
A Survey of Cache
Coherence- Schemes for

Multiprocessors

Per Stenstrom

Lund University

hared-memory multiprocessors
have emerged as an especially cost-
effective way to provide increased

computing power and speed, mainly be-
cause they use low-cost microprocessors
economically interconnected with shared
memory modules.

Figure 1 shows a shared-memory multi-
processor consisting of processors con-
nected with the shared memory modules
by an interconnection network. This sys-
tem organization has three problems1:

(1) Memory contention. Since a mem-
ory module can handle only one memory
request at a time, several requests from
different processors will be serialized.

(2) Communication contention. Con-
tention for individual links in the intercon-
nection network can result even if requests
are directed to different memory modules.

(3) Latency time. Multiprocessors with
a large number of processors tend to have
complex interconnection networks. The la-
tency time for such networks (that is, the
time a memory request takes to traverse the
network) is long.

These problems all contribute to increased
memory access times and hence slow down
the processors’ execution speeds.

Cache memories have served as an im-
portant way to reduce the average memory
access time in uniprocessors. The locality
of memory references over time (temporal
locality) and space (spatial locality) al-

12

Cache coherence
schemes tackle the

problem of
maintaining data

consistency in
shared-memory
multiprocessors.

They rely on
software, hardware,

or a combination
of both.

lows the cache to perform a vast majority
of all memory requests (typically more
than 95 percent); memory handles only a
small fraction. It is therefore not surprising
that multiprocessor architects also have
employed cache techniques to address the
problems pointed out above. Figure 2
shows a multiprocessor organization with
caches attached to all processors. This
cache organization is often called private ,

as opposed to shared, because each cache
is private to one or a few of the total
number of processors.

The private cache organization appears
in a number of multiprocessors, including
Encore Computer’s Multimax, Sequent
Computer Systems’ Symmetry, and Digi-
tal Equipment’s Firefly multiprocessor
workstation. These systems use a common
bus as the interconnection network. Com-
munication contention therefore becomes
a primary concem, and the cache serves
mainly to reduce bus contention.

Other systems worth mentioning are
RP3 from IBM, Cedar from the University
of Illinois at Urbana-Champaign, and
Butterfly from BBN Laboratories. These
systems contain about 100 processors
connected to the memory modules by a
multistage interconnection network with a
considerable latency. RP3 and Cedar also
use caches to reduce the average memory
access time.

Shared-memory multiprocessors have
an advantage: the simplicity of sharing
code and data structures among the pro-
cesses comprising the parallel application.
Process communication, for instance, can
be implemented by exchanging informa-
tion through shared variables. This sharing
can result in several copies of a shared
block in one or more caches at the same
time. To maintain a coherent view of the
memory, these copies must be consistent.
This is the cache coherenceproblem or the
cache consistency problem. A large num-

COMPUTER WIB-9162/wRMn-W12$01.W 0 1990 IEEE

ber of solutions to this problem have been
proposed.

This article surveys schemes for cache
coherence. These schemes exhibit various
degrees of hardware complexity, ranging
from protocols that maintain coherence in
hardware to software policies that prevent
the existence of copies of shared, writable
data. First we’ll look at some examples of
how shared data is used. These examples
help point out a number of performance
issues. Then we’ll look at hardware proto-
cols. We’ll see that consistency can be
maintained efficiently, but in some cases
with considerable hardware complexity,
especially for multiprocessors with many
processors. We’ll investigate software
schemes as an altemative capable of reduc-
ing the hardware cost.

Example of algorithms
with data sharing

Cache coherence poses a problem
mainly for shared, read-write data struc-
tures. Read-only data structures (such as
shared code) can be safely replicated with-
out cache coherence enforcement mecha-
nisms. Private, read-write data structures
might impose a cache coherence problem
if we allow processes to migrate from one
processor to another. Many commercial
multiprocessors help increase throughput
for multiuser operating systems where user
processes execute independently with no
(or little) data sharing. In this case, we need
to efficiently maintain consistency for pri-
vate, read-write data in the context of proc-
ess migration.

We will concentrate on the behavior of
cache coherence schemes for parallel ap-
plications using shared, read-write data
structures. To understand how the schemes
work and how they perform for different
uses of shared data structures, we will
investigate two parallel applications that
use shared data structures differently.
These examples highlight a number of
performance issues.

We can find the first example - the
well-known bounded-buffer producer and
consumer problem - in any ordinary text
on operating systems. Figure 3 shows it in
a Pascal-like notation. The producer in-
serts a data item in the shared buffer if the
buffer is not full. The buffer can store N
items. The consumer removes an item if
the buffer is not empty. We can choose the
number of producers and consumers arbi-
trarily. The buffer is managed by a shared
array, which implements the buffer, and

June 1990

Figure 1. An example of a shared memory multiprocessor.’

Interconnection network

. . . pq pq
Ipi IPI

Figure 2. An example of a multiprocessor with private caches.’

I

Producer: Consumer:
if count <= N then
mutexbegin mutexbegin

if count <> 0 then

buffer[in] := item;
in := in + 1 mod N;
count := count + 1;

item := buffer[out 1;
out := out + 1 mod N
count :=count - 1;

mutexend mutexend

Figure 3. Pascal-like code for the bounded-buffer problem.

three shared variables: in, out, and count,
which keep track of the next item and the
number of items stored in the buffer.
Semaphores (implemented by mutexbegin

and mutexend) protect buffer operations,
which means that one process at most can
enter the critical section at a time.

The second example to consider is a

13

repeat
par-for J := 1 to N do
begin

xtemp[J] := b[J 1;
for K := 1 to N do

xtemp[J 1 := xtemp[J 1 + A[J,K] * x[K 1;
end;
barrier-sync;
par-for J := 1 to N do

x[J I := xtemp[J I;
barrier-sync;

until false;

Figure 4. Pascal-like code for one iteration of the parallel algorithm for solving a
linear system of equations by iteration.

parallel algorithm for solving a linear sys-
tem of equations by iteration. It takes the
form

x,+] = Ax, + b

where x,+!, x,, and b are vectors of size N
and A is amatrix of size N x N . Suppose that
each iteration (the calculation of vector
x<+J is performed by N processes, where
each process calculates one vector ele-
ment. The code for this algorithm appears
in Figure 4. The termination condition does
not concern us here. Therefore, we assume
that it never terminates.

