or
assembly
beq 0x39 Ra == programmers?
bne 0x3D Ra '= 0 (RISC vs CISC)
Branch [Subroutine] (br, bsr): Ra <-- PC + 4; PC «<-- 0@ disp*4
Op ra disp
31-26 25-21 20-0
Operation Op field
br 0x30
bsr 0x34

-7 - 740 S'17

Transfers of Control
Jmp, jsr, ret: Ra<-- PC+4; PC <-- Rb

Ox1A ra rb Hint
31-26 25-21 20-16 15-0
Encoding

* High order 2 bits of Hint encode jump type

* Remaining bits give information about predicted destination

* Hint does not affect functionality

Jump Type Hint 15:14
Jmp 00
jsr 01
ret 10
Instruction Ra Rb
Jmp 31 -

By convention:
4 jsr - 26

ret 31 26

Instruction Encoding

0xO0: 40220403 addg rl1, r2, r3
0x4: 4487£805 Xor r4, O0x3f, r5
0x8: adc70abc 1dgq r6, 2748 (xr7)
Oxc: b5090123 stqg r8, 291 (r9)
0x10: ed47ffffb beq r3, O

0x14: d35ffffa bsr r26, 0(r31)
0x18: 6bfa8001 ret r3l1l, (r26), 1

Object Code

- Instructions encoded in 32-bit words
* Program behavior determined by bit encodings
- Disassembler simply converts these words to readable instructions

Decoding Examples

0x0: 40220403 addgq rl, r2, r3 0x8: ad4c70abc 1ldg «r6, 2748(r7)
4 0 2 2 0 4 0 3 a 4 C 7 0 a b C
0100J0000J]0010fJ0010J0000(01L00F0000I00112 1010J0100J1100f1011110000¢1010}J1011J1100

10 01 02 20 03 29 06 07 Oabc
= 2748,
0x10: ed47ffffb beq r3, O 0x18: 6bfa8001 ret =r31, (r26), 1
e 4 7 f f f f b 6 b f a 8 0 0 1
1110J0100J0111§21111J1111§1111¢1111J1011 0110f1011J1111{1010J1000J0000J0000J0001
| | |] | | | |]
39 03 1ffffb la 1f la 2
= —Jqg =31,, =264,
Target = 16 # Current PC
+ 4 # Increment

+ 4% _5#Disp
= 0

SINGLE-CYCLE ALPHA
IMPLEMENTATION

11 - 740 S'17

Datapath

Block diagram for a computer processor, excluding control signals

Z€ero
Test
nstr datin
. Xtnd = 'aata
Xtnd << 2 1. [)
. datOut
regA datA aluA addr
regB g eg.
Array
datw ALU
regW datB alud

P] Wdest
)

IncrPC

Wdata

-12 - Multiplexers 740 S'17

Datapath

IF ID EX MEM WB

instruction instruction decode/ execute/ memory write

fetch register fetch address calculation access back
-13 - 740 S'17

Datapath

IF ID EX MEM WB
instruction instruction decode/ execute/ memory write
fetch register fetch address calculation access back
Zero
Test
Instr datin
15:0
. Xtnd Data
20:0 xtnd << 2 [Mem. r\
2521 . datOut
regA datA addr
20:16
regB
Instr. Reg.
Mem. - Array
2013 regW datB alud

4:0
25:21 j
IncrPC
— [|
)

Wdata

- 14 - 740 S'17

Hardware Units

Storage

* Instruction Memory
- Fetch 32-bit instructions

- Data Memory
- Load / store 64-bit data

* Register Array
- Storage for 32 integer registers
- Two read ports: can read two registers at once
- Single write port

Functional Units

- +4 PC incrementer

- Xtnd Sign extender

- ALV Arithmetic and logical instructions
- Zero Test Detect whether operand ==

-15 -

740 S'17

RR-type instructions

RR-type instructions (addq, subq, xor, bis, cmplt): rc <-- ra funct rb
Op ra rb 000 |0 funct rc
31-26 25-21 20-16 15-13 12 11-5 4-0

IF: Instruction fetch
- IR <-- IMemory[PC]
- PC<«<--PC + 4

ID: Instruction decode/register fetch
- A <-- Register[IR[25:21]]
- B <-- Register[IR[20:16]]
Ex: Execute
- ALUOutput <-- A op B

MEM: Memory
* nop
WB: Write back
* Register[IR[4:0]] <-- ALUOutput
- 16 - 740 S'17

Active Datapath for RR & RI

Instr datin
Data
Mem. N\
. datOut
25:21
regA datA addr
20:16 regB Reg.
Arra
datw y
20:13 regWw datB

NI

—/
Wdata
ALU Operation Write Back
* Input B selected according to + To Rc

instruction type
- datB for RR, IR[20:13] for RI

+ ALV function set according to
operation type
-17 - 740 S'17

RI-type instructions

RI-type instructions (addq, subq, xor, bis, cmplt): rc<-- ra funct ib
Op ra ib 1] funct rc
31-26 25-21 20-13 12 11-5 4-0

IF: Instruction fetch
- IR <-- IMemory[PC]
- PC<«<--PC + 4

ID: Instruction decode/register fetch
- A <-- Register[IR[25:21]]
+ B <-- IR[20:13]
Ex: Execute
- ALUOutput <-- A op B

MEM: Memory
* nop

WB: Write back
* Register[IR[4:0]] <-- ALUOutput

Active Datapath for RR & RI

Instr datin
Data
Mem. N\
. datOut
25:21
regA datA addr
20:16 regB Reg.
Arra
datw y
20:13 regWw datB

NI

—/
Wdata
ALU Operation Write Back
* Input B selected according to + To Rc

instruction type
- datB for RR, IR[20:13] for RI

+ ALV function set according to
operation type
- 19 - 740 S'17

Load instruction

Load: Ra <-- Mem[Rb +offset]

Op ra

rb

offset

31-26 25-21

20-16

IF: Instruction fetch

+ IR <-- IMemory[PC]

- PC<«<--PC + 4

15-0

ID: Instruction decode/register fetch

- B <-- Register[IR[20:16]]

Ex: Execute

- ALUOutput <-- B + SignExtend(IR[15:0])

MEM: Memory

* Mem-Data <-- DMemory[ALUOutput]

WB: Write back
- Register[IR[25:21]] <-- Mem-Data

-20 -

740 S'17

Active Datapath for Load

Instr.
Mem.

