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ABSTRACT
Belady’s algorithm is optimal but infeasible because it re-
quires knowledge of the future. This paper explains how a
cache replacement algorithm can nonetheless learn from Be-
lady’s algorithm by applying it to past cache accesses to in-
form future cache replacement decisions. We show that the
implementation is surprisingly efficient, as we introduce a
new method of efficiently simulating Belady’s behavior, and
we use known sampling techniques to compactly represent
the long history information that is needed for high accuracy.
For a 2MB LLC, our solution uses a 16KB hardware budget
(excluding replacement state in the tag array). When ap-
plied to a memory-intensive subset of the SPEC 2006 CPU
benchmarks, our solution improves performance over LRU
by 8.4%, as opposed to 6.2% for the previous state-of-the-
art. For a 4-core system with a shared 8MB LLC, our so-
lution improves performance by 15.0%, compared to 12.0%
for the previous state-of-the-art.
Keywords: Cache replacement, Belady’s Algorithm

1. INTRODUCTION
Caches are important mechanisms for reducing the long

latencies of DRAM memory accesses, and their effective-
ness is significantly influenced by their replacement policy.
Unfortunately, cache replacement is a difficult problem. Un-
like problems such as branch prediction, in which the defini-
tive answer to the question, “Will this branch be taken?”, will
be readily available in a few cycles, it is difficult to get the
definitive answer to the question, “Which cache line should
be evicted?"

In the absence of definitive feedback, existing replace-
ment policies build on heuristics, such as Least Recently
Used (LRU) and Most Recently Used (MRU), which each
work well for different workloads. However, even with in-
creasingly clever techniques for optimizing and combining
these policies, these heuristic-based solutions are each lim-
ited to specific classes of access patterns and are unable to
perform well in more complex scenarios. As a simple ex-
ample, consider the naive triply nested loop algorithm for
computing matrix multiplication. As depicted in Figure 1,
the elements of the C matrix enjoy short-term reuse, while

those of the A matrix enjoy medium-term reuse, and those
of the B matrix see long-term reuse. Figure 1 shows that
existing replacement policies can capture some subset of the
available reuse, but only Belady’s algorithm [2] can effec-
tively exploit all three forms of reuse.
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Figure 1: Existing replacement policies are limited to a
few access patterns and are unable to cache the optimal
combination of A, B and C.

In this paper, we present a fundamentally different ap-
proach, one that is not based on LRU, on MRU, or on any
heuristic that is geared towards any particular class of ac-
cess patterns. Our algorithm is instead based on Belady’s
algorithm: While Belady’s algorithm is impractical because
it requires knowledge of the future, we show that it is possi-
ble to apply a variant of Belady’s algorithm to the history of
past memory accesses. If past behavior is a good predictor of
future behavior, then our replacement policy will approach
the behavior of Belady’s algorithm. We refer to the deci-
sions made by Belady’s algorithm as OPT. To learn the past
behavior of Belady’s algorithm, we observe that if with the
OPT solution a load instruction has historically brought in
lines that produce cache hits, then in the future, the same
load instruction is likely to bring in lines that will also pro-



duce cache hits.
Our new cache replacement strategy thus consists of two

components. The first reconstructs Belady’s optimal solu-
tion for past cache accesses. The second is a predictor that
learns OPT’s behavior of past PCs to inform eviction deci-
sions for future loads by the same PCs.
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Figure 2: Belady’s algorithm requires a long view of the
future.

One concern with this idea is that Belady’s algorithm looks
arbitrarily far into the future, so our solution would theoret-
ically need to remember an arbitrarily long history of past
events. However, Figure 2 shows the impact of limiting this
window of the future. Here, 1× represents a window that
consists of accesses to k cache lines, where k is the capacity
of the cache. We see that while Belady’s algorithm performs
better when it can see farther into the future, it approaches
the performance of a true OPT policy when given a reuse
window of 8× the cache size. Thus, we dub our new re-
placement policy Hawkeye1.

Our use of OPT introduces two technical challenges. First,
we need an efficient mechanism of reconstructing OPT. Sec-
ond, a long history is needed to compute OPT. We solve the
first problem by using the notion of liveness intervals (see
Section 3), which leads to a simple and efficient solution.
The use of liveness intervals is novel for cache replacement,
because it explicitly conveys information about both reuse
distance and the demand on the cache, which are both es-
sential for making proper eviction decisions. We solve the
second problem by using Set Dueling [25] to sample a small
subset of all cache lines.

The result is that with 16 KB of additional storage (plus
tag storage), Hawkeye can compute OPT’s solution for past
accesses with 99% accuracy. Of course, past behavior does
not always model future behavior, so Hawkeye’s performance
does not match OPT’s. Nevertheless, as shown in Figure 3,
Hawkeye performs significantly better than previous policies
on a memory-intensive SPEC CPU 2006 benchmarks.

To summarize, this paper makes the following contribu-
tions:

1Hawks are known for their excellent long-range vision and can
see up to 8× more clearly than the best humans.
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Figure 3: Speedup over LRU for 1, 2, and 4 cores.

• We introduce the Hawkeye cache replacement policy,
which learns Belady’s optimal solution (OPT) for past
accesses to guide future replacement decisions.