The par-for statement initiates N pro-
cesses. Each process calculates a new
value, which is stored in xtemp. The last
parallel loop in the iteration copies back
the elements of xtemp to vector x. This
requires a barrier synchronization. The
most important observations are

(1) Vector b and matrix A are read-

(2) All elements of vector x are read to
shared and can be safely cached.

calculate a new vector element.

(3) All elements of vector x are updated
in each iteration.

With these examples in mind, we will
consider how the proposed schemes for
cache coherence manage copies of the data
structures.

Proposed solutions range from hard-
ware-implemented cache consistency
protocols, which give software a coherent
view of the memory system, to schemes
providing varied hardware support but
with cache coherence enforcement poli-
cies implemented in software. We will
focus on the implementation cost and per-
formance issues of the surveyed schemes.

Hardware-based
protocols

Hardware-based protocols include
snoopy cache protocols, directory
schemes, and cache-coherent network
architectures. They all rely on a certain
cache coherence policy. Let’s start to look
at different policies.

Table 1. Comparison of the number of consistency actions generated by the
cache coherence policies for the example algorithms.

Communication Cost Bounded-Buffer Iterative
Problem Algorithm

Write-invalidate Invalidations 1
Misses 1

Write-update Updates K

N
N
N

Cache coherence policies. Hardware-
based protocols for maintaining cache
coherence guarantee memory system co-
herence without software-implemented
mechanisms. Typically, hardware mecha-
nisms detect inconsistency conditions and
perform actions according to a hardware-.
implemented protocol.

Data is decomposed into a number of
equally sized blocks. A block is the unit of
transfer between memory and caches.
Hardware protocols allow an arbitrary
number of copies of a block to exist at the
same time. There are two policies for
maintaining cache consistency: write-
invalidate and write-update.

The write-invalidate policy maintains
consistency of multiple copies in the fol-
lowing way: Read requests are carried out
locally if a copy of the block exists. When
a processor updates a block, however, all
other copies are invalidated. How this is
done depends on the interconnection net-
work used. (Ignore it for the moment.) A
subsequent update by the same processor
can then be performed locally in the cache,
since copies no longer exist. Figure 5
shows how this policy works. In Figure 5a,
four copies of block X are present in the
system (the memory copy and three cached
copies). In Figure 5b, processor 1 has
updated an item in block X (the updated
block is denotedx’) and all other copies are
invalidated (denoted I). If processor 2 is-
sues a read request to an item in block X‘,
then the cache attached to processor 1
supplies it.

The write-update policy maintains con-
sistency differently. Instead of invalidat-
ing all copies, it updates them as shown in
Figure 5c. Whether the memory copy is
updated or not depends on how this proto-
col is implemented. We will look at that
later.

Consider the write-invalidate policy for
the bounded-buffer problem, recalling the
code in Figure 3. Suppose a producer
process P and a consumer process C, exe-
cuting on different physical processors,
alternately enter the critical section in the
following way: P enters the critical section
K times in a row, then Centers the critical
section K times in a row, and so forth. If
K=l , then count will be read and written by
P and C , then P again, etc. This means there
will be a miss on the read, then an invalida-
tion on the write. Referred to as the ping-
pong effect, this means data migrates back
and forth between the caches, resulting in
heavy network traffic. However, if the
producer process inserts consecutive items
in the buffer - that is, if K>1 - then the I I

14 COMPUTER

reads and writes to count will be local. The
same holds for the consumer process.

Now consider the write-update policy
applied to the bounded-buffer problem.
Here, note that the write to count generates
a global update independent of the order of
execution of P and C . Table 1 shows the
communication cost associated with ac-
cesses to the variable count for K consecu-
tive executions of the critical section.
Under the assumption that the communica-
tion cost is the same for an invalidation as
for an update and that the communication
cost for a miss is twice that for an invalida-
tion, then the break-even point of the
communication cost between the two poli-
cies is K=3.

Now consider the iterative algorithm of
Figure 4 and the write-invalidate protocol.
Suppose the block size is exactly one vec-
tor element and the cache is infinitely
large. Observe first that accesses to matrix
A and vector b will be local, since they are
read-shared and will not be invalidated.
However, each process will realize a read
miss on every access to vector x, since all
elements of x are updated (that is, all cop-
ies are invalidated) in each iteration. Each
process generates exactly one invalidation.
Thus, each process will have N read misses
and N invalidations in each iteration.

If we instead consider the write-update
policy, then all reads will be local but N
global updates will be generated for each
process. These observations are summa-
rized in Table 1. Write-update performs
better in terms of communication cost than
does write-invalidate for this algorithm,
with the same assumptions as for the
bounded-buffer problem.

The write-invalidate and write-update
policies require that cache invalidation and
update commands (collectively referred to
as consistency commands) be sent to at
least those caches having copies of the
block. Until now we have not considered
the implications of this for different net-
works. In some networks (such as buses), it
is feasible to broadcast consistency com-
mands to all caches. This means that every
cache must process every consistency
command to find out whether it refers to
data in the cache. These protocols are
called snoopy cache protocols because
each cache “snoops” on the network for
every incoming consistency command.

In other networks (such as multistage
networks), the network traffic generated
by broadcasts is prohibitive. Such systems
prefer to multicast consistency commands
exactly to those caches having a copy of
the block. This requires bookkeeping by

June 1990

Figure 5. (a) Memory and three processor caches store consistent copies of block
X. (b) All copies except the one stored in processor 1’s cache are invalidated (I)
when processor 1 updates X (denoted X’) if the write-invalidate policy is used. (c)
All copies (except the memory copy, which is ignored) are updated if the write-
update policy is used.

15

P-Read

invalid / Valid

P-Write

I Read-ln>\ / ‘ Fead-Blk

I I \
Read-lnv I ,<

/ \ ‘ ‘ i /’ \ \
/ \

\

(DiW) (Reserved)

P-Write

Figure 6. State-transition graph for states of cached copies for the write-once
protocol. Solid lines mark processor-initiated actions, and dashed lines mark
consistency actions initiated by other caches.

means of a directory that tracks all copies
of blocks. Hence, these protocols are called
directory schemes.

First we’ll look at different implementa-
tions of snoopy cache protocols. Then
we’ll look at directory schemes. While
snoopy cache protocols rely on the use of
buses, directory schemes can be used for
general interconnection networks. Past
work has also yielded proposals for cache-
coherent network architectures supporting
a large number of processors.