IncrPC

ALU Operation

regA
regB

datw

regw

datA

Reg.
Array

datB

addr

U

* Used to compute address
- A input set to extended

IR[15:0]

- ALU function set to add

-21-

Wdata
Memory Operation

- Read

Write Back
- To Ra

740 S'17

Store instruction

Store: Mem[Rb +offset] <-- Ra

Op ra

rb

offset

31-26 25-21

IF: Instruction fetch
- IR <-- IMemory[PC]

- PC<«<--PC + 4

20-16

15-0

ID: Instruction decode/register fetch
- A <-- Register[IR[25:21]]
- B <-- Register[IR[20:16]]

Ex: Execute

- ALUOutput <-- B + SignExtend(IR[15:0])

MEM: Memory

- DMemory[ALUOutput] <-- A

WB: Write back
* nop
-22-

740 S'17

Active Datapath for Store

regA datA

regB
Instr. Reg.

Mem. qarwy Array

regWw datB

IncrPC

ALU Operation Memory Operation
- Used to compute address * Write
- A input set to extended ite B
TRI15:0] Write Back
* None

- ALU function set to add

Branch on equal
beq: PC<--Ra==0? PC+4 +disp*4 :PC+4

0x39

ra

disp

31-26

IF: Instruction fetch
- IR <-- IMemory[PC]

25-21

* incrPC <-- PC + 4
ID: Instruction decode/register fetch

- A <-- Register[IR[25:21]]
Ex: Execute

20-0

+ Target <-- incrPC + SignExtend(IR[20:0]) << 2

- Z<-- (A=

0)

MEM: Memor'y

- PC <-- Z ? Target :

WB: Write back

* hop
- 24 -

incrPC

740 S'17

Active Datapath for Branch

Zero

Instr

0.0

Xtnd << 2

25:21

og datA

regB
Instr. Reg.

Mem. datw Array

regw datB

IncrPC

Wdata

ALU Computes target PC Selection
+ A = shifted, extended IR[20:0] * Target for taken branch
* B = IncrPC * IncrPC for not taken
* Function set to add Wr!i're Back

Zero Test - None

* Branch condition depends on if
Reg[Ra] ==

Branch to Subroutine
Branch Subroutine (bsr): Ra <-- PC + 4; PC <-- PC + 4 + disp*4

Ox34 ra disp
31-26 25-21 20-0

IF: Instruction fetch
- IR <-- IMemory[PC]
« incrPC <-- PC + 4

ID: Instruction decode/register fetch
* nop

Ex: Execute
+ Target <-- incrPC + SignExtend(IR[20:0]) << 2

MEM: Memory
- PC <-- Target

WB: Write back
- Register[IR[25:21]] <-- incrPC

- 26 -

740 S'17

Active Datapath for BSR

Instr

Q.0 Xtnd << 2 M)
regA datA aluA
regB
Instr. Ererg-
regW datB aluB
@ Wdest
25:21
IncrPC

n
Wdata
ALU Computes target PC Selection
- A = shifted, extended IR[20:0] - Always target
* B = IncrPC Write Back
* Function set to add - Incremented PC as data

- 27 - 740 S'17

Jump

Jmp, jsr, ret: Ra<-- PC+4; PC<-- Rb

Ox1A ra rb Hint

31-26 25-21 20-16 15-0

IF: Instruction fetch
- IR <-- IMemory[PC]
« incrPC <-- PC + 4

ID: Instruction decode/register fetch
- B <-- Register[IR[20:16]]

Ex: Execute
- Target <-- B

MEM: Memory
- PC <-- target

WB: Write back
- Register[IR[25:21]] <-- incrPC

Active Datapath for Jumps

Instr

—
016 e datA aluA
Instr. o0 Eeg-
Mem. datw rray ALU
regW datB aluB
@ Wdest
25:21
IncrPC
_
Wdata
ALU Operation Write Back
+ Used to compute target - To Ra
- B input set to Rb * IncrPC as data

« ALU function set to select B

- 29 - 740 S'17

Complete Datapath

IF ID EX MEM WB
instruction instruction decode/ execute/ memory write
fetch register fetch address calculation access back
Zero
Test
Instr datin
15:0
. Xtnd Data
20:0 xtnd << 2 [Mem. r\
2521 . datOut
regA datA addr
20:16
regB
Instr. Reg.
Mem. - Array
2013 regW datB alud

4:0
25:21 j
IncrPC
— [|
)

Wdata

- 30 - 740 S'17

PIPELINING

_31- 740 S'17

Pipelined Datapath

IF/ID ID/EX EX/MEM MEM/WB
Zero
Test
Adata
Instr datin
15:.0
Xtnd 'aata
Xtnd << 2 EN1s
datOut
regA datA addr
regB
Instr. 9 Erergy
Mem. W ALUout
regW datB

4:0
25:21

B
J

IncrPC

Fl
()

Wdata

Same datapath, ~5X higher peak throughput!

_32- 740 S'17

Pipelining Basics

Unpipelined 1.2ns 0.lns
System R
—> Comb. — | Delay=13ns
Logic gl Throughput = 0.77 GHz
|
Clock
Opl Op2 Op3

Time

v

- One operation must complete before next can begin
- Operations spaced 1.3ns apart

3-Stage Pipelining

— E Delay = 1.5 ns
G

Throughput = 2.0 GHz

- Space operations

0.5ns apart

0.4ns O.lns O.4ns O.lns 0.4ns O.lns
R R
Comb. —c|— Comb. —E|— Comb.
Logic G Logic G Logic
Clock
Opl
—-
Op?2
—-
Op3
——
Op4

Time

v

- 3 operations occur

simultaneously

Limitation: Non-uniform Pipelining

0.2ns 0.1lns 0.6bns O.1ns
Log. G Logic G

0.4ns

Comb.
Logic

O.1ns

R
—
G

Clock

* Throughput limited by slowest stage
- Delay determined by clock period * number of stages

