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hared-memory multiprocessors 
have emerged as an especially cost- 
effective way to provide increased 

computing power and speed, mainly be- 
cause they use low-cost microprocessors 
economically interconnected with shared 
memory modules. 

Figure 1 shows a shared-memory multi- 
processor consisting of processors con- 
nected with the shared memory modules 
by an interconnection network. This sys- 
tem organization has three problems1: 

(1) Memory contention. Since a mem- 
ory module can handle only one memory 
request at a time, several requests from 
different processors will be serialized. 

(2) Communication contention. Con- 
tention for individual links in the intercon- 
nection network can result even if requests 
are directed to different memory modules. 

(3) Latency time. Multiprocessors with 
a large number of processors tend to have 
complex interconnection networks. The la- 
tency time for such networks (that is, the 
time a memory request takes to traverse the 
network) is long. 

These problems all contribute to increased 
memory access times and hence slow down 
the processors’ execution speeds. 

Cache memories have served as an im- 
portant way to reduce the average memory 
access time in uniprocessors. The locality 
of memory references over time (temporal 
locality) and space (spatial locality) al- 
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Cache coherence 
schemes tackle the 

problem of 
maintaining data 

consistency in 
shared-memory 
multiprocessors. 

They rely on 
software, hardware, 

or a combination 
of both. 

lows the cache to perform a vast majority 
of all memory requests (typically more 
than 95 percent); memory handles only a 
small fraction. It is therefore not surprising 
that multiprocessor architects also have 
employed cache techniques to address the 
problems pointed out above. Figure 2 
shows a multiprocessor organization with 
caches attached to all processors. This 
cache organization is  often called private ,  

as opposed to shared, because each cache 
is private to one or a few of the total 
number of processors. 

The private cache organization appears 
in a number of multiprocessors, including 
Encore Computer’s Multimax, Sequent 
Computer Systems’ Symmetry, and Digi- 
tal Equipment’s Firefly multiprocessor 
workstation. These systems use a common 
bus as the interconnection network. Com- 
munication contention therefore becomes 
a primary concem, and the cache serves 
mainly to reduce bus contention. 

Other systems worth mentioning are 
RP3 from IBM, Cedar from the University 
of Illinois at Urbana-Champaign, and 
Butterfly from BBN Laboratories. These 
systems contain about 100 processors 
connected to the memory modules by a 
multistage interconnection network with a 
considerable latency. RP3 and Cedar also 
use caches to reduce the average memory 
access time. 

Shared-memory multiprocessors have 
an advantage: the simplicity of sharing 
code and data structures among the pro- 
cesses comprising the parallel application. 
Process communication, for instance, can 
be implemented by exchanging informa- 
tion through shared variables. This sharing 
can result in several copies of a shared 
block in one or more caches at the same 
time. To maintain a coherent view of the 
memory, these copies must be consistent. 
This is the cache coherenceproblem or the 
cache consistency problem. A large num- 
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ber of solutions to this problem have been 
proposed. 

This article surveys schemes for cache 
coherence. These schemes exhibit various 
degrees of hardware complexity, ranging 
from protocols that maintain coherence in 
hardware to software policies that prevent 
the existence of copies of shared, writable 
data. First we’ll look at some examples of 
how shared data is used. These examples 
help point out a number of performance 
issues. Then we’ll look at hardware proto- 
cols. We’ll see that consistency can be 
maintained efficiently, but in some cases 
with considerable hardware complexity, 
especially for multiprocessors with many 
processors. We’ll investigate software 
schemes as an altemative capable of reduc- 
ing the hardware cost. 

Example of algorithms 
with data sharing 

Cache coherence poses a problem 
mainly for shared, read-write data struc- 
tures. Read-only data structures (such as 
shared code) can be safely replicated with- 
out cache coherence enforcement mecha- 
nisms. Private, read-write data structures 
might impose a cache coherence problem 
if we allow processes to migrate from one 
processor to another. Many commercial 
multiprocessors help increase throughput 
for multiuser operating systems where user 
processes execute independently with no 
(or little) data sharing. In this case, we need 
to efficiently maintain consistency for pri- 
vate, read-write data in the context of proc- 
ess migration. 

We will concentrate on the behavior of 
cache coherence schemes for parallel ap- 
plications using shared, read-write data 
structures. To understand how the schemes 
work and how they perform for different 
uses of shared data structures, we will 
investigate two parallel applications that 
use shared data structures differently. 
These examples highlight a number of 
performance issues. 

We can find the first example - the 
well-known bounded-buffer producer and 
consumer problem - in any ordinary text 
on operating systems. Figure 3 shows it in 
a Pascal-like notation. The producer in- 
serts a data item in the shared buffer if the 
buffer is not full. The buffer can store N 
items. The consumer removes an item if 
the buffer is not empty. We can choose the 
number of producers and consumers arbi- 
trarily. The buffer is managed by a shared 
array, which implements the buffer, and 
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Figure 1. An example of a shared memory multiprocessor.’ 

Interconnection network 

. . .  pq pq 
Ipi IPI 

Figure 2. An example of a multiprocessor with private caches.’ 

I 

Producer: Consumer: 
if count <= N then 
mutexbegin mutexbegin 

if count <> 0 then 

buffer[ in ] := item; 
in := in + 1 mod N; 
count := count + 1; 

item := buffer[ out 1; 
out := out + 1 mod N 
count :=count - 1; 

mutexend mutexend 

Figure 3. Pascal-like code for the bounded-buffer problem. 

three shared variables: in, out, and count, 
which keep track of the next item and the 
number of items stored in the buffer. 
Semaphores (implemented by mutexbegin 

and mutexend) protect buffer operations, 
which means that one process at most can 
enter the critical section at a time. 

The second example to consider is a 
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repeat 
par-for J := 1 to N do 
begin 

xtemp[ J ] := b[ J 1; 
for K := 1 to N do  

xtemp[ J 1 := xtemp[ J 1 + A[ J,K ] * x[ K 1; 
end; 
barrier-sync; 
par-for J := 1 to N do 

x[ J I := xtemp[ J I; 
barrier-sync; 

until false; 

Figure 4. Pascal-like code for one iteration of the parallel algorithm for solving a 
linear system of equations by iteration. 

parallel algorithm for solving a linear sys- 
tem of equations by iteration. It takes the 
form 

x,+] = Ax, + b 

where x,+!, x,, and b are vectors of size N 
and A is amatrix of size N x N .  Suppose that 
each iteration (the calculation of vector 
x<+J is performed by N processes, where 
each process calculates one vector ele- 
ment. The code for this algorithm appears 
in Figure 4. The termination condition does 
not concern us here. Therefore, we assume 
that it never terminates. 