Write-invalidate snoopy cache proto-
cols. Historically, Goodman proposed the
first write-invalidate snoopy cache proto-
col, called write-once and reviewed by
Archibald and Baer? To understand the
hardware complexity of the reviewed
protocols, and certain possible optimiza-
tions, we will take a rather detailed look at
this protocol.

The write-once protocol associates a
state with each cached copy of a block.
Possible states for a copy are

- Invalid. The copy is inconsistent.
Valid. There exists a valid copy con-

16

sistent with the memory copy.
Reserved. Data has been written ex-

actly once and the copy is consistent with
the memory copy, which is the only other
COPY.

Dirty. Data has been modified more
than once and the copy is the only one in
the system.

Write-once uses a copy-back memory
update policy, which means that the entire
copy of the block must be written back to
memory when it is replaced, provided that
it has been modified during its cache resi-
dence time (that is, the state is dirty). To
maintain consistency, the protocol re-
quires the following consistency com-
mands besides the normal memory read
block (Read-Blk) and write block (Write-
Blk) commands:

- Write-Inv. Invalidates all other copies

- Read-Inv. Reads a block and invali-
of a block.

dates all other copies.

State transitions result either from the
local processor read and write commands

(P-Read and P-Write) or the consistency
commands (Read-Blk, Write-Blk, Write-
Inv, and Read-Inv) incoming from the
global bus. Figure 6 shows a state-transi-
tion graph summarizing the actions taken
by the write-once protocol. Solid lines
mark processor-initiated actions, and
dashed lines mark consistency actions ini-
tiated by other caches and sent over the
bus.

The operation of the protocol can also be
specified by making clear the actions taken
on processor reads and writes. Read hits
can always be performed locally in the
cache and do not result in state transitions.
For read misses, write hits, and write
misses the actions occur as follows:

Read miss. If no dirty copy exists, then
memory has a consistent copy and supplies
a copy to the cache. This copy will be in the
valid state. If a dirty copy exists, then the
corresponding cache inhibits memory and
sends a copy to the requesting cache. Both
copies will change to valid and the memory
is updated.

Write hit. If the copy is in the dirty or
reserved states, then the write can be car-
ried out locally and the new state is dirty. If
the state is valid, then a Write-Inv consis-
tency command is broadcast to all caches,
invalidating their copies. The memory
copy is updated and the resulting state is
Reserved.

Write miss. The copy either comes
from a cache with a dirty copy, which then
updates memory, or from memory. This is
accomplished by sending a Read-Inv con-
sistency command, which invalidates all
cached copies. The copy is updated locally
and the resulting state is dirty. - Replacement. If the copy is dirty, then
it has to be written back to main memory.
Otherwise, no actions are taken.

Other examples of proposed write-
invalidate protocols include the Illinois
protocol proposed by Papamarcos and
Patel and the Berkeley protocol specifi-
cally designed for the SPUR (Symbolic
Processing Using RISC) multiprocessor
workstation at the University of California
at Berkeley (reviewed by Archibald and
Baes). They improve on the management
of private data (Illinois) and take into ac-
count the discrepancy between the mem-
ory and cache access times to optimize
cache-to-cache transfers (Berkeley).

Write-update snoopy cache protocols.
An example of a write-update protocol, the
Firefly protocol, has been implemented in

COMPUTER

the Firefly multiprocessor workstation
from Digital Equipment (reviewed by
Archibald and Bae9). It associates three
possible states with a cached copy of a
block

Valid-exclusive. The only cached
copy, it is consistent with the memory
COPY.

* Shared. The copy is consistent, and
there are other consistent copies.

* Dirty. This is the only copy. The
memory copy is inconsistent.

The Firefly protocol uses copy-back
update policy for private blocks and write-
through for shared blocks. The notion of
shared and private is determined at run-
time.

Tomaintain consistency, a write-update
consistency command updates all copies.
A dedicated bus line, denoted “shared
line,” is used by the snooping mechanisms
to tell the writer that copies exist. Figure 7
summarizes the state transitions.

The actions taken on a processor read or
write follow:

Read miss. If there are shared copies,
then these caches supply the block by
synchronizing the transmission on the bus.
If a dirty copy exists, then this cache sup-
plies the copy and updates main memory.
The new state in these cases is shared. If
there is no cached copy. then memory
supplies the copy and the new state is
valid-exclusive.

Write hit. If the block is dirty or valid-
exclusive, then the writecanbe carried out
locally andtheresultingstate isdirty. Ifthe
copy is shared, all other copies (including
the memory copy) are updated. If sharing
has ceased (indicated by the shared line).
then the next state is valid-exclusive.

* Write miss. The copy is suppliedeither
from other caches or from memory. If it
comes from memory, then its loaded-in
state is dirty. Otherwise. all other copies
(including the memory copy) are updated
and the resulting state is shared.

* Replacement. If the state is dirty, then
the copy is written back to main memory.
Otherwise, no actions are taken.

Another write-update protocol, the
Dragon protocol (reviewed by Archibald
and Baerl), has been proposed for the
Dragon multiprocessor workstation from
Xerox PARC. To improve the efficiency of
cache-to-cache transfers, it avoids updat-
ing memory until a block is replaced.

June 1990

P-Read P-Read/P.Write

P-Write i Read-Blk\
I
I
I
I

I
/

/ yJ /” P-Write

Figure 7. State-transition graph for states of cached copies for the Firefly
protocol.

Implementation and performance
Issues for snoopy cache protoeols.
Snoopy cache protocols are extremely
popular because of the ease of implemen-
tation. Many commercial, bus-based
multiprocessors have used the protocols
we have investigated here.’ For example,
Sequent Computer Systems’ Symmetry
multiprocessor and Alliant Computer Sys-
tems’ Alliant FX use write-invalidate poli-
cies to maintain cache consistency. The
DEC Firefly uses the write-update policy,

an action is needed. Since the snooping
mechanism must have access to the direc-
tory, contention for the directory can arise
between local requests and requests com-
ing in from the bus. For that reason the
directory is often duplicated.

Another implementation issue concerns
the bus design. To efficiently support the
protocols reviewed here, certain bus lines
are needed. One example we have seen is
the shared line to support write-update
policies. Therefore, dedicated bus stan- ~.

as does the experimental Dragon worksta-
tion mentioned above.

dards have been proposedsuch as the IEEE
Futurebus (IEEE standard P896.1).