• We introduce the OPTgen algorithm for efficiently com-
puting OPT for a history of past cache accesses. OPT-
gen builds on three critical insights: (1) OPT’s deci-
sion depends not only on a cache line’s reuse interval
but also on the overlap of reuse intervals, which repre-
sents the demand on the cache; (2) OPT’s decision for
a past access can be determined at the time of its next
use; (3) a reuse window of 8× is necessary to generate
OPT’s solution accurately.

• To allow Hawkeye to practically simulate OPT, we use
Set Dueling [25] to capture long-term behavior with a
small 12KB hardware budget.

• We evaluate Hawkeye using the Cache Replacement
Championship simulator [1] and show that Hawkeye
substantially improves upon the previous state-of-the
art. On the SPEC CPU 2006 benchmark suite, Hawk-
eye obtains a 17.0% miss rate reduction over LRU,
compared with 11.4% for Khan, et al.’s SDBP pol-
icy [16]. In terms of performance, Hawkeye improves
IPC over LRU by 8.4%, while SDBP improves IPC by
6.2%. On a 4-core system, Hawkeye improves speedup
over LRU by 15.0%, while SDBP improves speedup
by 12.0%.

This paper is organized as follows. Section 2 discusses
related work. Sections 3 and 4 describe and evaluate our
solution. We conclude in Section 5.

2. RELATED WORK
Since Belady’s optimal cache replacement algorithm [2]

was introduced in 1966, there has been considerable work in
the development of practical replacement algorithms [4, 39,
28, 6, 35, 19, 32, 36, 12, 25, 13, 16, 37, 17, 20, 29, 8, 30,
7]. Here, we focus on work that is most closely related to
Hawkeye, organized based on the type of information that
they use to make decisions.
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Figure 4: Block diagram of the Hawkeye replacement algorithm.

Short-Term History Information.
Many solutions use short-term information that reflects

the current state of the cache, ignoring any information about
cache lines that have been evicted.

Such solutions typically uses heuristics that cater to spe-
cific types of cache access patterns. For example, recency-
friendly policies such as LRU and its variations [13, 36, 32]
prioritize recently used lines under the assumption that they
will soon be used again. Other policies favor lines with high
access-frequency under the assumption that frequently used
lines will soon be used again [29, 8, 27, 21, 18]. Jaleel et al.
enhance recency-friendly policies by cleverly using 2-bits
of re-reference interval prediction (RRIP) [12] to eliminate
cache pollution due to streaming accesses. Hawkeye uses
RRIP’s idea of aging to adapt to changes in phase behavior.

To avoid the pathological behavior of recency-friendly
policies on workloads that exhibit large reuse distances,
thrash-resistant policies [25, 30] discard the most recently
used line instead of the least recently used line, thereby re-
taining a portion of the active working set. Unfortunately,
thrash-resistant policies perform poorly in the presence of
recency-friendly or streaming accesses.

Because different replacement policies favor different
cache access patterns, hybrid solutions have been devel-
oped [34, 26, 25] to dynamically select among competing
policies. The key challenges with hybrid replacement are
the management of additional information and the high hard-
ware cost for dynamic selection. Qureshi et al. introduce
Dynamic Set Sampling (DSS) [25], an inexpensive mecha-
nism that chooses the best policy by sampling a few dedi-
cated sets to assess the efficacy of the desired policy. Thus,
DSS allows the policy to change over time, but it selects a
single policy for all cache lines. By contrast, Hawkeye can
use different policies for each load instruction.

Long-Term History Information.
Recent work exploits long-term information, including in-

formation about lines that have been evicted from the cache.
For example, some policies [15, 5] predict reuse distances
for incoming lines based on past reuse distributions, but such
policies are expensive. Moreover, unlike Hawkeye’s liveness

intervals, reuse distance alone leads to inaccurate decisions
because it does not account for the demand on the cache. For
example, a line with a long reuse interval can remain in the
cache if there is low demand on the cache, while at some
other point in time, a line with a short reuse distance can be
evicted from the cache if there is high demand for the cache.
(See Section 3.1).

Hawkeye builds on recent work that learns the caching be-
havior of past load instructions to guide future caching deci-
sions: SHiP [37] uses a predictor to identify instructions that
load streaming accesses, while SDBP [16] uses a predictor to
identify lines that are likely to be evicted by the LRU policy.
Thus, SHiP and SDBP improve cache efficiency by not ded-
icating cache resources to lines that are likely to be evicted.
However, these policies can be inaccurate because they learn
the behavior of heuristic-based replacement policies (LRU
and RRIP), which perform well for a limited class of ac-
cess patterns. By contrast, Hawkeye simulates and learns
from the past behavior of OPT, which makes no assumptions
about access patterns.

Hawkeye considers a longer history of operations than ei-
ther SHiP or SDBP, maintaining a history that is 8 times the
size of the cache. To simulate OPT’s behavior, we introduce
an algorithm which bears resemblance to the Linear Scan
Register Allocator [23] but solves a different problem.