* Must attempt to balance stages

- 35 -

Delay =0.7*3=2.1ns
Throughput = 1.43 GHz

740 S'17

Limitation: Deep Pipelines

0.2ns 0.lIns 0.2ns 0.Ins 0.2ns 0.lns 0.2ns 0.lns 0.2ns 0.lns 0.2ns O.lns

C R C R C R C R C R C R
ey 0Ny | e 0NNty | ey 0NNty | ey | Oty | - | O oy | - ey | O oy |
Log. G Log. G Log. G Log. G Log. G Log. G
T 1 1 1 1 T

Clock Delay = 1.8ns

Throughput = 3.33GHz

- Diminishing returns as add more pipeline stages
- Register delays become limiting factor
- Increased latency

- Small throughput gains
- (Other architectural problems in practice that flush pipeline)

- 36 - 740 S'17

Limitation: Sequential Dependencies

Com.b. —E|— Com.b. —E|— Com.b. —c
Logic G Logic G Logic P

Clock
Opl
e
Op?2
e
Ob3 + Op4 gets result from Op1!
_p» - Pipeline Hazard
Op4
———————
Time "o

v

- 37 - 740 S'17

Pipelined Datapath

IF/ID ID/EX EXMEM MEM/WB

Zero
Test

Adata
Infgo datin
. Xtnd 'aata
Xtnd << 2 EN1s
datOut
regA datA addr
regB R
Instr. €g.
M Array
em. datw ALUout
regW datB
4:0 '_]
25:21 J
IncrPC

Fl
()

Wdata

Pipe Registers
- Inserted between stages
- Labeled by preceding & following stage

_38- 740 S'17

Pipeline Structure

Branch Flag & Target

Next PC Write Back Reg. & Data

Notes

* Each stage consists of operate logic connecting pipe registers
- WB logic merged into ID
+ Additional paths required for forwarding

Pipe Register

Next Current

. State State
Operation

- Current State stays constant while Next State being updated
 Update involves transferring Next State to Current

Pipeline Stage

Current Next

. State State
Operation

- Computes next state based on current
- From/to one or more pipe registers
* May have embedded memory elements
- Low level timing signals control their operation during clock cycle
- Writes based on current pipe register state
- Reads supply values for Next State

Data Hazards in Alpha Pipeline

Problem
* Registers read in ID, and written in WB
* Must resolve conflict between instructions competing for registers
- Assume reads get a value written in same stage
* But what about intervening instructions?
- E.g., suppose initially $2 is zero:

2 IF [ID [EX]| M [WB addq $31, 63, $2

53 IF [ID [EX[IM [WB addq $2,0, $3

$4 IF |10 [EX] M [we addq $2, 0, $4

$5 TF [ED [EX] M [WB addq $2, 0, $5

$6 FTIo[EX][m [we] addq $2, 0, $6
$2 written

— Time ——

Control Hazards in Alpha Pipeline

Problem

- Instruction fetched in IF, branch condition set in MEM
- When does branch take effect?
- E.g.: assume initially that all registers = O

IF [ID[EX] M [wB beq $0, target
TF[ID [EK] M [WE mov 63, $2
TF[TH [EX] M [WE mov 63, $3
2 TF[ID[EX] M [WB mov 63, $4
53 IF[ID[EX| M [WB] mov 63, $5
ig PC Updated
$6 — Time =—> target: mov 63, $6

-43 - 740 S'17

Conclusions

RISC Design Simplifies Implementation
- Small number of instruction formats
- Simple instruction processing

RISC Leads Naturally to Pipelined Implementation
- Partition activities into stages
- Each stage simple computation

We're not done yet!
- Need to deal with data & control hazards

ADVANCED PIPELINING

- 45 - 740 S'17

iy Handling Hazards by Stalling

- Delay instruction until hazard eliminated
* Put “bubble” into pipeline
- Dynamically generated NOP

Plpe Register Operation

“Transfer” (normal operation) indicates
should transfer next state to current

- “Stall” indicates that current state
should not be changed

- “Bubble” indicates that current state
should be set to NOP

- E.g., stage logic designed so that O is
like NOP

Transfer
Stall
Bubble

Next Current
State State

Detecting Dependencies

IF/IR ID/EX EX/MEM MEM/WB
Read Sources

- Instr.
Mem. ALUout

+4 _]

Wdata
Pending Register Reads Pending Register Writes
- By instruction in ID * EX_in.WDst: Destination register
- ID_in.IR[25:21]: Operand A of instruction in EX
- ID_in.IR[20:16]: Operand B * MEM_in.WDst: Destination

- Only for RR register of instruction in MEM

-47 - 740 S'17

Implementing Stalls

Stal Transfer

y

i e
IF

Instr.
Mem.

Stall Control Logic

- Determines which stages to stall, bubble, or transfer on next update

Rule:
- Stall in ID if either pending read matches either pending write
- Also stall IF; bubble EX

Effect

* Instructions with pending writes allowed to complete before
instruction allowed out of ID

Stalling for Data Hazards

Operation

* First instruction progresses unimpeded
- Second waits in ID until first hits WB

* Third waits in IF until second allowed to progress

IF|ID|Ex| M |wB
$2
53 tFliol olltplEex] M [wB
54 1F|l 7ellzFl | Ex| M | wB
$5 TF|ID|EX]| M |wB
$6
IF| Dl Ex| M |wB
S2 written
- 49 -

addg
addg
addg
addg
addg

$31,
$2,
$2,
$2,
$2,

63,

0, $4
0, $5
0, $6

740 S'17

$2

Observations on Stalling
Good

- Relatively simple hardware
- Only penalizes performance when hazard exists

Bad
- As if placed NOPs in code
- Except that does not waste instruction memory

Reality
- Some problems can only be dealt with by stalling
- Instruction cache miss
- Data cache miss
* Otherwise, want technique with better performance

Forwarding (Bypassing)

Observation
* ALU data generated at end of EX
- Steps through pipe until WB
* ALU data consumed at beginning of EX

Idea

- Expedite passing of previous instruction result to ALU
- By adding extra data pathways and control

Forwarding for ALU Instructions

IF/ID ID/EX EX/MEM MEM/WB
Adata
datIn
Data
Mem. ™\
x datOut
re 2 b
9 dat alul addr
regB
Instr. ;:fg
Mem. datw y ALU ALUout
regW datB aluB
B
Src
FW w Wdest | W W
DstY DstY Dst
_J »
o IncrPC Srd
III _/
Wdata

Operand Destinations
* ALU input A
- Register EX_in.ASrc
+ ALV input B

- Register EX_in.BSrc
-H2 -

Operand Sources

* MEM_in.ALUout

- Pending write o MEM_in.WDs*

- WB_in.ALUout

- Pending write fo WB_in.WDst

740 S'17

Instr.
Mem.