The main differences between a snoopy
cache and a uniprocessor cache are the
cache controller, the information stored in
the cache directory, and the bus controller.
The cache controller is a finite-state ma-
chine that implements the cache coherence
protocol according to the state vansition
graphs of Figures 6 and 7.

The cache directory needs to store the
state for each block. Only two bits are
needed forthe protocols we havereviewed.
The bus controller implements the bus-
snooping mechanisms, which must moni-
torevery bus operationtodiscover whether

Now let’s discuss the impact of certain
cache parameters on the performance of
snoopy cache protocols. We would use
snoopy cache protocols mainly to reduce
bus traffic, with a secondary goal of reduc-
ing the average memory access time. An
important question is how these metrics
are affected by the block (line) size when
using a write-invalidate protocol.

For uniprocessorcaches, bus traffic and
average access time mainly result from
cache misses, that is, references to data
that we not cache resident. Uniprocessor
cache studies have demonstrated that the

17

Table 2. Bit overhead for proposed di-
rectory schemes.

Scheme Overhead
(No. of Bits)

Censier M(B+N)
Stenstrom C(E+N) + Mlog,N

miss ratio decreases when the block size
increases. This results from the spatial
locality of code, in particular, and for data.
The miss ratio decreases until the block
size reaches a certain point - the data
pollution point - then it starts to increase.
For larger caches the data pollution point
appears at a larger block size.

Bus traffic per reference (in number of
bus cycles) is proportional both to the miss
ratio, M , and the number of words that
must be transferred to serve a cache miss.
If this number matches the block size, L,
then average bus traffic per reference is E
= M L. Hence, if the miss ratio decreases
when the block size increases, bus traffic
will not necessarily decrease. In fact, simu-
lations have shown that bus traffic in-
creases with block size for data refer-
e n c e ~ , ~ which suggests using a small block
size in bus-based multiprocessors.

For write-invalidate protocols, a cache
miss can result from an invalidation initi-
ated by another processor prior to the cache
access - an invalidation mis s . Such
misses increase bus traffic. Note that in-
creasing the cache size cannot reduce in-
validation misses. Eggers and Katz4 have
done extensive simulations based on paral-
lel program traces (trace-driven simula-
tion) to investigate the impact of block size
on the miss ratio and bus traffic (see also
their references to earlier work). One of
their conclusions is that the total miss ratio
generally exceeds that in uniprocessors.
Moreover, it does not necessarily decrease
when the block size increases, unlike
uniprocessor cache behavior. This means
that bus traffic in multiprocessors may
increase dramatically when the block size
increases.

We can explain the main results by using
the example algorithms from Figures 3 and
4. Consider the bounded-buffer problem
and the use of the shared array, buffer. If
the line size matches the size of each item,
then the consumer will experience an in-
validation miss on every access, assuming

that producers and consumers access the
critical section altemately. Note that if the
block size increases, the invalidation miss
ratio remains the same but bus traffic in-
creases. However, with a larger block size,
consumers could benefit from a decreased
miss ratio if the same consumer process
accessed the critical section several times
in a row.

For the iterative algorithm from Figure
4, increasing the block size reduces the
miss ratio for accesses to vector x, since all
elements of the block are accessed once.
Accesses to vector xtemp, however, expe-
rience a higher miss ratio because each
write to xtemp invalidates all copies. This
means that, in the worst case, a read miss
for xtemp results for each iteration in the
inner loop.

Even if the spatial locality with respect
to a process is high, this does not necessar-
ily suggest a large block size. It depends on
the effect of accesses by all processes
sharing the block. For shared data usage
where data are exclusively accessed by one
process for a considerable amount of time,
increasing the block size may reduce the
invalidation miss ratio.

For write-update protocols, the block
size is not an issue because misses are not
caused by consistency-related actions.
Moreover, the frequency of global updates
does not depend on the block size. A poten-
tial problem, however, is that write-update
protocols tend to update copies even if they
are not actively used. Note that a copy
remains in the cache until replaced, since
write-update protocols never invalidate
copies. This effect is more emphasized for
large caches, which help multiprocessors
reduce the miss ratio and the resulting bus
traffic.

An important performance issue for
write-invalidate policies concems reduc-
ing the number of invalidation misses. For
write-update policies, an important issue
concems reducing the sharing of data to
lessen bus traffic. Now let’s survey some
extensions to the two types of protocols
that address these issues.

Snoopy cache protocol extensions.
The write-invalidate protocol may lead to
heavy bus traffic caused by read misses
resulting from iterations where one pro-
cessor updates a variable and a number of
processors read the same variable. This
happens with the iterativealgorithm shown
in Figure 4. The number of read misses
could be reduced considerably if, upon a
read miss, the copy were distributed to all
caches with invalid copies. In that case, all

N read misses per iteration and per process
could be eliminated for all processes less
one. Such an extension to the read-invali-
date protocol, called read-broadcast, was
proposed by Rudolph and Segall.’

As noted for the write-update protocol,
data items might be updated even if never
accessed by other processors. This could
happen with the bounded-buffer problem
of Figure 3 if a consumer process migrates
from one processor to another. In this case,
parts of the buffer might remain in the old
cache until replaced. This can take a very
long time if the cache is large. While in the
cache, the buffer generates heavy network
traffic because of the broadcast updates.

One approach measures the break-even
point when the communication cost (in
terms of bus cycles for updating a block)
exceeds the cost of handling an invalida-
tion miss. Assuming that a miss costs twice
as much as a global update, then the break-
even point appears when two consecutive
updates have taken place with no interven-
ing local accesses. We could implement
this scheme by adding two cache states that
determine when the break-even point is
reached. Karlin et a1.6 proposed and evalu-
ated a number of such extensions, called
competitive snooping, and Eggers and Katz
evaluated the performance benefits of
these extension^.^

Directory schemes. We have seen that
even using large caches cannot entirely
eliminate bus traffic because of the consis-
tency actions introduced as a result of data
sharing. This puts an upper limit on the
number of processors that a bus can ac-
commodate. For multiprocessors with a
large number of processors - say, 100 -
we must use other interconnection net-
works, such as multistage networks.