Future Information.
Another class of replacement policies takes inspiration

from victim caches [14] and defers replacement decisions
to the future when more information is available. For exam-
ple, the Shepherd Cache [28] emulates OPT by deferring re-
placement decisions until future reuse can be observed, but it
cannot emulate OPT accurately because it uses an extremely
limited window into the future; larger windows would be
expensive because unlike Hawkeye’s history of past refer-
ences, the Shepherd Cache must store the contents of the
lines that make up its window into the future. Other solu-
tions [24, 30] use slightly longer windows (2×) into the fu-
ture, but these solutions do not model OPT. In general, these
solutions make a tradeoff between the window size and the
precision of their replacement decisions.
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Other Types of Information.
Cache performance can be improved by not only reduc-

ing the number of misses but by selectively eliminating
expensive misses. For example, MLP [26] and prefetch-
friendliness [38] can be used to reduce the overall perfor-
mance penalty of LLC misses. The Hawkeye policy focuses
on cache misses and is complementary to these techniques.

3. OUR SOLUTION
Conceptually, we view cache replacement as a binary

classification problem, where the goal is to determine if
an incoming line is cache-friendly or cache-averse: Cache-
friendly lines are inserted with a high priority, while cache-
averse lines are marked as eviction candidates for future con-
flicts. To determine how incoming lines should be classified,
Hawkeye reconstructs Belady’s optimal solution for past ac-
cesses to learn the behavior of individual load instructions.

Figure 4 shows the overall structure of Hawkeye. Its main
components are the Hawkeye Predictor, which makes evic-
tion decisions, and OPTgen, which simulates OPT’s behav-
ior to produce inputs that train the Hawkeye Predictor. The
system also includes a Sampler (not shown), which reduces
the amount of state required to reconstruct OPT’s behavior.
We now describe each component in more detail.

3.1 OPTgen
OPTgen determines what would have been cached if the

OPT policy had been used. Starting from the oldest refer-
ence and proceeding forward in time, OPTgen assigns avail-
able cache capacity to lines in the order that they are reused.
To assign cache capacity to old references, OPTgen repeat-
edly answers the following question: Given a history of
memory references that includes a reference to cache line
X , would the next reference to the same line, which we refer
to as X ′, be a hit or a miss under the OPT policy?

To answer this question, we observe that OPT’s decision
for any past reference X can be determined at the time of
its next reuse X ′ because any later reference is farther into
the future than X ′, so Belady’s algorithm would favor X ′
over that other line [3]. Thus, we define the time period
that starts with a reference to X and proceeds up to (but
not including) its next reference X ′ to be X’s usage inter-
val. Intuitively, X’s usage interval represents its demand on
the cache, which allows OPTgen to determine whether the
reference to X ′ would result in a cache hit.

If we further define a cache line’s liveness interval to be
the time period during which that line resides in the cache
under the OPT policy, then X would be a cache miss if at any
point in its usage interval the number of overlapping liveness
intervals matches the cache’s capacity. Otherwise, X would
be a cache hit.

For example, consider the sequence of accesses in Fig-
ure 5, which includes X’s usage interval. Here, the cache
capacity is two. We assume that OPTgen has already deter-
mined the liveness intervals of A, B, and C, and since these
intervals never overlap, the maximum number of overlap-
ping liveness intervals in X’s usage interval never reaches
the cache capacity; thus there is space for line X to reside in
the cache, and OPTgen infers that X ′ would be a hit.

OPTgen uses an occupancy vector to record the occupied

X! A! A! B! B! C! C! X’	

Cache Contents with OPT policy !
(Cache Capacity is 2 lines)!

Hit!

A! A! B! B! C! C!

!
Access Sequence!

!
!

Cache Line 1 !
Cache Line 2!

Time!

Figure 5: Intuition behind OPTgen.

cache capacity over time; each entry of this vector contains
the number of liveness intervals that overlap at a particular
time. To understand OPTgen’s use of the occupancy vector,
consider the example access stream in Figure 6(a) and OPT’s
solution for this access stream in Figure 6(b). Figure 6(c)
shows how the occupancy vector is computed over time. In
particular, the top of Figure 6(c) shows the sequence of lines
that is accessed over time. For example, line B is accessed
at Times 1 and 2. Each row in Figure 6(c) represents the
state of the occupancy vector at a different point in time, so,
for example, the third row (T=2) illustrates the state of the
occupancy vector after Time 2, i.e., after the second access
of line B and after OPTgen has determined that OPT would
have placed B in the cache at Time 1.2

For an access to X , the occupancy vector for the usage
interval (shown in gray) is updated as follows:

• The most recent entry of the occupancy vector (corre-
sponding to this access to X) is set to 0.

• When line X is loaded for the first time, no further
changes to the occupancy vector are made, reflecting
the fact that OPT makes decisions based on the next
reuse of the line.

• If X is not a first-time load, OPTgen checks to see if
every element corresponding to the usage interval is
less than the cache capacity: If so, then OPT would
have placed X in the cache, so the shaded portions of
the occupancy vector are incremented; if not, then X
would have been a cache miss, so the occupancy vector
is not modified.

For example, in Figure 6(c), consider the access of D at
Time 8. Using the occupancy vector before T=8 (same as the
occupancy vector at T=7 with a 0 added for Time 8), OPT-
gen sees that the elements in the usage interval (the values at
positions 4 through 7) are all less than the cache capacity (2),
so it concludes that D would be found in the cache at Time
8, and it increments the elements in positions 4 through 7.