The par-for statement initiates N pro- 
cesses. Each process calculates a new 
value, which is stored in xtemp. The last 
parallel loop in the iteration copies back 
the elements of xtemp to vector x. This 
requires a barrier synchronization. The 
most important observations are 

(1) Vector b and matrix A are read- 

(2) All elements of vector x are read to 
shared and can be safely cached. 

calculate a new vector element. 

(3) All elements of vector x are updated 
in each iteration. 

With these examples in mind, we will 
consider how the proposed schemes for 
cache coherence manage copies of the data 
structures. 

Proposed solutions range from hard- 
ware-implemented cache consistency 
protocols, which give software a coherent 
view of the memory system, to schemes 
providing varied hardware support but 
with cache coherence enforcement poli- 
cies implemented in software. We will 
focus on the implementation cost and per- 
formance issues of the surveyed schemes. 

Hardware-based 
protocols 

Hardware-based protocols include 
snoopy cache protocols, directory 
schemes, and cache-coherent network 
architectures. They all rely on a certain 
cache coherence policy. Let’s start to look 
at different policies. 

Table 1. Comparison of the number of consistency actions generated by the 
cache coherence policies for the example algorithms. 

Communication Cost Bounded-Buffer Iterative 
Problem Algorithm 

Write-invalidate Invalidations 1 
Misses 1 

Write-update Updates K 

N 
N 
N 

Cache coherence policies. Hardware- 
based protocols for maintaining cache 
coherence guarantee memory system co- 
herence without software-implemented 
mechanisms. Typically, hardware mecha- 
nisms detect inconsistency conditions and 
perform actions according to a hardware-. 
implemented protocol. 

Data is decomposed into a number of 
equally sized blocks. A block is the unit of 
transfer between memory and caches. 
Hardware protocols allow an arbitrary 
number of copies of a block to exist at the 
same time. There are two policies for 
maintaining cache consistency: write-  
invalidate and write-update. 

The write-invalidate policy maintains 
consistency of multiple copies in the fol- 
lowing way: Read requests are carried out 
locally if a copy of the block exists. When 
a processor updates a block, however, all 
other copies are invalidated. How this is 
done depends on the interconnection net- 
work used. (Ignore it for the moment.) A 
subsequent update by the same processor 
can then be performed locally in the cache, 
since copies no longer exist. Figure 5 
shows how this policy works. In Figure 5a, 
four copies of block X are present in the 
system (the memory copy and three cached 
copies). In Figure 5b, processor 1 has 
updated an item in block X (the updated 
block is denotedx’) and all other copies are 
invalidated (denoted I). If processor 2 is- 
sues a read request to an item in block X‘, 
then the cache attached to processor 1 
supplies it. 

The write-update policy maintains con- 
sistency differently. Instead of invalidat- 
ing all copies, it updates them as shown in 
Figure 5c. Whether the memory copy is 
updated or not depends on how this proto- 
col is implemented. We will look at that 
later. 

Consider the write-invalidate policy for 
the bounded-buffer problem, recalling the 
code in Figure 3. Suppose a producer 
process P and a consumer process C, exe- 
cuting on different physical processors, 
alternately enter the critical section in the 
following way: P enters the critical section 
K times in a row, then Centers the critical 
section K times in a row, and so forth. If 
K=l , then count will be read and written by 
P and C ,  then P again, etc. This means there 
will be a miss on the read, then an invalida- 
tion on the write. Referred to as the ping- 
pong effect, this means data migrates back 
and forth between the caches, resulting in 
heavy network traffic. However, if the 
producer process inserts consecutive items 
in the buffer - that is, if K>1 - then the I I 
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reads and writes to count will be local. The 
same holds for the consumer process. 

Now consider the write-update policy 
applied to the bounded-buffer problem. 
Here, note that the write to count generates 
a global update independent of the order of 
execution of P and C .  Table 1 shows the 
communication cost associated with ac- 
cesses to the variable count for K consecu- 
tive executions of the critical section. 
Under the assumption that the communica- 
tion cost is the same for an invalidation as 
for an update and that the communication 
cost for a miss is twice that for an invalida- 
tion, then the break-even point of the 
communication cost between the two poli- 
cies is K=3.  

Now consider the iterative algorithm of 
Figure 4 and the write-invalidate protocol. 
Suppose the block size is exactly one vec- 
tor element and the cache is infinitely 
large. Observe first that accesses to matrix 
A and vector b will be local, since they are 
read-shared and will not be invalidated. 
However, each process will realize a read 
miss on every access to vector x, since all 
elements of x are updated (that is, all cop- 
ies are invalidated) in each iteration. Each 
process generates exactly one invalidation. 
Thus, each process will have N read misses 
and N invalidations in each iteration. 

If we instead consider the write-update 
policy, then all reads will be local but N 
global updates will be generated for each 
process. These observations are summa- 
rized in Table 1. Write-update performs 
better in terms of communication cost than 
does write-invalidate for this algorithm, 
with the same assumptions as for the 
bounded-buffer problem. 

The write-invalidate and write-update 
policies require that cache invalidation and 
update commands (collectively referred to 
as consistency commands) be sent to at 
least those caches having copies of the 
block. Until now we have not considered 
the implications of this for different net- 
works. In some networks (such as buses), it 
is feasible to broadcast consistency com- 
mands to all caches. This means that every 
cache must process every consistency 
command to find out whether it refers to 
data in the cache. These protocols are 
called snoopy cache protocols  because 
each cache “snoops” on the network for 
every incoming consistency command. 

In other networks (such as multistage 
networks), the network traffic generated 
by broadcasts is prohibitive. Such systems 
prefer to multicast consistency commands 
exactly to those caches having a copy of 
the block. This requires bookkeeping by 
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Figure 5. (a) Memory and three processor caches store consistent copies of block 
X. (b) All copies except the one stored in processor 1’s cache are invalidated (I) 
when processor 1 updates X (denoted X’) if the write-invalidate policy is used. (c) 
All copies (except the memory copy, which is ignored) are updated if the write- 
update policy is used. 
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Figure 6. State-transition graph for states of cached copies for the write-once 
protocol. Solid lines mark processor-initiated actions, and dashed lines mark 
consistency actions initiated by other caches. 

means of a directory that tracks all copies 
of blocks. Hence, these protocols are called 
directory schemes. 

First we’ll look at different implementa- 
tions of snoopy cache protocols. Then 
we’ll look at directory schemes. While 
snoopy cache protocols rely on the use of 
buses, directory schemes can be used for 
general interconnection networks. Past 
work has also yielded proposals for cache- 
coherent network architectures supporting 
a large number of processors. 

Write-invalidate snoopy cache proto- 
cols. Historically, Goodman proposed the 
first write-invalidate snoopy cache proto- 
col, called write-once and reviewed by 
Archibald and Baer? To understand the 
hardware complexity of the reviewed 
protocols, and certain possible optimiza- 
tions, we will take a rather detailed look at 
this protocol. 