Snoopy cache protocols do not suit
general interconnection networks, mainly
because broadcasting reduces their per-
formance to that of a bus. Instead, consis-
tency commands should be sent to only
those caches that have a copy of the block.
To do that requires storing exact informa-
tion about which caches have copies of all
cached blocks.

We will survey different approaches
proposed in the literature. Note that this
issue can be considered orthogonal to the
choice of cache coherence policy. There-
fore, keep in mind that either write-invali-
date or write-update would serve. Cache
coherence protocols that somehow store
information on where copies of blocks
reside are called directory schemes. Agar-
wal et al. surveyed and evaluated directoty

18 COMPUTER

schemes in their work?
The proposed schemes differ mainly in

how the directory maintains the informa-
tion and which information the directory
stores. Tang proposed the first directory
scheme (reviewed by Agarwal et al.’). He
suggested a central directory containing
duplicates of all cache directories. The
information stored in the cache directory
depends on the coherence policy em-
ployed. The main point is that the directory
controller can find out which caches have
a copy of a particular block by searching
through all duplicates.

Censier and Feautrier proposed another
organization of the directory (also re-
viewed by Agarwal et al.’). Associated
with each memory block is a bit vector,
called the presenceflag vector. One bit for
each cache indicates which caches have a
copy of the block. Some status bits are
needed, depending on the cache coherence
policy used.

In an earlier work, I proposed a different
way of storing the directory information.*
Instead of associating the state information
and the presence flag vector with the mem-
ory copy, this information is associated
with the cached copy. Let’s call this the
Stenstrom scheme.

First we compare the implementation
cost in terms of the number of bits needed
to store the information. Given M memory
blocks, C cache lines, N caches, and B bits
for state information for each cache block,
Table 2 shows the overhead for each
scheme.

From Table 2 we see that the Tang
scheme has the least overhead, provided
that C < M. However, this scheme has two
major disadvantages. First, the directory is
centralized, which can introduce severe
contention. Second, the directory control-
ler must search through all duplicates to
find which caches have copies of a block.

In the other schemes, state information
is distributed over memory or cache mod-
ules, which reduces contention. Further-
more, for both schemes the presence flag
vector stores the residency ofcopies, elimi-
nating the need for the search associated
with the Tang scheme. This simplification
does not come for free. In the Censier
scheme, overhead is proportional to mem-
ory size; in the Stenstrom scheme, it is
proportional to cache size. The last scheme
needs the identity of the current owner in
memory. This requires an additional l o g p
bits. The bit overhead for both schemes is
prohibitive for multiprocessors with a
large number of processors because of the
size of the presence flag vector.

Figure 8. Actions taken on a read miss (thin lines) and a write hit (bold lines) fol
the write-invalidate implementation of (a) the Censier scheme and (b) the
Stenstrom scheme.

To get an insight into the reduction of
network traffic over snoopy cache proto-
cols, assume that the directory organiza-
tions presented above support the write-
invalidate cache coherence scheme. Since
the Tang and Censier schemes differ only
in the directory implementation, we will
consider only the Censier and Stenstrom
schemes.

Let’s concentrate on how read misses
and write hits are handled. Previous proto-
col descriptions have already shown how
other actions are handled. In the following,
assume the system contains exactly one
dirty copy. Figure 8 shows the control flow
of consistency actions.

In the Censier scheme, a read miss at
cache 2 results in a request sent to the
memory module. The memory controller

retransmits the request to the dirty cache.
This cache writes back its copy. The
memory module can then supply a copy to
the requesting cache. These actions appear
in Figure 8a as thin lines. If a write hit is
generated at cache 1, then a command is
sent to the memory controller, which sends
invalidations to all caches marked in the
presence flag vector (cache 2) in Figure 8a.
Bold lines mark these actions in Figure 8a.

Considering the Stenstrom scheme, a
read miss at cache 2 results in a request sent
to the memory module. The memory con-
troller retransmits the request to the dirty
cache. Instead of writing back its copy, the
cache supplies the copy directly to cache 2.
These actions appear in Figure 8b as thin
lines. If a write hit is generated at cache 1,
then invalidation commands are sent di-

June 1990 19

Table 3. Cache pointer bit overhead
for a full-map, limited, and chained di-
rectory scheme.

Scheme Overhead
(No. of Bits)

Limited iMlog,N
Chained Mlog,N + Clog,N

rectly to all caches marked in the presence
flag vector (cache 2) in Figure 8b. Bold
lines mark these actions in Figure 8b.

Assuming the bounded-buffer problem
of Figure 3 and the count variable, some
important points come up. First, invalida-
tions will be sent to only one cache because
there will be at most one copy of count.
This is very important because if broad-
casts were generated, this would result in
immense network traffic. Second, in both
cases read misses to dirty blocks must
traverse the network twice. Third, the
Censier scheme requires sending a request
to the memory controller for each invalida-
tion. In the Stenstrom scheme, invalida-
tions can be sent directly because the pres-
ence flag vector is stored in the cache. The
price for this, however, is that the presence
flag vector must be fetched from the cur-
rent owner if the block is not owned (the
processor does not have write permission),
which results in considerable network traf-
fic for large presence flag vectors. For ap-
plications with one writer to a block, as is
the case for the iterative algorithm in Fig-
ure 4, this overhead stays small.

The directory schemes presented have
the main advantage of being able to restrict
the consistency commands to those caches
having copies of a block. They are called
full-map directory schemes because they
can track copies of an arbitrary number of
caches. However, they are expensive to
implement, especially for multiprocessors
containing many processors.

There are different altematives to re-
duce the directory size. Onemethod, called
the limited directory scheme, restricts the
number of cache pointers to less than the
actual number of caches. Given N caches
and i pointers in each directory entry,
where i < N , then ilog,N bits are needed to
track copies of blocks for each memory
block. A key question for limited directory
schemes is how to handle cases where

more than i copies are requested. Two
alternatives are possible: Either disallow
more than i copies or start to broadcast
when more than i copies exist. Clearly the
success of a limited directory scheme de-
pends on the degree of sharing, that is, the
number of processors that simultaneously
share data.

Agarwal et al.’ introduced a classifica-
tion of directory schemes. They referred to
a directory scheme as Dir(X, where i is the
number of cache pointers for each block
and X denotes whether the scheme broad-
casts consistency commands (X = E) when
the number of copies exceeds the number
of cache pointers, or whether it disallows
more than i copies (X = N E) . Their termi-
nology denotes the full-map schemes as
Dir, N E and the limited directory schemes
with broadcast capability as Dir, E , where
i < N .