As another example, consider the access to C at Time 11;
some of the shaded elements have value 2, so OPTgen con-
cludes that this access to C would have been a cache miss, so
it does not increment the shaded elements of the occupancy
vector. We see that by not incrementing any of the shaded
2In this discussion, we will use “T=1" to refer to rows of the figure,
and we will use “Time 1" to refer to events in the Access Sequence,
ie, columns in the figure.
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Figure 6: Example to illustrate OPTgen.

elements of the occupancy vector for cache misses, OPTgen
assumes that misses will bypass the cache. If we wanted
OPTgen to instead assume a cache with no bypassing, then
the most recent entry (corresponding to the current access)
would have been initialized to 1 instead of 0.

The example in Figure 6 highlights two important points.
First, by reconstructing OPT, OPTgen is able to recognize
both long-term and short-term reuse that is cache friendly.
For example, both A and B hit in the cache even though the
reuse interval of A far exceeds the cache capacity. Second,
OPTgen can be implemented in hardware with very little
logic because the occupancy vector can be maintained with
simple read, write, and compare operations.

OPTgen for Set-Associative Caches.
For set-associative caches, OPTgen maintains one occu-

pancy vector for each cache set such that the maximum
capacity of any occupancy vector entry never exceeds the
cache associativity. Occupancy vectors measure time in
terms of cache accesses to the corresponding set, and they
include enough entries to model 8× the size of the set (or
the associativity). Thus, for a 16-way set-associative cache,
each occupancy vector has 128 entries (corresponding to 8×
the capacity of the set), and each occupancy vector entry is
4 bits wide, as its value cannot exceed 16.

3.2 Reducing the Size of OPTgen
So far, our discussion of OPTgen has not considered re-

source constraints, as we have assumed that the occupancy
vector measures time in terms of individual cache accesses.
We have also assumed that OPTgen has knowledge of live-
ness intervals that extend back 8× the size of the cache,
which for a 16-way 2MB cache requires OPTgen to track
over 260K entries in both the occupancy vectors and the his-
tory. This section describes two techniques that reduce these
hardware requirements.

3.2.1 Granularity of the Occupancy Vector
To reduce the size of the occupancy vector, we increase

its granularity so that each element represents a time quan-

tum, a unit of time as measured in terms of cache accesses.
Our sensitivity studies (Section 4) show that a time quan-
tum of 4 cache accesses works well, which for a 16-way set-
associative cache reduces the size of the occupancy vector
from 128 to 32 entries.

Since occupancy vector entries for 16-way set-associative
caches are 4 bits wide, the occupancy vector for each set
requires 16 bytes of storage, which for a 2MB cache would
still amount to 32KB storage for all occupancy vectors (2048
sets × 16 bytes per set).

3.2.2 Set Dueling
To further reduce our hardware requirements, we use the

idea of Set Dueling [25], which monitors the behavior of a
few randomly chosen sets to make predictions for the entire
cache. To extend Set Dueling to Hawkeye, OPTgen recon-
structs the OPT solution for only 64 randomly chosen sets.
Section 4.3 shows that reconstructing the OPT solution for
64 sets is sufficient to emulate the miss rate of an optimal
cache and to train the Hawkeye Predictor appropriately.

Set Dueling reduces Hawkeye’s storage requirements in
two ways. First, since OPTgen now maintains occupancy
vectors for 64 sets, the storage overhead for all occupancy
vectors is only 1 KB (64 occupancy vectors × 16 bytes per
occupancy vector). Second, it dramatically reduces the size
of the history, which now tracks usage intervals for only 64
sampled sets.

To track usage intervals for the sampled sets, we use a
Sampled Cache. The Sampled Cache is a distinct structure
from the LLC, and each entry in the Sampled Cache main-
tains a 2-byte address tag, a 2-byte load instruction PC, and
a 1-byte timestamp. For 64 sets, the Sampled Cache would
need to track a maximum of 8K addresses to capture usage
intervals spanning a history of 8× the size of the cache, but
we find that because of repeated accesses to the same ad-
dress, 2400 entries in the Sampled Cache are enough to pro-
vide an 8× history of accesses. Thus the total size of the
Sampled Cache is 12KB, and we use an LRU policy for evic-
tion when the Sampled Cache is full.
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3.3 The Hawkeye Predictor
The second major component of Hawkeye is a predictor

that classifies the lines loaded by a given PC as either cache-
friendly or cache-averse. This predictor builds on the ob-
servation that the majority of OPT’s decisions for loads by
a given PC are similar and therefore predictable. Figure 7
quantifies this observation, showing that for SPEC2006, the
average per-PC bias—the probability that loads by the same
PC have the same caching behavior as OPT—is 90.4%.
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Figure 7: Bias of OPT’s decisions for PCs.

Thus, the Hawkeye Predictor learns whether loads by a
given instruction would have resulted in hits or misses under
the OPT policy: If OPTgen determines that a line X would
be a cache hit under the OPT policy, then the PC that last
accessed X is trained positively; otherwise, the PC that last
accessed X is trained negatively. The Hawkeye Predictor
has 8K entries, it uses 3-bit counters for training, and it is
indexed by a 13-bit hashed PC.

For every cache access, the predictor is indexed by the
current load instruction, and the high-order bit of the corre-
sponding 3-bit counter indicates whether the line is cache-
friendly (1) or cache-averse (0). As we explain in Sec-
tion 3.4, this prediction determines the line’s replacement
state.