IncrPC
gt

EX-EX

Bypassing Possibilities

IF/ID

ID/EX EX/MEM MEM/WB

Adata

datIn

Data
Mem. ™\

reghA

regB

datW

regW

datOut
addr

ALUout

CJ

* From instruction that just finished EX MEM-EX

MEM-EX

* From instruction that finished EX two cycles earlier

-Hh3 -

740 S'17

Bypassing Data Hazards

Operation
* First instruction progresses down pipeline
- When in MEM, forward result to second instruction (in EX)
- EX-EX forwarding
- When in WB, forward result to third instruction (in EX)
- MEM-EX forwarding

Ir|ID[Ex] M [wB addg $31, 63, $2
$2 IF IDTEX M | wB addg $2, 0, $3 # EX-EX
$3
54 IF[ID[Ex|[M [wB addg $2, 0, $4
$5 Ir|lip[Ex| M |wB addg $2, 0, $5
¥ Tr|ID|Ex| M |we| addg $2, 0, S6
S2 written

= Time =—p
- 54 - 740 S'17

Load & Store Instructions

Load: Ra <-- Mem|[Rb +offset]

Op ra rb offset

31-26 25-21 20-16 15-0

Store: Mem[Rb +offset] <-- Ra

Op ra rb offset

31-26 25-21 20-16 15-0

ID: Instruction decode/register fetch
- Store: A <-- Register[IR[25:21]]
- B <-- Register[IR[20:16]]

MEM: Memory

- Load: Mem-Data <-- DMemory[ALUOutput]
- Store: DMemory[ALUOutput] <-- A

WB: Write back
* Load: Register[IR[25:21]] <-- Mem-Data

Analysis of Data Transfers

Data Sources
 Available after EX
- ALU Result Reg-Reg Result
* Available after MEM

- Read Data Load result
- ALU Data Reg-Reg Result passing through MEM stage
Data Destinations
- ALU A input Need in EX
- Reg-Reg or Reg-Immediate Operand
- ALU B input Need in EX

- Reg-Reg Operand
- Load/Store Base

+ Write Data Need in MEM
- Store Data

Some Hazards with Loads & Stores
Data Generated by Load Data Generated by Store

Load-Store Data
ldg $1, 8($2)
stg $1, 16($2)

Store-Load Data
stqg $1, 8($52)
ldg $3, 8($2)

Not a
concern
for us

Load-ALU
1dq $1, 8($2)
addg $2, $1, $2

Data Generated by ALU

ALU-Store (or Load) Addr
addg $1, $3, $2
stqg $3, 8(52)

Load-Store (or Load) Addr.

ldg $1, 8($2)
stq $2, 16(S1)

-57 -

ALU-Store Data
addg $2, $3, s1
stg $1, 16($2)

740 S'17

MEM-MEM Forwarding

Condition
- Data generated by load instruction
- Register WB_in.WDst
* Used by immediately following store
- Register MEM_in.ASrc

Load-Store Data
ldg $1, 8($2)
stg $1, 16($2)

1r|iD[Ex[M [wB ldg $1, 8($2)

IF[Ip[ExY M [ws] sta 51, 16(52)

- Hh8 -

740 S'17

Complete Bypassing for ALU & L/S

MEM-MEM

Instr.

Mem. ALUout

IncrPC

_59- 740 S'17

Some Hazards with Loads & Stores
Data Generated by Load Data Generated by Store

Load-Store Data MEM-MEM
ldg $1, 8($2)
stqg $1, 16($2)

Load-ALU
ldg $1, 8($2)
addg $2, $1, $2

Load-Store (or Load) Addr.
ldg $1, 8($2)

- 60 -

Store-Load Data
stqg $1, 8($52)
ldg $3, 8($52)

Not a
concern
for us

Data Generated by

ALU-Store (or Load) Ad.
addg $1, $3, $2
stq $3, 8($52)

ALU

EX-EX

ALU-Store Data
addg $2, $3, $1
stg $1, 16($2)

EX-EX

740 S'17

Impact of Forwarding

Single Remaining Unsolved Hazard Class
* Load followed by ALU operation / address calculation

Load-ALU

ldg $1, 8($2)

Just Forward?

IF|ID[Ex| M [wB ldg $1, 8($2)
Tr|D|Ex| M |we| addg $2, S1, $2

Load-Store (or Load) Addr.

ldg $1, 8($2)
stq $2, 16($1)

Value not available soon enoughl!

With 1 Cycle Stall

IF

ID

EX| M | WB

IF

ID| IDyEX]| M | WB

ldg $1, 8(S82)

addq $2, $]—I $2

Then can use MEM-EX forwarding

New Data Hazards

Branch Uses Register Data
* Generated by ALU instruction

- Read from register in ID ALU-Branch

Handling addq $2, 33, 51
- Same as other instructions beq 51, targ

with register data source

. BypGSS Distant ALU-Branch
- EX-EX addqg $2, $3, s1
- MEM-EX

bis $31, $31, $31

beq $1, targ

Load-Branch
1w 51, 8($2)
beq $1, targ

Still More Data Hazards

Jump Uses Register Data
* Generated by ALU instruction
* Read from register in ID

Handling

- Same as other instructions with
register data source

- Bypass
- EX-EX
- MEM-EX

But fetch stalls

IF|ID|EX| M | WB

TEFyITF)IF) ID|EX| M | WB

ALU-Jump
addg $2, $3, $1
jsr $26 ($1), 1

Distant ALU-Jump
addg $2, $3, $1
bis $31, $31, $31
jmp $31 ($1), 1

Load-Jump
lw $26, 8($Ssp)
ret $31 ($26), 1

Pipelined datapath

IF MEM WB
instruction instruction decode/ execute/ memory write
fetch register fetch address calc access back
IF/ID ID/EX EXIMEM MEM/WB
Zero
Instr
15.0 o—
. n —
L Xtnd <<2 R ==
2521 regA [-
datA 1
20:16 -
regB
Instr. Reg.
Mem. — Array
20:13 regWw datB in
0
20:16 B -
40 Src I I |
: w
2521 '—] Dst
U A1
IncrPC | Src
L |
|

]
t

__' Wdata

Branch Flag
What happens with a branch?