One possible way of reducing the size of
the directory for Dir, NE schemes is to link
in a list all caches that store a copy of a
block. We could do this by associating an
entry including log, N bits with each cache
line and memory block. This entry con-
tains a pointer to the next cache that stores
a copy. This scheme, called a chained di-
rectory scheme, routes consistency com-
mands to only those caches having copies
of a block. However, when we compare the
chained directory scheme with the full-
map directory schemes, we find that multi-
cast operations may take longer to per-
form, thus slowing the processors. The
Scalable Coherent Interface (IEEE P1596)9
proposes a chained directory scheme.

An example of an extremely cost-effec-
tive directory scheme that relies on broad-
casting consistency commands (denoted
Dir , E) is the one proposed by Archibald
and Baer (reviewed by Agarwal et al.’).
Each directory entry consists of two bits
encoding four global states of a memory
block: not present in any cache, clean in
exactly one cache, clean in an unknown
number of caches, and dirty in exactly one
cache. When a processor updates a block,
an invalidation is broadcast to all caches.
This generates immense network traffic.
Nevertheless, this scheme is scalable in the
sense that the number of caches can in-
crease without changing the directory
structure.

Table 3 compares the bit overhead re-
quired for cache pointers for a full-map
(Stenstrom) scheme, a limited scheme with
i pointers, and a chained directory scheme.
Assume M memory blocks, C cache lines,
and N caches. The chained directory is
cheaper than the Stenstrom scheme. How-

ever, the Stenstrom scheme sends consis-
tency commands directly to other caches
without having to traverse the chain of
cache pointers.

The full-map directory schemes have
the advantage of reducing network traffic
caused by invalidations or updates by
multicasting them only to those caches
with copies of a block. However, the
amount of memory needed tends to be
prohibitive for multiprocessors with many
processors. Reducing the number of cache
pointers, that is, employing limited direc-
tory schemes, alleviates this problem. The
price for this is limiting the number of
copies that may simultaneously coexist in
different caches or introducing peaks of
network traffic due to broadcasting of
consistency commands. Consequently, a
trade-off exists between network traffic
and directory size. No commercial im-
plementation yet uses directory schemes.

Another article in this issue, written by
Chaiken et al., compares the performance
of various directory schemes through a
number of benchmark applications.

Cache-coherent network architec-
tures. The real success of shared-memory
multiprocessors lies in designs that pro-
vide a large number of processors inter-
connected in an economical way. We have
seen that a common bus does not suit
hundreds of processors. Multistage net-
works have problems, too, because of the
hardware complexity for many processors.
Therefore, researchers have proposed
multiprocessors with a hierarchy of buses,
in which network traffic is reduced by
hierarchical cache-coherence protocols
that don’t suffer from the implementation
complexity of directory schemes. Let’s
review three novel architectures based on
this approach.

The first one, the hierarchical cachebus
architecture proposed by Wilson,” ap-
pears in Figure 9. We can view this archi-
tecture as a hierarchy of cachesbuses
where a cache contains a copy of all blocks
cached underneath it. This requires large
higher level cache modules. Memory
modules connect to the topmost bus.

To maintain consistency among copies,
Wilson proposed an extension to the write-
invalidate protocol. Consistency among
copies stored at the same level is main-
tained in the same way as for traditional
snoopy cache protocols. However, an in-
validation must propagate vertically to
invalidate copies in all caches. Suppose
that processor P, issues a write (see Figure
9). The write request propagates up to the

COMPUTER 20

highest level and invalidates every copy.
Consequently, copies in Mc20, Mc22,
Mc16, and Mc18 will be invalidated. How-
ever, higher order caches such as Mc20
keep track of dirty blocks beneath them. A
subsequent read request issued by P, will
propagate up the hierarchy because no
copies exist. When it reaches the topmost
level, Mc20 issues a flush request down to
Mcl 1 and the dirty copy is supplied to the
cache of processor P,.

Note that higher level caches act as fil-
ters for consistency actions; an invalida-
tion command or a read request will not
propagate down to subsystems that don’t
contain a copy of the corresponding block.
This means that Mc2 1 in the example above
acts as a filter for the invalidations on the
topmost cache, since this subsystem has no
copies.

The next architecture is the Wisconsin
Multicube, proposed by Goodman and
Woest.” As shown in Figure 10, it consists
of a grid of buses with a processing ele-
ment in each switch and a memory module
connected to each column bus. A process-
ing element consists of a processor, a
cache, and a snoopy cache controller con-
nected to the row and column bus. The
snoopy cache is large (comparable to the
size of main memory in a uniprocessor) to
reduce network traffic. The large caches
mean bus traffic results mainly from con-
sistency actions.

Like in the hierarchical cachebus sys-
tem, a write-invalidate protocol maintains
consistency. Invalidations are broadcast
on every row bus, while global read re-
quests are routed to the closest cache with
a copy of the requested block. This is
supported in the following way: Each
block has a “home co1umn”corresponding
to the memory module that stores the
block. A block can be globally modified or
unmodified. If the block is globally modi-
fied, then there exists only one copy. Each
cache controller stores in its column the
identification of all modified blocks,
which serves as routing information for
read requests. A read request is broadcast
on the row bus and routed to the column
bus where the modified block is stored.

The Data Diffusion Machine12 is an-
other hierarchical cache-coherent archi-
tecture quite similar to Wilson’s architec-
ture. It consists of a hierarchy of buses with
large processor caches (on the order of a
megabyte) at the lowest level, which is the
only type of memory in the system. A
hierarchical write-invalidate protocol
maintains consistency. Unlike Wilson’s
architecture, higher order caches (such as

June 1990

I

1

Figure 10. Goodman and Woest’s Wisconsin Multicube.

21

repeat
par-for J := 1 to N do
begin

xtemp[J] := b[J 1;
for K := 1 to N do

xtemp[J] :=
xtemp[J] +
A[J,K 1 *
x[K I;

- cache-read(b[J 1)

- cache-read(xtemp[J I)
- cache-read(A[J.K I)
- memory-read(x[K I)

end;
barrier-sync; - cache-invalidate
par-for J := 1 to N do

x[J] := xtemp[J 1;
barrier-s ync; - cache-invalidate

- memory-read(xtemp[J 1)

until false;

I
Figure 11. Example of reference marking of the iterative algorithm.

the level-2 caches in Figure 9) contain only
state information, which considerably
reduces memory overhead. We pay a price
for this: Certain read requests must be sent
to the root and then down to a leaf and back
again because an intermediate-level cache
cannot satisfy them.