Occasionally, load instructions will have a low bias, which
will result in inaccurate predictions. Our evaluation shows
that we can get a small performance gain by augmenting
Hawkeye’s predictions to include confidence, but the gains
are not justified by the additional hardware complexity, so
we do not evaluate this feature in this paper.

3.4 Cache Replacement
Our overall cache replacement goal is to use Hawkeye’s

predictions within a phase and to use an LRU strategy at
phase change boundaries, when Hawkeye’s predictions are
likely to be incorrect. Thus, Hawkeye first chooses to evict
cache-averse lines, as identified by the Hawkeye Predictor.
If no lines are predicted to be cache-averse, then the old-
est cache-friendly line (LRU) is evicted, allowing Hawkeye
to adapt to phase changes. This scheme is likely to evict
cache-averse lines from the new working set before evicting
cache-friendly lines from the old working set, but this be-

HHH
HHH

HHHH

Hawkeye
Prediction

Hit or
Miss Cache Hit Cache Miss

Cache-averse RRIP = 7 RRIP = 7
Cache-friendly RRIP = 0 RRIP = 0;

Age all lines:
if (RRIP < 6)
RRIP++;

Table 1: Hawkeye’s Update Policy.

havior is harmless because cache-averse lines from the new
working set are likely to be evicted anyway. To correct the
state of the predictor after a phase change, the predictor is
detrained when cache-friendly lines are evicted. In particu-
lar, when a cache-friendly line is evicted, the predictor entry
corresponding to the last load PC of the evicted line is decre-
mented if the evicted line is present in the sampler.

To implement this policy efficiently, we associate all
cache-resident lines with 3-bit RRIP counters [12] that rep-
resent their eviction priorities; lines with a high eviction pri-
ority have a high RRIP value, and lines with low eviction
priorities have a low RRIP value. Conceptually, the RRIP
counter of a line combines information about Hawkeye’s
prediction for that line and its age. On every cache access
(both hits and misses), the Hawkeye predictor generates a bi-
nary prediction to indicate whether the line is cache-friendly
or cache-averse, and this prediction is used to update the
RRIP counter as shown in Table 1. In particular, rows in Ta-
ble 1 represent Hawkeye’s prediction for a given access, and
columns indicate whether the access was a cache hit or miss.
For example, if the current access hits in the cache and is pre-
dicted to be cache-averse, then its RRIP value is set to 7. As
another example, when a newly inserted line (cache miss) is
predicted to be cache-friendly, its RRIP value is set to 0, and
the RRIP values of all other cache-friendly lines are incre-
mented to track their relative age. In general, cache-friendly
lines are assigned an RRIP value of 0, and cache-averse lines
are assigned an RRIP value of 7.

On a cache replacement, any line with an RRIP value of
7 (cache-averse line) is chosen as an eviction candidate. If
no line has an RRIP value of 7, then Hawkeye evicts the line
with the highest RRIP value (oldest cache-friendly line) and
detrains its load instruction if the evicted line is present in
the sampler.

Hawkeye’s insertion policy differs in three ways from
other RRIP-based policies [12, 37]. First, lines that are pre-
dicted to be cache-friendly are never saturated to the highest
value, which ensures that cache-averse lines are always pri-
oritized for eviction. Second, lines that are predicted to be
cache-friendly are always assigned an RRIP value of 0 re-
gardless of whether they were hits or misses. And finally,
cache hits are promoted to an RRIP value of 0 only if they
are predicted to be cache-friendly. These differences are de-
signed to give the Hawkeye Predictor greater influence over
the RRIP position than cache hits or misses.
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L1 I-Cache 32 KB 4-way, 1-cycle latency
L1 D-Cache 32 KB 4-way, 1-cycle latency
L2 Cache 256KB 8-way, 10-cycle latency
Last-level Cache 2MB, 16-way, 20-cycle latency
DRAM 200 cycles
Two-core 4MB shared LLC (25-cycle latency)
Four-core 8MB shared LLC (30-cycle latency)

Table 2: Baseline configuration.

4. EVALUATION

4.1 Methodology
We evaluate Hawkeye using the simulation framework re-

leased by the First JILP Cache Replacement Championship
(CRC) [1], which is based on CMP$im [10] and models a 4-
wide out-of-order processor with an 8-stage pipeline, a 128-
entry reorder buffer and a three-level cache hierarchy. The
parameters for our simulated memory hierarchy are shown
in Table 2. The infrastructure generates cache statistics as
well as overall performance metrics, such as IPC.

Benchmarks. We evaluate Hawkeye on the entire SPEC2006
benchmark suite.3 For brevity, Figures 8 and 9 show av-
erages for all the benchmarks but only include bar charts
for the 20 replacement-sensitive benchmarks that show more
than 2% improvement with the OPT policy. We compile the
benchmarks using gcc-4.2 with the -O2 option. We run the
benchmarks using the reference input set, and as with the
CRC, we use SimPoint [22, 9] to generate for each bench-
mark a single sample of 250 million instructions. We warm
the cache for 50 million instructions and measure the behav-
ior of the remaining 200 million instructions.