69 - 740 S'17

Conditional Branch Instruction Handling

beq: PC <-- Ra == ? PC + 4 + disp*4 : PC + 4
Op ra disp
31-26 25-21 20-0
IF/ID ID/EX EX/MEM
Zero
‘ Test --\-

M

Xtnd <<

Instr.
Mem.

IncrPC
El-‘

o o o i — — — — — — — — —— — —— — ————— ————— ——————————————— ——

Branch Flag

ALUout

-70 - 740 S'17

Branch Example

Desired Behavior
- Take branch at 0x00
- Execute target Ox18

-PC+ 4 + disp <« 2 Displacement

- PC = 0x00

-disp=5
Branch Code (denW)
0x0: e7¢00005 beg r31, 0x18 # Take
Ox4: 43e7f401 addg r31, O0x3f, rl # (Skip)
0x8: 43e7f402 addg r31, O0x3f, r2 # (Skip)
Oxc: 43e7f403 addg r31, O0x3f, r3 # (Skip)
0x10: 43e7f404 addg r31, O0x3f, r4 # (Skip)
Ox14: 47ff041f Dbis r31, r31, r31
0x18: 43e7f405 addg r31, O0x3f, rb # (Target)
Oxlc: 47ff041f Dbis r31, r31, r31l
0x20: 00000000 call pal halt

-72- 740 S'17

Branch Hazard Example

- With BEQ in Mem stage

-73 -

0x18

0x0: beq r31, 0x18 # Take
Ox4: addg r31, 0x3f, rl # Xtral
0x8: addg r31, 0x3f, r2 # Xtra2
Oxc: addg r31, 0x3f, r3 # Xtra3
0x10: addg r31, 0x3f, r4 # Xtrad
0x18: addg r31, 0x3f, r5 # Target
IF/1ID ID/EX EX/MEM
Zero
Instr '
Oxc : 5
25:21 rogh oon :
20:16 regh o : BEQ
2| Instr. Arﬁz '
Mem. - Y ; ALUout
regW datB E
Xtra3 Xtra2 0x18
o] IncrPC ;
0x10 :
| Yes

(-

Branch Flag

740 S'17

Branch Hazard Example (cont.)

- One cycle later

- Problem: Will execute 3
extra instructions!

Oxlc

0x0: beq r31, 0x18 # Take

Ox4: addg r31, 0x3f, rl # Xtral

0x8: addg r31, 0x3f, r2 # Xtra2

Oxc: addg r31, 0x3f, r3 # Xtra3

0x10: addg r31, 0x3f, r4 # Xtrai

0x18: addg r31, 0x3f, r5 # Target
IF/ID ID/EX EX/MEM

regA
regB
da

regW

tW

datA

Reg.
Array

datB

Xtra3

Zero

Xtral

ALUout

No

- 74 -

Branch Flag

740 S'17

Branch Hazard Pipeline Diagram

Problem
- Instruction fetched in IF, branch condition set in MEM

IF|ID[Ex| M [wB beqg $31, target
IF | ID E!(M [wB addqg $31, 63, $1
IF I!) EX| M | wB addqg $31, 63, $2

_IIF mD[Ex| M [wB addqg $31, 63, $3

addg $31, 63, $4

1l iplexl v Iwe| target: addg $31, 63, S$5
PC Updated

75 740 S'17

Stall Until Resolve Branch

 Detect when branch in stages ID or EX

- Stop fetching until resolve
- Stall IF. Inject bubble into ID

Transfer

\/

Stal

—

)

Perform when branch in either stage

Stalling Branch Example

- With BEQ in Mem stage
* Will have stalled twice
- Injects two bubbles

0x18

-77 -

0x0 beq r31, 0x18 # Take
Ox4: addg r31, 0x3f, rl # Xtral
0x8: addg r31, 0x3f, r2 # Xtra2
Oxc: addg r31, 0x3f, r3 # Xtra3
0x10: addg r31, O0x3f, r4 # Xtrad
0x18: addg r31, 0x3f, r5 # Target
ID/EX EX/MEM
Zero
Instr '
0x4 : i
25:21 rogh oon :
20:16 regB . BEQ
2| Instr. Reg. '
Mem. IR : ALUout
regW datB E
Xtral Bubble2 0x18
o] IncrPC E
0x8 :
\ 3 Yes
L.—/ Branch Flag

740 S'17

Taken Branch Resolution

* When branch taken, still have instruction Xtral in pipe
- Need to flush it when detect taken branch in Mem
- Convert it to bubble

Transfe Bubble Transfe Transfe A Transfer

L

Perform when detect taken branch

Taken Branch Resolution Example

-79 -

0x0: beq r31, 0x18 # Take
Ox4: addg r31, 0x3f, rl # Xtral
0x8: addg r31, 0x3f, r2 # Xtra2
Oxc: addg r31, 0x3f, r3 # Xtra3
0x10: addg r31, 0x3f, r4 # Xtrai
0x18: addg r31, 0x3f, r5 # Target
* When branch taken
- Generate 3rd bubble IF/ID ID/EX [——— EX/MEM
H . Test [™,
- Begin fetching at target —
)
0x18 :
e e Bubblel
_— = Instr. 7°% Reg. —/
Oxlc L datw TTRY ALUout
7\
regW datB
Target Bubble3
N
IncrPC BubbleZ2
+4
Oxlc T
\ No
L.—/ Branch Flag

740 S'17

Taken Branch Pipeline Diagram

Behavior
* Instruction Xtral held in IF for two extra cycles
- Then turn into bubble as enters ID

Tr[o|Ex] M [we beqg $31, target
IF| IF I%_ addg $31, 63, S1 # Xtral

TF|D[Ex] M [wB target: addg $31, 63, $5 # Targe

PC Updated

_80- 740 S'17

Not Taken Branch Resolution

- [Stall two cycles with not-taken branches as well]
- When branch not taken, already have instruction Xtral in pipe

- Let it proceed as usual

Transfe

Transfe Transfe Transfe ‘; Transfer

—-

Not Taken Branch Resolution Example

demo09.0

- Branch not taken

- Allow instructions to

proceed

Oxc

- 82 -

0x0: bne r31, 0x18 # Don’ t Take
Ox4: addg r31, 0x3f, rl # Xtral
0x8: addg r31, 0x3f, r2 # Xtra2
Oxc: addg r31, 0x3f, r3 # Xtra3
0x10: addg r31, 0x3f, r4 # Xtrai
IF/ID ID/EX Zero EX/MEM
Test [",

0x8

Mem.