The write-once protocol associates a 
state with each cached copy of a block. 
Possible states for a copy are 

- Invalid. The copy is inconsistent. 
Valid. There exists a valid copy con- 
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sistent with the memory copy. 
Reserved. Data has been written ex- 

actly once and the copy is consistent with 
the memory copy, which is the only other 
COPY. 

Dirty. Data has been modified more 
than once and the copy is the only one in 
the system. 

Write-once uses a copy-back memory 
update policy, which means that the entire 
copy of the block must be written back to 
memory when it is replaced, provided that 
it has been modified during its cache resi- 
dence time (that is, the state is dirty). To 
maintain consistency, the protocol re- 
quires the following consistency com- 
mands besides the normal memory read 
block (Read-Blk) and write block (Write- 
Blk) commands: 

- Write-Inv. Invalidates all other copies 

- Read-Inv. Reads a block and invali- 
of a block. 

dates all other copies. 

State transitions result either from the 
local processor read and write commands 

(P-Read and P-Write) or the consistency 
commands (Read-Blk, Write-Blk, Write- 
Inv, and Read-Inv) incoming from the 
global bus. Figure 6 shows a state-transi- 
tion graph summarizing the actions taken 
by the write-once protocol. Solid lines 
mark processor-initiated actions, and 
dashed lines mark consistency actions ini- 
tiated by other caches and sent over the 
bus. 

The operation of the protocol can also be 
specified by making clear the actions taken 
on processor reads and writes. Read hits 
can always be performed locally in the 
cache and do not result in state transitions. 
For read misses, write hits, and write 
misses the actions occur as follows: 

Read miss. If no dirty copy exists, then 
memory has a consistent copy and supplies 
a copy to the cache. This copy will be in the 
valid state. If a dirty copy exists, then the 
corresponding cache inhibits memory and 
sends a copy to the requesting cache. Both 
copies will change to valid and the memory 
is updated. 

Write hit. If the copy is in the dirty or 
reserved states, then the write can be car- 
ried out locally and the new state is dirty. If 
the state is valid, then a Write-Inv consis- 
tency command is broadcast to all caches, 
invalidating their copies. The memory 
copy is updated and the resulting state is 
Reserved. 

Write miss. The copy either comes 
from a cache with a dirty copy, which then 
updates memory, or from memory. This is 
accomplished by sending a Read-Inv con- 
sistency command, which invalidates all 
cached copies. The copy is updated locally 
and the resulting state is dirty. - Replacement. If the copy is dirty, then 
it has to be written back to main memory. 
Otherwise, no actions are taken. 

Other examples of proposed write- 
invalidate protocols include the Illinois 
protocol proposed by Papamarcos and 
Patel and the Berkeley protocol specifi- 
cally designed for the SPUR (Symbolic 
Processing Using RISC) multiprocessor 
workstation at the University of California 
at Berkeley (reviewed by Archibald and 
Baes). They improve on the management 
of private data (Illinois) and take into ac- 
count the discrepancy between the mem- 
ory and cache access times to optimize 
cache-to-cache transfers (Berkeley). 

Write-update snoopy cache protocols. 
An example of a write-update protocol, the 
Firefly protocol, has been implemented in 
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the Firefly multiprocessor workstation 
from Digital Equipment (reviewed by 
Archibald and Bae9). It associates three 
possible states with a cached copy of a 
block 

Valid-exclusive. The only cached 
copy, it is consistent with the memory 
COPY. 

* Shared. The copy is consistent, and 
there are other consistent copies. 

* Dirty. This is the only copy. The 
memory copy is inconsistent. 

The Firefly protocol uses copy-back 
update policy for private blocks and write- 
through for shared blocks. The notion of 
shared and private is determined at run- 
time. 

Tomaintain consistency, a write-update 
consistency command updates all copies. 
A dedicated bus line, denoted “shared 
line,” is used by the snooping mechanisms 
to tell the writer that copies exist. Figure 7 
summarizes the state transitions. 

The actions taken on a processor read or 
write follow: 

Read miss. If there are shared copies, 
then these caches supply the block by 
synchronizing the transmission on the bus. 
If a dirty copy exists, then this cache sup- 
plies the copy and updates main memory. 
The new state in these cases is shared. If 
there is no cached copy. then memory 
supplies the copy and the new state is 
valid-exclusive. 

Write hit. If the block is dirty or valid- 
exclusive, then the writecanbe carried out 
locally andtheresultingstate isdirty. Ifthe 
copy is shared, all other copies (including 
the memory copy) are updated. If sharing 
has ceased (indicated by the shared line). 
then the next state is valid-exclusive. 

* Write miss. The copy is suppliedeither 
from other caches or from memory. If it 
comes from memory, then its loaded-in 
state is dirty. Otherwise. all other copies 
(including the memory copy) are updated 
and the resulting state is shared. 

* Replacement. If the state is dirty, then 
the copy is written back to main memory. 
Otherwise, no actions are taken. 

Another write-update protocol, the 
Dragon protocol (reviewed by Archibald 
and Baerl), has been proposed for the 
Dragon multiprocessor workstation from 
Xerox PARC. To improve the efficiency of 
cache-to-cache transfers, it avoids updat- 
ing memory until a block is replaced. 
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Figure 7. State-transition graph for states of cached copies for the Firefly 
protocol. 

Implementation and performance 
Issues for snoopy cache protoeols. 
Snoopy cache protocols are extremely 
popular because of the ease of implemen- 
tation. Many commercial, bus-based 
multiprocessors have used the protocols 
we have investigated here.’ For example, 
Sequent Computer Systems’ Symmetry 
multiprocessor and Alliant Computer Sys- 
tems’ Alliant FX use write-invalidate poli- 
cies to maintain cache consistency. The 
DEC Firefly uses the write-update policy, 

an action is needed. Since the snooping 
mechanism must have access to the direc- 
tory, contention for the directory can arise 
between local requests and requests com- 
ing in from the bus. For that reason the 
directory is often duplicated. 

Another implementation issue concerns 
the bus design. To efficiently support the 
protocols reviewed here, certain bus lines 
are needed. One example we have seen is 
the shared line to support write-update 
policies. Therefore, dedicated bus stan- ~. 

as does the experimental Dragon worksta- 
tion mentioned above. 

dards have been proposedsuch as the IEEE 
Futurebus (IEEE standard P896.1). 

The main differences between a snoopy 
cache and a uniprocessor cache are the 
cache controller, the information stored in 
the cache directory, and the bus controller. 
The cache controller is a finite-state ma- 
chine that implements the cache coherence 
protocol according to the state vansition 
graphs of Figures 6 and 7. 