Multi-Core Workloads. Our multi-core results simulate ei-
ther two benchmarks running on 2 cores or four benchmarks
running on 4 cores, choosing all combinations of the 12 most
replacement-sensitive SPEC2006 benchmarks. For 2 cores,
we simulate all possible combinations, and for 4 cores, we
randomly choose one tenth of all the workload mixes, result-
ing in a total of 136 combinations. For each combination, we
simulate the simultaneous execution of the SimPoint sam-
ples of the constituent benchmarks until each benchmark has
executed at least 250M instructions. If a benchmark finishes
early, it is rewound until every other application in the mix
has finished running 250M instructions. Thus, all the bench-
marks in the mix run simultaneously throughout the sampled
execution. Our multi-core simulation methodology is simi-
lar to the methodologies used by recent work [12, 37, 16]
and the Cache Replacement Championship [1].

To evaluate performance, we report the weighted speedup
normalized to LRU for each benchmark combination. This
metric is commonly used to evaluate shared caches [16,
11, 33, 39] because it measures the overall progress of the
combination and avoids being dominated by benchmarks
with high IPC. The metric is computed as follows. For
3We currently cannot run perl on our platform, leaving us with 28
benchmark programs.

each program sharing the cache, we compute its IPC in a
shared environment (IPCshared) and its IPC when executing
in isolation on the same cache (IPCsingle). We then com-
pute the weighted IPC of the combination as the sum of
IPCshared/IPCsingle for all benchmarks in the combination,
and we normalize this weighted IPC with the weighted IPC
using the LRU replacement policy.

Evaluated Caching Systems. We compare Hawkeye against
two state-of-the-art cache replacement algorithms, namely,
SDBP [16] and SHiP [37]; like Hawkeye, both SHiP
and SDBP learn caching priorities for each load PC. We
also compare Hawkeye with two policies that learn global
caching priorities, namely, Dueling Segmented LRU with
Adaptive Bypassing [6] (DSB, winner of the 2010 Cache
Replacement Championship) and DRRIP [12].

DRRIP and SHiP use 2-bit re-reference counters per
cache line. For SHiP, we use a 16K entry Signature Hit
Counter Predictor with 3-bit counters. For SDBP, we use a
1-bit dead block prediction per cache line, 8KB sampler, and
3 prediction tables, each with 4K 2-bit counters. Our SDBP
and SHiP implementation is based on the code provided by
the respective authors with all parameters tuned for our ex-
ecution. For DSB, we use the code provided on the CRC
website and explore all tuning parameters. To simulate Be-
lady’s OPT, we use an in-house trace-based cache simulator.
Hawkeye’s configuration parameters are listed in Table 3.

For our multi-core evaluation, the replacement policies
use common predictor structures for all cores. In particu-
lar, Hawkeye uses a single occupancy vector and a single
predictor to reconstruct and learn OPT’s solution for the in-
terleaved access stream from the past.

Power Estimation. We use CACTI [31] to estimate the dy-
namic energy consumed by the various replacement policies.
Our energy estimates are limited to the additional compo-
nents introduced by the replacement policy and do not con-
sider the impact of improved cache performance on system-
wide energy consumption.

4.2 Comparison with Other Policies
Figure 8 shows that Hawkeye significantly reduces the

LLC miss rate in comparison with the two state-of-the-art
replacement policies. In particular, Hawkeye achieves an av-
erage miss reduction of 17.0% on the 20 memory-intensive
SPEC benchmarks, while SHiP and SDBP see miss reduc-
tions of 11.7% and 11.4%, respectively. Figure 9 shows that
Hawkeye’s reduced miss rate translates to a speedup of 8.4%
over LRU. By contrast, SHiP and SDBP improve perfor-
mance over LRU by 5.6% and 6.2%, respectively.

Figure 9 demonstrates two important trends. First, SDBP
and SHiP each perform well for different workloads, but
their performance gains are not consistent across bench-
marks. For example, SHiP achieves the best performance
for cactus, mcf, and sphinx but performs poorly on gems
and tonto. By contrast, Hawkeye performs consistently well
on all the workloads. Second, in contrast with the other re-

4The results for the replacement-insensitive benchmarks (bwaves,
milc, povray, dealII, sjeng, wrf, gamess and namd) are averaged in
the a single bar named “Rest of SPEC".
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Figure 8: Miss rate reduction for all SPEC CPU 2006 benchmarks.4
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Figure 9: Speedup comparison for all SPEC CPU 2006 benchmarks.

placement policies, Hawkeye does not perform worse than
the LRU baseline on any of the benchmarks. For example,
SHiP and SDBP both slow down astar, and they increase the
miss rates of tonto and gcc, respectively. These results rein-
force our claim that previous replacement policies are geared
to specific classes of access patterns, whereas by learning
from OPT, Hawkeye can adapt to any workload.

Finally, Figure 10 shows that Hawkeye’s performance im-
provement over LRU is much greater than DRRIP’s (3.3%
vs. 8.4%) and almost twice as large as DSB’s (4.2% vs
8.4%). To understand Hawkeye’s benefit, we observe that
DRRIP learns a single policy for the entire cache, while DSB
learns a single bypassing priority. By contrast, Hawkeye
can learn a different priority for each load PC. Since it is
common for cache-friendly and cache-averse lines to occur
simultaneously, any global cache priority is unlikely to per-
form as well as Hawkeye.

Sensitivity to Cache Associativity. Higher associativity gives
a replacement policy more options to choose from, and since
Hawkeye is making more informed decisions than the other
policies, its advantage grows with higher associativity, as
shown in Figure 11.