- Instr.

Xtra2

IncrPC
+4

regA

regB

datw

regW

Reg.
Array

datB

datA

Xtral

)

Bubble?2

Bubblel

ALUout

Oxc

No

(-

Branch Flag

740 S'17

Not Taken Branch Pipeline Diagram

Behavior
* Instruction Xtral held in IF for two extra cycles

- Then allowed to proceed

IF

ID

EX

M

WB

IF

IF

IF

ID

EX

WB

- 83 -

PC Not Updated

IF

ID

EX

WB

IF

ID

EX

WB

IF

ID

EX

WB

beqg

addg
addg
addg
addg

$31,
$31,
$31,
$31,
$31,

target
63, $1
63, $2
63, $3
63, $4

Xtral
Xtra?2
Xtra3

Xtrad

740 S'17

Analysis of Stalling

Branch Instruction Timing
- 1 instruction cycle
- 3 extra cycles when taken
- 2 extra cycles when not taken

Performance Impact
- Branches ~20% of instructions
« ~67% branches are taken
* Adds 0.2 * (0.67 * 3 + 0.33 * 2) = 0.54 increase to CPI
- Serious performance impact!

Fetch & Cancel When Taken

* Instruction does not cause any updates until MEM or WB stages
» Instruction can be “cancelled” from pipe up through EX stage
- Replace with bubble

Strategy
- Continue fetching under assumption that branch not taken
- If decide to take branch, cancel undesired ones

Transfef

Data

File Mem.

Perform when detect taken branch

Canceling Branch Example

0x0: beq r31, 0x18 # Take
Ox4: addg r31, 0x3f, rl # Xtral
0x8: addg r31, 0x3f, r2 # Xtra2
Oxc: addg r31, 0x3f, r3 # Xtra3
0x10: addg r31, 0x3f, r4 # Xtrai
0x18: addg r31, 0x3f, r5 # Target

- With BEQ in Mem stage

* Will have fetched 3 extra

instructions TE/ID ID/EX [ere| EX/MEM
- But no register or memory [. ... ‘
updates |
Oxc '
25:21 regh
20:16 s BEQ
— | Instr. "°9% Reg.
0x18 L datw TTRY ALUout
regW datB
Xtra3 Xtra2 0x18
o] IncrPC
0x10 :
\ . Yes
L.—/ Branch Flag

- 86 - 740 S'17

Canceling Branch Resolution Example

-87 -

0x0: beq r31, 0x18 # Take
Ox4: addg r31, 0x3f, rl # Xtral
0x8: addg r31, 0x3f, r2 # Xtra2
Oxc: addg r31, 0x3f, r3 # Xtra3
0x10: addg r31, 0x3f, r4 # Xtrai
0x18: addg r31, 0x3f, r5 # Target
* When branch taken
- Generate 3 bubbles IF/ID ID/EX [——— EX/MEM
H . Test [™,
- Begin fetching at target —
)
0x18 :
e e Bubblel
_— = Instr. 7°% Reg. —/
Oxlc L datw TTRY ALUout
7\
regW datB
Target Bubble3
N
IncrPC BubbleZ2
+4
Oxlc T
\ No
L.—/ Branch Flag

740 S'17

Canceling Branch Pipeline Diagram

Operation

* Process instructions assuming branch will not be taken
* When is taken, cancel 3 following instructions

IF | ID

EX

M

WB

1

IF

ID

EX

I

IF

ID

PC Updated

B

IF

IF

ID

EX

WB

- 88 -

beqg

addg
addg
addg
addg

target:

$31, target
$31, 63, S1
$31, 63, S$2
$31, 63, S$3
$31, 63, $4

addg $31, 63, $5

740 S'17

Noncanceling Branch Pipeline Diagram

Operation

* Process instructions assuming branch will not be taken
» If really isn’t taken, then instructions flow unimpeded

IF)JID|EX| M | WB

|
IF|ID|EX| M | WB

IFJIDJEX| M | WB

|

IF)ID|EX| M

WB

IF) ID | EX

WB

PC Not Updated

- 89 -

bne

addg
addg
addg
addg

target:

$31, target
$31, 63, S1
$31, 63, $2
$31, 63, S$3
$31, 63, $4

addg $31, 63, $5

740 S'17

Branch Prediction Analysis

Our Scheme Implements “Predict Not Taken”
* But 67% of branches are taken
* Impact on CPI: 0.2* 0.67*3.0 = 0.4
- Still not very good

Alternative Schemes
* Predict taken
- Would be hard to squeeze into our pipeline
» Can’ T compute target until ID = one bubble
» MIPS branch delay slot exposes this bubble in ISA
- Backwards taken, forwards not taken
- Predict based on sign of displacement
- Exploits fact that loops usually closed with backward branches
* Branch target buffer (BTB) speculates on branch destination in IF
- What's done in practice

EXCEPTIONS AND
MULTI-CYCLE INSTRUCTIONS

_91- 740 S'17

Exceptions

An exception is a transfer of control to the OS in
response to some event (i.e. change in processor
state)

User Process Operating System

event" exception

] exception processing
by exception handler

exception
return (optional)

Issues with Exceptions

User Process Operating System

A
exception
C g exception
handler
exception
. B
return (optional)
v

Al: What kinds of events can cause an
exception?

A2: When does the exception occur?

Bl: How does the handler determine the
location and cause of the exception?