The cache directory needs to store the 
state for each block. Only two bits are 
needed forthe protocols we havereviewed. 
The bus controller implements the bus- 
snooping mechanisms, which must moni- 
torevery bus operationtodiscover whether 

Now let’s discuss the impact of certain 
cache parameters on the performance of 
snoopy cache protocols. We would use 
snoopy cache protocols mainly to reduce 
bus traffic, with a secondary goal of reduc- 
ing the average memory access time. An 
important question is how these metrics 
are affected by the block (line) size when 
using a write-invalidate protocol. 

For uniprocessorcaches, bus traffic and 
average access time mainly result from 
cache misses, that is, references to data 
that we not cache resident. Uniprocessor 
cache studies have demonstrated that the 
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Table 2. Bit overhead for proposed di- 
rectory schemes. 

Scheme Overhead 
(No. of Bits) 

Censier M(B+N) 
Stenstrom C(E+N) + Mlog,N 

miss ratio decreases when the block size 
increases. This results from the spatial 
locality of code, in particular, and for data. 
The miss ratio decreases until the block 
size reaches a certain point - the data 
pollution point - then it starts to increase. 
For larger caches the data pollution point 
appears at a larger block size. 

Bus traffic per reference (in number of 
bus cycles) is proportional both to the miss 
ratio, M ,  and the number of words that 
must be transferred to serve a cache miss. 
If this number matches the block size, L, 
then average bus traffic per reference is E 
= M L. Hence, if the miss ratio decreases 
when the block size increases, bus traffic 
will not necessarily decrease. In fact, simu- 
lations have shown that bus traffic in- 
creases with block size for data refer- 
e n c e ~ , ~  which suggests using a small block 
size in bus-based multiprocessors. 

For write-invalidate protocols, a cache 
miss can result from an invalidation initi- 
ated by another processor prior to the cache 
access - an invalidation mis s .  Such 
misses increase bus traffic. Note that in- 
creasing the cache size cannot reduce in- 
validation misses. Eggers and Katz4 have 
done extensive simulations based on paral- 
lel program traces (trace-driven simula- 
tion) to investigate the impact of block size 
on the miss ratio and bus traffic (see also 
their references to earlier work). One of 
their conclusions is that the total miss ratio 
generally exceeds that in uniprocessors. 
Moreover, it does not necessarily decrease 
when the block size increases, unlike 
uniprocessor cache behavior. This means 
that bus traffic in multiprocessors may 
increase dramatically when the block size 
increases. 

We can explain the main results by using 
the example algorithms from Figures 3 and 
4. Consider the bounded-buffer problem 
and the use of the shared array, buffer. If 
the line size matches the size of each item, 
then the consumer will experience an in- 
validation miss on every access, assuming 

that producers and consumers access the 
critical section altemately. Note that if the 
block size increases, the invalidation miss 
ratio remains the same but bus traffic in- 
creases. However, with a larger block size, 
consumers could benefit from a decreased 
miss ratio if the same consumer process 
accessed the critical section several times 
in a row. 

For the iterative algorithm from Figure 
4, increasing the block size reduces the 
miss ratio for accesses to vector x, since all 
elements of the block are accessed once. 
Accesses to vector xtemp, however, expe- 
rience a higher miss ratio because each 
write to xtemp invalidates all copies. This 
means that, in the worst case, a read miss 
for xtemp results for each iteration in the 
inner loop. 

Even if the spatial locality with respect 
to a process is high, this does not necessar- 
ily suggest a large block size. It depends on 
the effect of accesses by all processes 
sharing the block. For shared data usage 
where data are exclusively accessed by one 
process for a considerable amount of time, 
increasing the block size may reduce the 
invalidation miss ratio. 

For write-update protocols, the block 
size is not an issue because misses are not 
caused by consistency-related actions. 
Moreover, the frequency of global updates 
does not depend on the block size. A poten- 
tial problem, however, is that write-update 
protocols tend to update copies even if they 
are not actively used. Note that a copy 
remains in the cache until replaced, since 
write-update protocols never invalidate 
copies. This effect is more emphasized for 
large caches, which help multiprocessors 
reduce the miss ratio and the resulting bus 
traffic. 

An important performance issue for 
write-invalidate policies concems reduc- 
ing the number of invalidation misses. For 
write-update policies, an important issue 
concems reducing the sharing of data to 
lessen bus traffic. Now let’s survey some 
extensions to the two types of protocols 
that address these issues. 

Snoopy cache protocol extensions. 
The write-invalidate protocol may lead to 
heavy bus traffic caused by read misses 
resulting from iterations where one pro- 
cessor updates a variable and a number of 
processors read the same variable. This 
happens with the iterativealgorithm shown 
in Figure 4. The number of read misses 
could be reduced considerably if, upon a 
read miss, the copy were distributed to all 
caches with invalid copies. In that case, all 

N read misses per iteration and per process 
could be eliminated for all processes less 
one. Such an extension to the read-invali- 
date protocol, called read-broadcast, was 
proposed by Rudolph and Segall.’ 

As noted for the write-update protocol, 
data items might be updated even if never 
accessed by other processors. This could 
happen with the bounded-buffer problem 
of Figure 3 if a consumer process migrates 
from one processor to another. In this case, 
parts of the buffer might remain in the old 
cache until replaced. This can take a very 
long time if the cache is large. While in the 
cache, the buffer generates heavy network 
traffic because of the broadcast updates. 

One approach measures the break-even 
point when the communication cost (in 
terms of bus cycles for updating a block) 
exceeds the cost of handling an invalida- 
tion miss. Assuming that a miss costs twice 
as much as a global update, then the break- 
even point appears when two consecutive 
updates have taken place with no interven- 
ing local accesses. We could implement 
this scheme by adding two cache states that 
determine when the break-even point is 
reached. Karlin et a1.6 proposed and evalu- 
ated a number of such extensions, called 
competitive snooping, and Eggers and Katz 
evaluated the performance benefits of 
these  extension^.^ 

Directory schemes. We have seen that 
even using large caches cannot entirely 
eliminate bus traffic because of the consis- 
tency actions introduced as a result of data 
sharing. This puts an upper limit on the 
number of processors that a bus can ac- 
commodate. For multiprocessors with a 
large number of processors - say, 100 - 
we must use other interconnection net- 
works, such as multistage networks. 

Snoopy cache protocols do not suit 
general interconnection networks, mainly 
because broadcasting reduces their per- 
formance to that of a bus. Instead, consis- 
tency commands should be sent to only 
those caches that have a copy of the block. 
To do that requires storing exact informa- 
tion about which caches have copies of all 
cached blocks. 