Interestingly, the global memory has
been distributed to the processors. In con-
junction with the cache coherence proto-
col, this allows an arbitrary number of
copies. Since data items have no home
locations, as opposed to the Wilson and
Wisconsin Multicube architectures, they
will “diffuse” to those memory modules
where they are needed. The Data Diffusion
Machine is currently being built at the
Swedish Institute of Computer Science.

Compared to the full-map directory
schemes, these architectures are more cost-
effective in terms of memory overhead and
constitute an interesting extension to bus-
based architectures for large shared-mem-
ory multiprocessors. However, it is too
early to tell whether implementations will
prove efficient.

Software-based
schemes

Software cache-coherence schemes at-
tempt to avoid the need for complex hard-
ware mechanisms. Let’s take a look at
some of the proposals.

How to prevent inconsistent cache
copies. Hardware-based protocols effec-
tively reduce network traffic. However,
we pay for this with complex hardware

22

mechanisms, especially for multiproces-
sors with a large number of processors.

An altemative would prevent the exis-
tence of inconsistent cached data by limit-
ing the caching of a data structure to safe
times. This makes it necessary to analyze
the program to mark variables as cacheable
or noncacheable, which a sophisticated
compiler or preprocessor can do. The most
trivial solution would be to mark all shared
read-write variables as noncacheable. This
is too conservative, since shared data struc-
tures can be exclusively accessed by one
process or are read-only during a consider-
able amount of time. During such intervals
it is safe to cache a data structure.

A better approach would let the com-
piler analyze when it is safe to cache a
shared read-write variable. During such
intervals it marks the variable as cache-
able. At the end of the interval, main
memory must be consistent with the
cached data, and cached data must be made
inaccessible from the cache by invalida-
tion. This raises the following key ques-
tions: How does the compiler mark a vari-
able as cacheable, and how is data invali-
dated?

The following survey of software-based
cache coherence schemes will address
these issues. Consult Cheong and Veiden-
baumI3 for references to further reading.
See also the article written by Cheong and
Veidenbaum in this issue.

Cacheability marking. We can base
the reference marking of a shared variable
on static partitioning of the program into
computational units. Accesses to a shared
variable in one computational unit might

differ from those of another computational
unit. For example, the accesses might be
one of the following types:

(1) Read-only for an arbitrary number
of processes.

(2) Read-only for an arbitrary number
of processes and read-write for ex-
actly one process.

(3) Read-write for exactly one process.
(4) Read-write for an arbitrary number

of processes.

Here, we assume that processes execute on
different processors. Type 1 implies that
the variable is cacheable, such as all ele-
ments of the shared matrix A and vector b
in the iterative algorithm of Figure 4. Type
2 implies that at most the read-write pro-
cess may cache the variable and that main
memory is always made consistent. Using
write-through update policy achieves this.
Type 3 allows the variable to be cached and
updated using copy-back, as for the shared
variables in the critical sections of the
producer and consumer code in Figure 3.
Finally, for type 4 we must mark the vari-
able as noncacheable. Consider, for ex-
ample, synchronization variables such as
those implementing the mutexbegin,
mutexend, and barrier synchronization of
Figures 3 and 4.

Because synchronizations often delimit
a computational unit, we can apply differ-
ent rules for maintaining a variable’s con-
sistency for different computational units.
Between computational units, cached
shared variables must be invalidated be-
fore the next computational unit enters.
Moreover, main memory must be updated,
either by using write-through update pol-
icy or by flushing the content of the cache
if a copy-back policy is used.

Computational units are easily identi-
fied if they are explicit in the program
code, such as the parallel for-loops in the
iterative algorithm. In the first parallel
loop, all elements of xtemp are type 3,
while all elements of A, b, and x are type 1.
In the second parallel loop, all elements of
vectors x and xtemp are type 3, which
makes it possible to cache all shared vari-
ables provided that all elements of vectorx
are invalidated at the end of the second
parallel for-loop and main memory is
consistent at the beginning of the iteration.
The critical sections associated with the
bounded-buffer algorithm provide another
example of a computational unit.

Typically, the compiler’s main task is to
analyze data dependencies and generate
appropriate cache instructions to control

COMPUTER

the cacheability and invalidation of shared
variables. The data dependence analysis
itself, an important and sometimes com-
plex task, lies outside the scope of this
article. Interested readers should consult
the references in Cheong and Veiden-
b a ~ m . ' ~ Instead, we will look at different
approaches to enforcing cache coherence
and investigate the hardware support im-
plied by these schemes. The first three
approaches rely on parallel for-loops to
classify the cacheability of shared vari-
ables. The last approach relies' on critical
sections as a model for accessing shared
read-write data.

Cache coherence enforcement
schemes. In the first approach, proposed
by Cheong and Veidenbaum, all shared
variables accessed within a computational
unit receive equal treatment; either all or
none can be cached. This scheme assumes
a write-through cache, which guarantees
up-to-date memory content. Moreover, it
assumes three cache instructions: Cache-
On, Cache-Off, and Cache-Invalidate.
Cache-On turns caching on for all shared
variables when all shared accesses are
read-only (type 1) or exclusively accessed
by one process (type 3). Cache-Off results
in all shared accesses bypassing cache and
going to the shared memory.

After execution of a computational unit,
the Cache-Invalidate instruction invali-
dates all cache content. Invalidating the
whole cache content, called indiscriminate
invalidation, has the advantage of being
easy to implement efficiently. However,
indiscriminate invalidation is too conser-
vative and leads to an unnecessarily high
cache-miss ratio. For instance, in the itera-
tive algorithm, caching is turned on, allow-
ing all variables to be cached. However,
invalidations needed after each barrier
synchronization result in unnecessary
misses for accesses to the read-only matrix
A and vector b.