B2: Are exceptions allowed within
exception handlers?

C1: Can the user process restart?

C2: If so, where?

Internal (CPU) Exceptions

Internal exceptions occur as a result of events
generated by executing instructions.

Execution of a CALL_PAL instruction.

- allows a program to transfer control to the OS

Errors during instruction execution

- arithmetic overflow, address error, parity error, undefined
instruction

Events that require OS intervention
- virtual memory page fault

External (I/0) exceptions

External exceptions occur as a result of events
generated by devices external to the processor.

I/0 interrupts
* hitting “C at the keyboard
- arrival of a packet
- arrival of a disk sector

Hard reset interrupt
* hitting the reset button

Soft reset interrupt
* hitting ctl-alt-delete on a PC

Exception handling (hardware tasks)

Recognize event(s)

Associate one event with one instruction.
- external event: pick any instruction

- multiple internal events: typically choose the earliest instruction.
- multiple external events: prioritize
- multiple internal and external events: prioritize

Create Clean Break in Instruction Stream
- Complete all instructions before excepting instruction
- Abort excepting and all following instructions
- this clean break is called a “precise exception” A

User Process

C

Exception handling (hardware tasks)

Set status registers

Exception Address: the EXC_ADDR register

- external exception: address of instruction about to be executed
- internal exception: address of instruction causing the exception

» except for arithmetic exceptions, where it is the following
instruction

- Cause of the Exception: the EXC_SUM and FPCR registers

- was the exception due to division by zero, integer overflow, etc.
* Others

- which ones get set depends on CPU and exception type
Disable interrupts and switch to kernel mode

Jump tfo common exception handler location

Exception handling (software tasks)

Deal with event

(Optionally) resume execution
- using special REI (return from exception or interrupt) instruction

- similar to a procedure return, but restores processor to user
mode as a side effect.

Where to resume execution?
- usually re-execute the instruction causing exception

Precise vs. Imprecise Exceptions
In the Alpha architecture:

- arithmetic exceptions may be imprecise (similar to the CRAY-1)

- motivation: simplifies pipeline design, helping to increase
performance

- all other exceptions are precise

Imprecise exceptions:
- all instructions before the excepting instruction complete

- the excepting instruction and instructions after it may or may not
complete

What if precise exceptions are needed? User Process
- insert a TRAPB (trap barrier) instruction immediately after ,
- stalls until certain that no earlier insts take exceptions

c | o2

In the remainder of our discussion, assume for the sake of
simplicity that all Alpha exceptions are precise.

Example: Integer Overflow

(This example i1llustrates a precise version of the exception.)

the xor
Overflow instruction
user code detected here completes
and $12, $2, $5
xor $13, $2, $6 |yefrliow
addg $1, $2, $1< and IF ID EX MEM WB
or $15, $6, §7
ldq $16, 50($7) XOr IF ID EX ID WB
addg IF ID ‘EX nop
or flush these IF D nop
instructions
handler code 1dg 1F nop
stqg $26, 100($31) stq start handler LE
code

- 100 - 740 S'17

Multicycle instructions
Alpha 21264 Execution Times:

* Measured in clock cycles

Operation Integer FP-Single FP-Double

add / sub 1 4 4
multiply 8-16 4 4
divide N/A 10 23

H&P Dynamic Instruction Counts:

Integer FP Benchmarks
Operation Benchmarks Integer FP
add / sub 14% 11% 14%
multiply < 0.1% < 0.1% 13%

divide < 0.1% < 0.1% 1%

IF

ID

Pipeline Revisited

Integer Add / Subtract
EX

FP Add / Sub / Mult

EX,

EX,

EX,

EX,

Integer Multiply

EX,

EX,

EX,

EX,

EX,

EX,

FP Single-Precision Divide

EX,

EX,

EX,

EX,

EX,

EX,

EX,

EX,

EX o

bis $31,

bis $31,

mulg $2,

addg $2,

bis $4,

addgq $2,

Multiply Timing Example

3, $2

7, $3

$3, $4

$3, 83

$31, §5

$4, $2

- 103 -

(Not to scale)

IF|ID|EX| M [wB
IF | ID|Ex| M | wB
IF | ID EX M | wB
IF|ID|EX| M |[wWB| :
v
IF | ID

IF

°°* |EX| M |WB

v

**°* |ID|EX| M | WB

T

Stall while Busy
740 S'17

Conclusion

Pipeline Characteristics for Multi-cycle Instructions
 In-order issue
- Instructions fetched and decoded in program order
* Out-of-order completion

- Slow instructions may complete after ones that are later in
program order

- Reason for imprecise exceptions ... but difficult to reason about

Performance Opportunities

- Transformations such as loop unrolling & software pipelining to
expose potential parallelism

» Schedule code to use multiple functional units
- Must understand idiosyncrasies of pipeline structure

SUPERSCALAR

- 105 - 740 S'17

Pipelines Thus Far
FETCH DECODE EXECUTE (multistage) WB

Register

LI File

- 106 - 740 S'17

Increasing Performance

Execution time = instructions / program x
cycles / instruction x
seconds / cycle

* Increase clock frequency
* Decrease CPI

« How well does pipelining do?

Pipelining performance

Execution time = instructions / program x
cycles / instruction x
seconds / cycle

* Increase clock frequency
« N-stage can give ~Nx faster clock

 Decrease CPI

 Pipelining increases CPI due to hazards & stalls
(but less than Nx)

Limitations of pipelining

Stages can't be increased forever

* Pipeline overheads become significant
 Bypassing more expensive, less effective
* Flushes due to mispredicted branches

pipeline depth

Pipeline Depth

35
integer pipeline
a &
30
25
floating point pipeline
20 &8
o
o 0
O
15 O
A A A A A
A A A
o
10 o O & oA
o o0 o o 0O
& o o <
A A o (9] 0O & O o
(o] 00000 &
5§ —& a oy S&—0—h—
O a4 aad a
o
0
1985 1990 1995 2000 2005 2010

- 110 - 740 S'17

Going beyond pipelining

Pipelines processors limited by CPI <1
(the “"Flynn bottleneck™)