We will survey different approaches 
proposed in the literature. Note that this 
issue can be considered orthogonal to the 
choice of cache coherence policy. There- 
fore, keep in mind that either write-invali- 
date or write-update would serve. Cache 
coherence protocols that somehow store 
information on where copies of blocks 
reside are called directory schemes. Agar- 
wal et al. surveyed and evaluated directoty 
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schemes in their work? 
The proposed schemes differ mainly in 

how the directory maintains the informa- 
tion and which information the directory 
stores. Tang proposed the first directory 
scheme (reviewed by Agarwal et al.’). He 
suggested a central directory containing 
duplicates of all cache directories. The 
information stored in the cache directory 
depends on the coherence policy em- 
ployed. The main point is that the directory 
controller can find out which caches have 
a copy of a particular block by searching 
through all duplicates. 

Censier and Feautrier proposed another 
organization of the directory (also re- 
viewed by Agarwal et al.’). Associated 
with each memory block is a bit vector, 
called the presenceflag vector. One bit for 
each cache indicates which caches have a 
copy of the block. Some status bits are 
needed, depending on the cache coherence 
policy used. 

In an earlier work, I proposed a different 
way of storing the directory information.* 
Instead of associating the state information 
and the presence flag vector with the mem- 
ory copy, this information is associated 
with the cached copy. Let’s call this the 
Stenstrom scheme. 

First we compare the implementation 
cost in terms of the number of bits needed 
to store the information. Given M memory 
blocks, C cache lines, N caches, and B bits 
for state information for each cache block, 
Table 2 shows the overhead for each 
scheme. 

From Table 2 we see that the Tang 
scheme has the least overhead, provided 
that C < M. However, this scheme has two 
major disadvantages. First, the directory is 
centralized, which can introduce severe 
contention. Second, the directory control- 
ler must search through all duplicates to 
find which caches have copies of a block. 

In the other schemes, state information 
is distributed over memory or cache mod- 
ules, which reduces contention. Further- 
more, for both schemes the presence flag 
vector stores the residency ofcopies, elimi- 
nating the need for the search associated 
with the Tang scheme. This simplification 
does not come for free. In the Censier 
scheme, overhead is proportional to mem- 
ory size; in the Stenstrom scheme, it is 
proportional to cache size. The last scheme 
needs the identity of the current owner in 
memory. This requires an additional l o g p  
bits. The bit overhead for both schemes is 
prohibitive for multiprocessors with a 
large number of processors because of the 
size of the presence flag vector. 

Figure 8. Actions taken on a read miss (thin lines) and a write hit (bold lines) fol 
the write-invalidate implementation of (a) the Censier scheme and (b) the 
Stenstrom scheme. 

To get an insight into the reduction of 
network traffic over snoopy cache proto- 
cols, assume that the directory organiza- 
tions presented above support the write- 
invalidate cache coherence scheme. Since 
the Tang and Censier schemes differ only 
in the directory implementation, we will 
consider only the Censier and Stenstrom 
schemes. 

Let’s concentrate on how read misses 
and write hits are handled. Previous proto- 
col descriptions have already shown how 
other actions are handled. In the following, 
assume the system contains exactly one 
dirty copy. Figure 8 shows the control flow 
of consistency actions. 

In the Censier scheme, a read miss at 
cache 2 results in a request sent to the 
memory module. The memory controller 

retransmits the request to the dirty cache. 
This cache writes back its copy. The 
memory module can then supply a copy to 
the requesting cache. These actions appear 
in Figure 8a as thin lines. If a write hit is 
generated at cache 1, then a command is 
sent to the memory controller, which sends 
invalidations to all caches marked in the 
presence flag vector (cache 2) in Figure 8a. 
Bold lines mark these actions in Figure 8a. 

Considering the Stenstrom scheme, a 
read miss at cache 2 results in a request sent 
to the memory module. The memory con- 
troller retransmits the request to the dirty 
cache. Instead of writing back its copy, the 
cache supplies the copy directly to cache 2. 
These actions appear in Figure 8b as thin 
lines. If a write hit is generated at cache 1, 
then invalidation commands are sent di- 
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Table 3. Cache pointer bit overhead 
for a full-map, limited, and chained di- 
rectory scheme. 

Scheme Overhead 
(No. of Bits) 

Limited iMlog,N 
Chained Mlog,N + Clog,N 

rectly to all caches marked in the presence 
flag vector (cache 2) in Figure 8b. Bold 
lines mark these actions in Figure 8b. 

Assuming the bounded-buffer problem 
of Figure 3 and the count variable, some 
important points come up. First, invalida- 
tions will be sent to only one cache because 
there will be at most one copy of count. 
This is very important because if broad- 
casts were generated, this would result in 
immense network traffic. Second, in both 
cases read misses to dirty blocks must 
traverse the network twice. Third, the 
Censier scheme requires sending a request 
to the memory controller for each invalida- 
tion. In the Stenstrom scheme, invalida- 
tions can be sent directly because the pres- 
ence flag vector is stored in the cache. The 
price for this, however, is that the presence 
flag vector must be fetched from the cur- 
rent owner if the block is not owned (the 
processor does not have write permission), 
which results in considerable network traf- 
fic for large presence flag vectors. For ap- 
plications with one writer to a block, as is 
the case for the iterative algorithm in Fig- 
ure 4, this overhead stays small. 

The directory schemes presented have 
the main advantage of being able to restrict 
the consistency commands to those caches 
having copies of a block. They are called 
full-map directory schemes because they 
can track copies of an arbitrary number of 
caches. However, they are expensive to 
implement, especially for multiprocessors 
containing many processors. 

There are different altematives to re- 
duce the directory size. Onemethod, called 
the limited directory scheme, restricts the 
number of cache pointers to less than the 
actual number of caches. Given N caches 
and i pointers in each directory entry, 
where i < N ,  then ilog,N bits are needed to 
track copies of blocks for each memory 
block. A key question for limited directory 
schemes is how to handle cases where 

more than i copies are requested. Two 
alternatives are possible: Either disallow 
more than i copies or start to broadcast 
when more than i copies exist. Clearly the 
success of a limited directory scheme de- 
pends on the degree of sharing, that is, the 
number of processors that simultaneously 
share data. 

Agarwal et al.’ introduced a classifica- 
tion of directory schemes. They referred to 
a directory scheme as Dir( X, where i is the 
number of cache pointers for each block 
and X denotes whether the scheme broad- 
casts consistency commands (X = E )  when 
the number of copies exceeds the number 
of cache pointers, or whether it disallows 
more than i copies (X = N E ) .  Their termi- 
nology denotes the full-map schemes as 
Dir,  N E  and the limited directory schemes 
with broadcast capability as Dir,  E ,  where 
i < N .  