Except for SDBP, all of the replacement policies bene-
fit from higher associativity. SDBP deviates from this trend
because it uses a decoupled sampler5 to approximate LRU
evictions from the cache itself, and its performance is sensi-
tive to a mismatch in the rate of evictions from the cache and
the sampler. Hawkeye’s decoupled sampler prevents this by

5For each data point in Figure 11, we choose the best performing
sampler associativity.
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Figure 10: Comparison with DRRIP and DSB.

employing a strategy that is independent of the cache con-
figuration.

Hardware Overhead. Table 3 shows the hardware budget
for Hawkeye’s three memory components, namely, the sam-
pler, the occupancy vector, and the PC-based predictor. For
a 2MB cache, Hawkeye’s total hardware budget is 28KB, in-
cluding the per-cache-line replacement state in the tag array.
Table 4 compares the hardware budgets for the evaluated re-
placement policies. We note that Hawkeye’s hardware re-
quirements are well within the 32KB budget constraint for
the Cache Replacement Championship [1].

Finally, we also observe that like other set dueling based
replacement policies, such as SDBP and SHiP, Hawkeye’s
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Figure 11: Sensitivity to cache associativity.

Component Parameters Budget
Sampler 2400 entries; 12KB

5-byte entry
Occupancy 64 vector, 32 entries each 1KB
Vector 4-bit entry

Quantum=4 accesses
Hawkeye 8K entries; 3KB
Predictor 3-bit counter
Replacement 3-bit RRIP value 12KB
State per line

Table 3: Hawkeye hardware budget (16-way 2MB LLC)

hardware budget for meta-data storage (Occupancy Vectors
and Sampled Cache) does not increase with additional cores
or larger caches.

Hardware Complexity. Because every occupancy vector up-
date can modify up to 32 entries, OPTgen would appear to
perform 32 writes on every cache access, which would con-
sume significant power and complicate queue management.
In fact, the number of updates is considerably smaller for
three reasons. First, the occupancy vector is updated only
on sampler hits, which account for only 5% of all cache ac-
cesses. Second, we implement the occupancy vector as an
array of 32-bit lines, such that each line contains eight 4-
bit entries of the occupancy vector. On a sampler hit, all
eight entries in the cache line can be updated in parallel us-
ing a modified 32-bit adder (which performs addition on 4-
bit chunks of the line). As a result, a sampler hit requires
at most 4 writes to the occupancy vector. Third, Figure 12
shows the distribution of the number of entries that are up-
dated on each sampler hit: 85% of these accesses update 16
entries or fewer, which means that they modify no more than
2 lines and can complete in 2 cycles. Moreover, 65% of the
accesses update 8 entries or fewer, so they modify no more
than 1 line. Because occupancy vector updates are not on
the critical path, these latencies do not affect performance.

Energy Consumption. Hawkeye does not increase the energy

Policy Predictor Cache Hardware
Structures Meta-data Budget

LRU None 16KB 16KB
DRRIP 8 bytes 8KB 8KB
SHiP 4KB SHCT 8KB 14KB

2KB PC tags
SDBP 8KB sampler 16KB 27KB

3KB predictor
Hawkeye 12KB sampler 12KB 28KB

1KB OPTgen
3KB predictor

Table 4: Comparison of hardware overheads.
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Figure 12: CDF of number of Occupancy Vector entries
updated on sampler hits. 85% of the accesses update 16
entries or fewer, so they modify no more than 2 lines.

consumption of cache lookups or evictions, but it consumes
extra energy for the sampler, the predictor, and the occu-
pancy vector. We compute the dynamic energy consump-
tion of each of these components by computing the energy
per operation using CACTI and by computing the number
of probes to each component as a fraction of the total num-
ber of LLC accesses. While the predictor is probed on every
LLC access, the sampler is only probed for LLC accesses
belonging to the sampled cache sets, and the occupancy vec-
tor is accessed only for sampler hits. As shown in Figure 12,
the great majority of the occupancy vector updates modify
no more than 4 lines.

We find that the Hawkeye Predictor, sampler, and occu-
pancy vector consume 0.4%, 0.5% and 0.1%, respectively,
of the LLC’s dynamic energy consumption, which results in
a total energy overhead of 1% for the LLC. Thus, Hawk-
eye’s energy overhead is similar to SDBP’s (both Hawkeye
and SDBP use a decoupled sampler and predictor), while
SHiP’s energy overhead is 0.5% of the LLC because it does
not use a decoupled sampler.

4.3 Analysis of Hawkeye’s Performance
There are two aspects of Hawkeye’s accuracy: (1) OPT-

gen’s accuracy in reconstructing the OPT solution for the
past, and (2) the Hawkeye Predictor’s accuracy in learning
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the OPTgen solution. We now explore both aspects.

OPTgen Simulates OPT Accurately. Recall from Section 3
that OPTgen maintains occupancy vectors for only 64 sam-
pled sets, and each entry of the occupancy vector holds the
number of cache-resident lines that the OPT policy would
retain in a given time quantum.

Figure 13 shows that OPTgen is accurate when it models
occupancy vectors for all sets and uses a time quantum of
1. When sampling 64 sets, OPTgen’s accuracy decreases by
0.5% in comparison with the true OPT solution, and with a
time quantum of 4 cache accesses, its accuracy further de-
creases by only 0.3%. Thus, when using a time quantum of
4, OPTgen can achieve 99% accuracy in modeling the OPT
solution with 64 occupancy vectors.
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Figure 13: OPTgen simulates OPT accurately.