But >1 functional unit in execute stage

Why not issue multiple instructions per cycle?
= Superscalar processors

 Instruction-level parallelism (ILP)
« Today processors typically 4-wide issue

A Typical Dual-Issue Pipeline (1 of 2)

regfile [,

D$
B
P

b

Fetch an entire 16B or 32B cache block

* 4 to 8 instructions (assuming 4-byte average instruction length)
* Predict a single branch per cycle

Parallel decode

* Need to check for conflicting instructions
- Is output register of I, is an input register to I,?
* Other stalls, too (for example, load-use delay)

A Typical Dual-Issue Pipeline (2 of 2)

regfile [

D$

B
P

Multi-ported register file

* Larger area, latency, power, cost, complexity
Multiple execution units

- Simple adders are easy, but bypass paths are expensive
Memory unit

+ Single load per cycle (stall at decode) probably okay for dual issue

* Alternative: add a read port to data cache
- Larger area, latency, power, cost, complexity

Superscalar Example

ADDQ §1, $2..83
ADDQ $47’§§?7$6

ADDQ $7, $8, 89

ef”i

ADDQ $10, $11, $12

ADDQ $13, $14, 515
ADDOQ $16"§I;?7§18

4

What checks are required for 2-wide issue?
What does the execution look like? How many cycles?

Superscalar Example

ADDQ S1

, $2,.$3
ADDQ $4ﬁ$6
ADDQ $7, $9 $9
ADDQ $10, $11,,812
ADDQ $13:;§§§§Z§15
ADDQ $16¥ 517, $18

4

What checks are required for 3-wide issue?
What does the execution look like? How many cycles?

Superscalar Example

ADDQ $1, $2 3
ADDQ $4, 6
ADDQ $7,)
ADDQ $10, $11, $12
ADDQ $13, $14, $15
ADDQ $16, $17, $18

What checks are required for 4-wide issue?
What does the execution look like? How many cycles?

Superscalar Example

ADDQ $1, $2,.S3
ADDQ $4Z;§§§Z$6
ADDQ $7, S$¥, §
ADDQ $9 12
ADDQ $1 $15

ADDQ $1 $18

4

What checks are required for 3-wide issue?
What does the execution look like? How many cycles?

Superscalar Implementation - F&D

Fetch

Modest: Just fetch multiple instructions per cycle
Aggressive: Buffer instructions / predict multiple branches

Decode
Replicate decoders for each instruction

Superscalar Implementation - Issue

Instruction issue

« Determine which instructions can execute

» O(N?) checks required for N-wide machine
« Other limitations based on execution units

Register read
« Add read & write ports to register file
- Affects latency & area roughly O(ports?)

Superscalar Implementation - EX

Replicate functional units?

« Yes for simpler ones like adders

* No for expensive, rarely-used like versus
divide

« Somewhat for expensive, often-used
like cache ports

Bypass paths

« O(PN?) paths required for full
bypass (P - pipeline depth)

« N-way muxes at each stage add
latency to critical path

« Can add pipeline stages for
bypassing but this isn't free

Superscalar Challenges

Quadratic scaling factors
« Dependence checks

* Register file size
 Bypass paths

Speedup limited by ILP
* Rely on compiler
« Still face heavily diminishing returns

= Superscalar is a good idea, but limited scaling

Not all N* are created equal

Stall logic vs bypass network vs register file - which
is the bigger problem?

Bypass network by far
« 64-bit values vs 5-bit register names

- Bypass between stages O(N?) vs O(PN?)
* Must fit within clock + ALU

Register file also expensive

Dependency checks are a distant 3

Idea: Clustering

Stall logic does full 0(N?) dependence checks
* No real choice, must execute correctly

cluster O

cluster 1

Cluster execution units and register file
 Full bypass within a cluster (with smaller N)
- Limited bypassing between clusters - takes 1 or 2 cycles

- 123 - 740 S'17

Idea: Clustering

cluster O

cluster 1

Cluster execution units and register file

Dependent instructions steered towards appropriate
cluster

Register file banked (split) across clusters
* Or replicated - fewer read ports, multiple writes

- 124 - 740 S'17

Other challenges: Superscalar Fetch

What does it mean to fetch multiple insns per cycle?
Same cache block = no problem
If last instruction in block = single issue this cycle?

What about taken branches?

« 20% branches x 50% taken = ~10 instructions between
taken branches

Other challenges: Superscalar Fetch

What is the ILP of this program on a 4-wide issue?

START : ADDQ $1, $1, 1
ADDQ $2, $2, 1
ADDQ $3, S$3, 1
ADDQ $4, $4, 1
BEZ $1, START # assume taken

Other challenges: Superscalar Fetch

regfile

I$ b$
also ﬂﬂp sSTream detecTor

P

Over-fetch and buffer

* Add a queue between fetch and decode (18 entries on Core 2)
« Compensates for cycles that fetch less than maximum issue

« Decouples front-end and back-end (see also Decoupled Access
Execute [Smith,'82] for a different application of same idea)

Or put entire loops in icache

« Any mispredicted branch falls back to normal fetch
* Macro-ops (eg Core 2) vs micro-ops (Core i7) vs trace cache (P4)

- 127 - 740 S'17

Other challenges: Superscalar Commit

Which instructions write registers in a 4-wide issue?

ADDQ $1, $2, S$3 g
ADDQ $2, $6, @ b
ADDQ $5, $8, @ 5
'PrB'BQ—$"4,—$3,—$i—m

Doesn't execute

Need to add dependence checks in writeback

- 128 - 740 S'17

Trends in Superscalar Width

+ ifu
O lIsfu
max_inst_decoded

High-performance
(eg, servers)

z
T 4
=
e O+++ ' N\& +0
2 SHE+E SBO OOHOOO
& BB BB+BBD O O ®
0 0O
1970 1980 1990 2000 201C

- 129 - 740 S'17

Conclusion: Superscalar

Multiple issue

« Exploits ILP beyond pipelining

« Improves IPC at the cost of clock & energy & area
* 4- to 6-wide issue is about peak justifiable width

Problem spots

» Bypass & register file scale 0(N?2)
Clustering one solution

« Fetch and decode complicated
Buffering, loop streaming, trace cache

- Dependence checks also scales 0(N?)
VLIW ftries to fix this (next time)