One possible way of reducing the size of 
the directory for Dir,  NE schemes is to link 
in a list all caches that store a copy of a 
block. We could do this by associating an 
entry including log, N bits with each cache 
line and memory block. This entry con- 
tains a pointer to the next cache that stores 
a copy. This scheme, called a chained di- 
rectory scheme, routes consistency com- 
mands to only those caches having copies 
of a block. However, when we compare the 
chained directory scheme with the full- 
map directory schemes, we find that multi- 
cast operations may take longer to per- 
form, thus slowing the processors. The 
Scalable Coherent Interface (IEEE P1596)9 
proposes a chained directory scheme. 

An example of an extremely cost-effec- 
tive directory scheme that relies on broad- 
casting consistency commands (denoted 
Dir ,  E )  is the one proposed by Archibald 
and Baer (reviewed by Agarwal et al.’). 
Each directory entry consists of two bits 
encoding four global states of a memory 
block: not present in any cache, clean in 
exactly one cache, clean in an unknown 
number of caches, and dirty in exactly one 
cache. When a processor updates a block, 
an invalidation is broadcast to all caches. 
This generates immense network traffic. 
Nevertheless, this scheme is scalable in the 
sense that the number of caches can in- 
crease without changing the directory 
structure. 

Table 3 compares the bit overhead re- 
quired for cache pointers for a full-map 
(Stenstrom) scheme, a limited scheme with 
i pointers, and a chained directory scheme. 
Assume M memory blocks, C cache lines, 
and N caches. The chained directory is 
cheaper than the Stenstrom scheme. How- 

ever, the Stenstrom scheme sends consis- 
tency commands directly to other caches 
without having to traverse the chain of 
cache pointers. 

The full-map directory schemes have 
the advantage of reducing network traffic 
caused by invalidations or updates by 
multicasting them only to those caches 
with copies of a block. However, the 
amount of memory needed tends to be 
prohibitive for multiprocessors with many 
processors. Reducing the number of cache 
pointers, that is, employing limited direc- 
tory schemes, alleviates this problem. The 
price for this is limiting the number of 
copies that may simultaneously coexist in 
different caches or introducing peaks of 
network traffic due to broadcasting of 
consistency commands. Consequently, a 
trade-off exists between network traffic 
and directory size. No commercial im- 
plementation yet uses directory schemes. 

Another article in this issue, written by 
Chaiken et al., compares the performance 
of various directory schemes through a 
number of benchmark applications. 

Cache-coherent network architec- 
tures. The real success of shared-memory 
multiprocessors lies in designs that pro- 
vide a large number of processors inter- 
connected in an economical way. We have 
seen that a common bus does not suit 
hundreds of processors. Multistage net- 
works have problems, too, because of the 
hardware complexity for many processors. 
Therefore, researchers have proposed 
multiprocessors with a hierarchy of buses, 
in which network traffic is reduced by 
hierarchical cache-coherence protocols 
that don’t suffer from the implementation 
complexity of directory schemes. Let’s 
review three novel architectures based on 
this approach. 

The first one, the hierarchical cachebus 
architecture proposed by Wilson,” ap- 
pears in Figure 9. We can view this archi- 
tecture as a hierarchy of cachesbuses 
where a cache contains a copy of all blocks 
cached underneath it. This requires large 
higher level cache modules. Memory 
modules connect to the topmost bus. 

To maintain consistency among copies, 
Wilson proposed an extension to the write- 
invalidate protocol. Consistency among 
copies stored at the same level is main- 
tained in the same way as for traditional 
snoopy cache protocols. However, an in- 
validation must propagate vertically to 
invalidate copies in all caches. Suppose 
that processor P, issues a write (see Figure 
9). The write request propagates up to the 

COMPUTER 20 



highest level and invalidates every copy. 
Consequently, copies in Mc20, Mc22, 
Mc16, and Mc18 will be invalidated. How- 
ever, higher order caches such as Mc20 
keep track of dirty blocks beneath them. A 
subsequent read request issued by P, will 
propagate up the hierarchy because no 
copies exist. When it reaches the topmost 
level, Mc20 issues a flush request down to 
Mcl 1 and the dirty copy is supplied to the 
cache of processor P,. 

Note that higher level caches act as fil- 
ters for consistency actions; an invalida- 
tion command or a read request will not 
propagate down to subsystems that don’t 
contain a copy of the corresponding block. 
This means that Mc2 1 in the example above 
acts as a filter for the invalidations on the 
topmost cache, since this subsystem has no 
copies. 

The next architecture is the Wisconsin 
Multicube, proposed by Goodman and 
Woest.” As shown in Figure 10, it consists 
of a grid of buses with a processing ele- 
ment in each switch and a memory module 
connected to each column bus. A process- 
ing element consists of a processor, a 
cache, and a snoopy cache controller con- 
nected to the row and column bus. The 
snoopy cache is large (comparable to the 
size of main memory in a uniprocessor) to 
reduce network traffic. The large caches 
mean bus traffic results mainly from con- 
sistency actions. 

Like in the hierarchical cachebus sys- 
tem, a write-invalidate protocol maintains 
consistency. Invalidations are broadcast 
on every row bus, while global read re- 
quests are routed to the closest cache with 
a copy of the requested block. This is 
supported in the following way: Each 
block has a “home co1umn”corresponding 
to the memory module that stores the 
block. A block can be globally modified or 
unmodified. If the block is globally modi- 
fied, then there exists only one copy. Each 
cache controller stores in its column the 
identification of all modified blocks, 
which serves as routing information for 
read requests. A read request is broadcast 
on the row bus and routed to the column 
bus where the modified block is stored. 

The Data Diffusion Machine12 is an- 
other hierarchical cache-coherent archi- 
tecture quite similar to Wilson’s architec- 
ture. It consists of a hierarchy of buses with 
large processor caches (on the order of a 
megabyte) at the lowest level, which is the 
only type of memory in the system. A 
hierarchical write-invalidate protocol 
maintains consistency. Unlike Wilson’s 
architecture, higher order caches (such as 
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Figure 10. Goodman and Woest’s Wisconsin Multicube. 
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repeat 
par-for J := 1 to N do 
begin 

xtemp[ J ] := b[ J 1; 
for K := 1 to N do 

xtemp[ J ] := 
xtemp[ J ] + 
A[ J,K 1 * 
x[ K I; 

- cache-read( b[ J 1) 

- cache-read(xtemp[ J I )  
- cache-read(A[ J.K I )  
- memory-read(x[ K I )  

end; 
barrier-sync; - cache-invalidate 
par-for J := 1 to N do 

x[ J ] := xtemp[ J 1; 
barrier-s ync; - cache-invalidate 

- memory-read(xtemp[ J 1) 

until false; 

I 
Figure 11. Example of reference marking of the iterative algorithm. 

the level-2 caches in Figure 9) contain only 
state information, which considerably 
reduces memory overhead. We pay a price 
for this: Certain read requests must be sent 
to the root and then down to a leaf and back 
again because an intermediate-level cache 
cannot satisfy them. 