Predictor Accuracy. Figure 14 shows that the Hawkeye Pre-
dictor is 81% accurate in predicting OPT’s decisions for fu-
ture accesses. There are two sources of inaccuracy: (1)
Optimal decisions of the past may not accurately predict the
future; (2) the predictor may learn slowly or incorrectly due
to resource limitations and training delay. Since the average
bias of the OPT solution for load instructions is 91%, we
conclude that the predictor contributes to the remaining loss.

Sampler Accuracy. Figure 15 shows that on average, a sam-
pled history has little impact on Hawkeye’s performance.
However, the impact of sampling on Hawkeye’s perfor-
mance varies with benchmark. For benchmarks such as
bzip2, calculix, and tonto, sampling actually improves per-
formance because the sampled history not only filters out
noisy training input, but it also accelerates training by ag-
gregating many training updates into a single event. For
zeusmp, soplex, and h264, performance is degraded with
a sampled history because the samples are unable to ade-
quately represent the past behavior of these benchmarks.

Distribution of Eviction Candidates. Recall that when
all eviction candidates are predicted to be cache-friendly,
Hawkeye evicts the oldest line (LRU). Figure 16 shows the
frequency with which the LRU candidate is evicted. We see
that the Hawkeye Predictor accounts for 71% of the over-
all evictions, though the distribution varies widely across
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Figure 14: Accuracy of the Hawkeye Predictor.
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Figure 15: Impact of sampling on performance.

benchmarks. For benchmarks that have a cache-resident
working set, such as astar, gromacs, and gobmk, Hawkeye
learns that most accesses are cache hits, so it typically de-
faults to the LRU policy. By contrast, for benchmarks that
have a complex mix of short-term and long-term reuse, such
as mcf, xalanc, and sphinx, the Hawkeye Predictor accounts
for a majority of the evictions, and the LRU evictions occur
only during infrequent working set transitions.

4.4 Multi-Core Evaluation
The left side of Figure 17 shows that on a 2-core system

with a shared LLC, Hawkeye’s advantage over SDBP and
SHiP increases, as Hawkeye achieves a speedup of 13.5%,
while SHiP and SDBP see speedups of 10.7% and 11.3%, re-
spectively. The right side of Figure 17 shows that Hawkeye’s
advantage further increases on a 4-core system, with Hawk-
eye improving performance by 15%, compared with 11.4%
and 12.1% for SHiP and SDBP, respectively. On both 2-core
and 4-core systems, we observe that while SHiP outperforms
both SDBP and Hawkeye on a few workload mixes, its av-
erage speedup is the lowest among the three policies, which
points to large variations in SHiP’s performance.

Figures 18 and 3 summarize Hawkeye performance as we
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Figure 17: Weighted speedup for 2 cores with shared 4MB LLC (left) and 4 cores with shared 8MB LLC (right).
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Figure 16: Distribution of evicted lines.

increase the number of cores from 1 to 4. We see that Hawk-
eye’s relative benefit over SDBP increases with more cores.
We also see that the gap between SHiP and SDBP diminishes
at higher core counts.
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Figure 18: Miss reduction over LRU for 1, 2, and 4 cores.

Scheduling Effects. A key challenge in learning the caching
behavior of multi-core systems is the variability that can
arise from non-deterministic schedules. Thus, the optimal
solution of the past memory access stream may not rep-
resent the optimal caching decisions for the future mem-

ory access stream. However, our evaluation shows that for
multi-programmed workloads, the average bias of OPT’s de-
cisions is 89%, which explains why Hawkeye is beneficial
for shared caches.

5. CONCLUSIONS
In this paper, we have introduced the Hawkeye cache re-

placement policy and shown that while it is impossible to
look into the future to make replacement decisions, it is pos-
sible to look backwards over a sufficiently long history of
past memory accesses to learn and mimic the optimal be-
havior.

The advantage of learning from OPT is that OPT can ex-
ploit reuse for any workload, so unlike existing policies, it
is not focused on certain types of reuse—e.g., short-term
and medium-term. This claim is supported by our empir-
ical results: Unlike other policies, which for some work-
loads increase the number of cache misses (when compared
against LRU), Hawkeye does not increase the number of
cache misses for any of our evaluated workloads.

Conceptually, Belady’s algorithm is superior to work that
focuses on reuse distance, because Belady’s algorithm di-
rectly considers both reuse distance and the demand on the
cache. Concretely, by learning from OPT, Hawkeye provides
significant improvements in miss reductions and in speedup
for both single-core and multi-core settings.

More broadly, we have introduced the first method of pro-
viding an oracle for training cache replacement predictors.
As with the trend in branch prediction, we expect that fu-
ture work will enhance cache performance by using more
sophisticated predictors that learn our oracle solution more
precisely. Indeed, given the 99% accuracy with which OPT-
gen reproduces OPT’s behavior, the greatest potential for
improving Hawkeye lies in improving its predictor. Finally,
we believe that Hawkeye’s long history provides information
that will be useful for optimizing other parts of the memory
system, including thread scheduling for shared memory sys-
tems, and the interaction between cache replacement poli-
cies and prefetchers.
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