Interestingly, the global memory has 
been distributed to the processors. In con- 
junction with the cache coherence proto- 
col, this allows an arbitrary number of 
copies. Since data items have no home 
locations, as opposed to the Wilson and 
Wisconsin Multicube architectures, they 
will “diffuse” to those memory modules 
where they are needed. The Data Diffusion 
Machine is currently being built at the 
Swedish Institute of Computer Science. 

Compared to the full-map directory 
schemes, these architectures are more cost- 
effective in terms of memory overhead and 
constitute an interesting extension to bus- 
based architectures for large shared-mem- 
ory multiprocessors. However, it is too 
early to tell whether implementations will 
prove efficient. 

Software-based 
schemes 

Software cache-coherence schemes at- 
tempt to avoid the need for complex hard- 
ware mechanisms. Let’s take a look at 
some of the proposals. 

How to prevent inconsistent cache 
copies. Hardware-based protocols effec- 
tively reduce network traffic. However, 
we pay for this with complex hardware 
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mechanisms, especially for multiproces- 
sors with a large number of processors. 

An altemative would prevent the exis- 
tence of inconsistent cached data by limit- 
ing the caching of a data structure to safe 
times. This makes it necessary to analyze 
the program to mark variables as cacheable 
or noncacheable, which a sophisticated 
compiler or preprocessor can do. The most 
trivial solution would be to mark all shared 
read-write variables as noncacheable. This 
is too conservative, since shared data struc- 
tures can be exclusively accessed by one 
process or are read-only during a consider- 
able amount of time. During such intervals 
it is safe to cache a data structure. 

A better approach would let the com- 
piler analyze when it is safe to cache a 
shared read-write variable. During such 
intervals it marks the variable as cache- 
able. At the end of the interval, main 
memory must be consistent with the 
cached data, and cached data must be made 
inaccessible from the cache by invalida- 
tion. This raises the following key ques- 
tions: How does the compiler mark a vari- 
able as cacheable, and how is data invali- 
dated? 

The following survey of software-based 
cache coherence schemes will address 
these issues. Consult Cheong and Veiden- 
baumI3 for references to further reading. 
See also the article written by Cheong and 
Veidenbaum in this issue. 

Cacheability marking. We can base 
the reference marking of a shared variable 
on static partitioning of the program into 
computational units. Accesses to a shared 
variable in one computational unit might 

differ from those of another computational 
unit. For example, the accesses might be 
one of the following types: 

(1) Read-only for an arbitrary number 
of processes. 

(2) Read-only for an arbitrary number 
of processes and read-write for ex- 
actly one process. 

(3) Read-write for exactly one process. 
(4) Read-write for an arbitrary number 

of processes. 

Here, we assume that processes execute on 
different processors. Type 1 implies that 
the variable is cacheable, such as all ele- 
ments of the shared matrix A and vector b 
in the iterative algorithm of Figure 4. Type 
2 implies that at most the read-write pro- 
cess may cache the variable and that main 
memory is always made consistent. Using 
write-through update policy achieves this. 
Type 3 allows the variable to be cached and 
updated using copy-back, as for the shared 
variables in the critical sections of the 
producer and consumer code in Figure 3. 
Finally, for type 4 we must mark the vari- 
able as noncacheable. Consider, for ex- 
ample, synchronization variables such as 
those implementing the mutexbegin, 
mutexend, and barrier synchronization of 
Figures 3 and 4. 

Because synchronizations often delimit 
a computational unit, we can apply differ- 
ent rules for maintaining a variable’s con- 
sistency for different computational units. 
Between computational units, cached 
shared variables must be invalidated be- 
fore the next computational unit enters. 
Moreover, main memory must be updated, 
either by using write-through update pol- 
icy or by flushing the content of the cache 
if a copy-back policy is used. 

Computational units are easily identi- 
fied if they are explicit in the program 
code, such as the parallel for-loops in the 
iterative algorithm. In the first parallel 
loop, all elements of xtemp are type 3, 
while all elements of A, b,  and x are type 1. 
In the second parallel loop, all elements of 
vectors x and xtemp are type 3, which 
makes it possible to cache all shared vari- 
ables provided that all elements of vectorx 
are invalidated at the end of the second 
parallel for-loop and main memory is 
consistent at the beginning of the iteration. 
The critical sections associated with the 
bounded-buffer algorithm provide another 
example of a computational unit. 

Typically, the compiler’s main task is to 
analyze data dependencies and generate 
appropriate cache instructions to control 
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the cacheability and invalidation of shared 
variables. The data dependence analysis 
itself, an important and sometimes com- 
plex task, lies outside the scope of this 
article. Interested readers should consult 
the references in Cheong and Veiden- 
b a ~ m . ' ~  Instead, we will look at different 
approaches to enforcing cache coherence 
and investigate the hardware support im- 
plied by these schemes. The first three 
approaches rely on parallel for-loops to 
classify the cacheability of shared vari- 
ables. The last approach relies' on critical 
sections as a model for accessing shared 
read-write data. 

Cache  coherence enforcement 
schemes. In the first approach, proposed 
by Cheong and Veidenbaum, all shared 
variables accessed within a computational 
unit receive equal treatment; either all or 
none can be cached. This scheme assumes 
a write-through cache, which guarantees 
up-to-date memory content. Moreover, it 
assumes three cache instructions: Cache- 
On, Cache-Off, and Cache-Invalidate. 
Cache-On turns caching on for all shared 
variables when all shared accesses are 
read-only (type 1 )  or exclusively accessed 
by one process (type 3). Cache-Off results 
in all shared accesses bypassing cache and 
going to the shared memory. 

After execution of a computational unit, 
the Cache-Invalidate instruction invali- 
dates all cache content. Invalidating the 
whole cache content, called indiscriminate 
invalidation, has the advantage of being 
easy to implement efficiently. However, 
indiscriminate invalidation is too conser- 
vative and leads to an unnecessarily high 
cache-miss ratio. For instance, in the itera- 
tive algorithm, caching is turned on, allow- 
ing all variables to be cached. However, 
invalidations needed after each barrier 
synchronization result in unnecessary 
misses for accesses to the read-only matrix 
A and vector b. 

Selective invalidation of only those 
variables that can introduce inconsistency 
would improve this scheme. It is important 
to implement selective invalidation effi- 
ciently. Cheong and Veidenbaum13 pro- 
posed a scheme with these objectives. In 
this scheme, shared-variable accesses 
within a computational unit are classified 
as always up to date or possibly stale. The 
scheme assumes three types of cache in- 
structions to support this, namely, Mem- 
ory-Read, Cache-Read, and Cache-Invali- 
date. Memory-Read means possibly stale 
cached copy, whereas Cache-Read guar- 
antees up-to-date cached copy. Further- 
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Table 4. Comparison of the number of invalidation misses for the software- 
based schemes and a write-invalidate hardware-based scheme for the iterative 
algorithm. 

I Indiscriminate Fast Selective Timestamp Write-Invalidate 
Invalidation Invalidation Scheme Hardware Scheme 

Loop 1 N ( L + l )  + L N N N 
Loop 2 L L 
Sum N ( L + l )  + 2L N + L  N N 

1 I 

more, the scheme assumes the cache uses 
write-through. 

Associated with each cache line is a 
change bit. The Cache-Invalidate instruc- 
tion sets all change bits true. If a Memory- 
Read is issued to a cache block with its 
change bit set true, then the read request 
will be passed to memory. When the re- 
quested block is loaded into the cache, the 
change bit is set false and subsequent ac- 
cesses will hit in the cache. 

To demonstrate this method, consider 
once again the iterative algorithm of Fig- 
ure 4. Assume that the block size is one 
vector element and that n = N / L  processors 
cooperate in the execution of the parallel 
loops. Each processor executes L itera- 
tions. Figure 1 1  includes comments for all 
read operations to shared data with the 
cache instructions supported by the 
scheme. The only sources of inconsistency 
are the accesses to vectors x and xtemp. 
This means the only references that need 
marking as Memory-Reads are when x is 
read in the first parallel loop and when 
xtemp is read in the second parallel loop. 
Clearly, this scheme eliminates cache 
misses on the accesses to vector b and 
matrix A. Just turning on all change bits 
efficiently accomplishes the fast selective 
invalidation scheme in one cycle. 

Even if this scheme reduces the number 
of invalidation misses, it is still conserva- 
tive because the same processor might 
execute the same iterations in the two par- 
allel loops. If so, the corresponding ele- 
ments of xtemp will be. unnecessarily in- 
validated and reread from memory in the 
second parallel loop. 

A third scheme takes advantage of this 
temporal locality: the timestamp-based 
scheme proposed by Min and Baer.14 This 
scheme associates a "clock" (a counter) 
with each data structure, such as vectors x 
and xtemp in the iterative algorithm. This 
clock is update& the end of each compu- 
tational unit (at the barrier synchroniza- 

tions in the algorithm) in which the corre- 
sponding variable is updated. For example, 
the clock for vector xtemp is updated after 
the first parallel loop, and the clock for 
vector x is updated after the second loop. A 
timestamp associated with each block in 
the cache (for example, with each vector 
element) is set to the value of the corre- 
sponding clock+l when the block is up- 
dated in the cache. A reference to a cache 
word is valid if its timestamp exceeds its 
associated clock value. Otherwise, the 
block must be fetched from memory. 

This scheme eliminates invalidations 
associated with variables local to a proces- 
sor between two computational units 
because the timestamp value for these 
variables exceeds their clock value. The 
hardware support for this scheme consists 
of a number of clock registers and a time- 
stamp entry foreachcache line in thecache 
directory. 

Let's compare the number of invalida- 
tion misses generated by the schemes pre- 
sented so far and compare these numbers 
with the corresponding number for a write- 
invalidate hardware scheme. Assume that 
n = N/L processors execute the iterations 
and that each processor always executes 
the same iteration. This means that 
processor iexecutes iterations (i-I)L+ 1 to 
iL in the parallel loops in the iterative 
algorithm. Assume a block size corre- 
sponding to one vector element. Table 4 
shows the result. 

The table makes it clear that the last 
scheme results in the same number of in- 
validation misses as does any write-invali- 
date hardware-based scheme. The hard- 
ware support for the different schemes 
differs in complexity. The indiscriminate 
invalidation scheme requires only a 
mechanism for turning on or off and invali- 
dating the cache. The fast selective invali- 
dation scheme requires one bit for each 
cache line (the change bit), whereas the 
timestamp-based scheme requires a time- 
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stamp register with several bits for each 
cache line and a number of clock registers 
(two in this algorithm). 

Compared to the hardware support for a 
write-invalidate protocol, especially for 
multiprocessors with a large number of 
processors, software-based schemes are 
clearly very cost-effective. This compari- 
son yields another important observation: 
Software-based schemes are competitive 
with hardware-based schemes, at least for 
this simple example. In another article in 
this issue, Cheong and Veidenhaum pres- 
ent another scheme that preserves tempo- 
ral locality between computational units. 
They also present a performance compari- 
son between many of the schemes re- 
viewed in this section. 

To end this section, let’s consider a soft- 
ware-based scheme proposed by Smith and 
reviewed elsewhere.” It differs from the 
others by relying on the fact that accesses 
to shared variables always take place in 
critical sections, as in the bounded-buffer 
algorithm of Figure 3. 

The scheme maintains consistency by 
selectively invalidating all shared vari- 
ables associated with a critical section, as 
follows: All shared variables in a critical 
section are allocated to the same page. A 
one-time identifier (OTI) is associated 
with each page. When a cache block is 
loaded into the cache, the corresponding 
OTI is loaded from the translation-look- 
aside buffer (TLB, an address translation 
mechanism) into the entry in the cache 
directory that corresponds to the cache 
line. For an access to bit in the cache, the 
stored OTI must match the OTI in the TLB. 
Fast invalidation of all shared variables 
associated with a critical section can now 
be done by simply changing the OTI for the 
corresponding page. This scheme’s inter- 
esting feature is the fast selective invalida- 
tion mechanism. 

Software-based schemes have not yet 
been used in any commercial systems. 
However, many of the ideas presented in 
this section are being tested in the experi- 
mental system Cedar at the University of 
Illinois at Urbana-Champaign. 

espite extensive study of the cache 
coherence problem, many pos- 
sible research directions remain. 

First, most of the schemes presented here, 
except for snoopy cache protocols, have 
never been implemented. We can only 
evaluate them in real implementations. 
Second, since the area of parallel process- 
ing remains immature, we face a paucity of 
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real-life applications for large multi- 
processors. This makes it difficult toevalu- 
ate these ideas under realistic assumptions. 
Third, as we have seen, the design space 
for multiprocessor caches is large and in- 
volves complicated trade-offs. For ex- 
ample, a definite need exists for experi- 
mental research to explore performance 
differences between software-based and 
hardware-based schemes. 

The advent of high-speed reduced in- 
struction set computer (RISC) micropro- 
cessors with an increased memory band- 
width requirement will put an increased 
burden on the memory system for future 
multiprocessors. Therefore, multiproces- 
sor caches are and will be a hot topic in the 
coming years. 
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