Selective invalidation of only those
variables that can introduce inconsistency
would improve this scheme. It is important
to implement selective invalidation effi-
ciently. Cheong and Veidenbaum13 pro-
posed a scheme with these objectives. In
this scheme, shared-variable accesses
within a computational unit are classified
as always up to date or possibly stale. The
scheme assumes three types of cache in-
structions to support this, namely, Mem-
ory-Read, Cache-Read, and Cache-Invali-
date. Memory-Read means possibly stale
cached copy, whereas Cache-Read guar-
antees up-to-date cached copy. Further-

June 1990

Table 4. Comparison of the number of invalidation misses for the software-
based schemes and a write-invalidate hardware-based scheme for the iterative
algorithm.

I Indiscriminate Fast Selective Timestamp Write-Invalidate
Invalidation Invalidation Scheme Hardware Scheme

Loop 1 N (L + l) + L N N N
Loop 2 L L
Sum N (L + l) + 2L N + L N N

1 I

more, the scheme assumes the cache uses
write-through.

Associated with each cache line is a
change bit. The Cache-Invalidate instruc-
tion sets all change bits true. If a Memory-
Read is issued to a cache block with its
change bit set true, then the read request
will be passed to memory. When the re-
quested block is loaded into the cache, the
change bit is set false and subsequent ac-
cesses will hit in the cache.

To demonstrate this method, consider
once again the iterative algorithm of Fig-
ure 4. Assume that the block size is one
vector element and that n = N / L processors
cooperate in the execution of the parallel
loops. Each processor executes L itera-
tions. Figure 1 1 includes comments for all
read operations to shared data with the
cache instructions supported by the
scheme. The only sources of inconsistency
are the accesses to vectors x and xtemp.
This means the only references that need
marking as Memory-Reads are when x is
read in the first parallel loop and when
xtemp is read in the second parallel loop.
Clearly, this scheme eliminates cache
misses on the accesses to vector b and
matrix A. Just turning on all change bits
efficiently accomplishes the fast selective
invalidation scheme in one cycle.

Even if this scheme reduces the number
of invalidation misses, it is still conserva-
tive because the same processor might
execute the same iterations in the two par-
allel loops. If so, the corresponding ele-
ments of xtemp will be. unnecessarily in-
validated and reread from memory in the
second parallel loop.

A third scheme takes advantage of this
temporal locality: the timestamp-based
scheme proposed by Min and Baer.14 This
scheme associates a "clock" (a counter)
with each data structure, such as vectors x
and xtemp in the iterative algorithm. This
clock is update& the end of each compu-
tational unit (at the barrier synchroniza-

tions in the algorithm) in which the corre-
sponding variable is updated. For example,
the clock for vector xtemp is updated after
the first parallel loop, and the clock for
vector x is updated after the second loop. A
timestamp associated with each block in
the cache (for example, with each vector
element) is set to the value of the corre-
sponding clock+l when the block is up-
dated in the cache. A reference to a cache
word is valid if its timestamp exceeds its
associated clock value. Otherwise, the
block must be fetched from memory.

This scheme eliminates invalidations
associated with variables local to a proces-
sor between two computational units
because the timestamp value for these
variables exceeds their clock value. The
hardware support for this scheme consists
of a number of clock registers and a time-
stamp entry foreachcache line in thecache
directory.

Let's compare the number of invalida-
tion misses generated by the schemes pre-
sented so far and compare these numbers
with the corresponding number for a write-
invalidate hardware scheme. Assume that
n = N/L processors execute the iterations
and that each processor always executes
the same iteration. This means that
processor iexecutes iterations (i-I)L+ 1 to
iL in the parallel loops in the iterative
algorithm. Assume a block size corre-
sponding to one vector element. Table 4
shows the result.

The table makes it clear that the last
scheme results in the same number of in-
validation misses as does any write-invali-
date hardware-based scheme. The hard-
ware support for the different schemes
differs in complexity. The indiscriminate
invalidation scheme requires only a
mechanism for turning on or off and invali-
dating the cache. The fast selective invali-
dation scheme requires one bit for each
cache line (the change bit), whereas the
timestamp-based scheme requires a time-

23

stamp register with several bits for each
cache line and a number of clock registers
(two in this algorithm).

Compared to the hardware support for a
write-invalidate protocol, especially for
multiprocessors with a large number of
processors, software-based schemes are
clearly very cost-effective. This compari-
son yields another important observation:
Software-based schemes are competitive
with hardware-based schemes, at least for
this simple example. In another article in
this issue, Cheong and Veidenhaum pres-
ent another scheme that preserves tempo-
ral locality between computational units.
They also present a performance compari-
son between many of the schemes re-
viewed in this section.

To end this section, let’s consider a soft-
ware-based scheme proposed by Smith and
reviewed elsewhere.” It differs from the
others by relying on the fact that accesses
to shared variables always take place in
critical sections, as in the bounded-buffer
algorithm of Figure 3.

The scheme maintains consistency by
selectively invalidating all shared vari-
ables associated with a critical section, as
follows: All shared variables in a critical
section are allocated to the same page. A
one-time identifier (OTI) is associated
with each page. When a cache block is
loaded into the cache, the corresponding
OTI is loaded from the translation-look-
aside buffer (TLB, an address translation
mechanism) into the entry in the cache
directory that corresponds to the cache
line. For an access to bit in the cache, the
stored OTI must match the OTI in the TLB.
Fast invalidation of all shared variables
associated with a critical section can now
be done by simply changing the OTI for the
corresponding page. This scheme’s inter-
esting feature is the fast selective invalida-
tion mechanism.

Software-based schemes have not yet
been used in any commercial systems.
However, many of the ideas presented in
this section are being tested in the experi-
mental system Cedar at the University of
Illinois at Urbana-Champaign.

espite extensive study of the cache
coherence problem, many pos-
sible research directions remain.

First, most of the schemes presented here,
except for snoopy cache protocols, have
never been implemented. We can only
evaluate them in real implementations.
Second, since the area of parallel process-
ing remains immature, we face a paucity of

24

real-life applications for large multi-
processors. This makes it difficult toevalu-
ate these ideas under realistic assumptions.
Third, as we have seen, the design space
for multiprocessor caches is large and in-
volves complicated trade-offs. For ex-
ample, a definite need exists for experi-
mental research to explore performance
differences between software-based and
hardware-based schemes.

The advent of high-speed reduced in-
struction set computer (RISC) micropro-
cessors with an increased memory band-
width requirement will put an increased
burden on the memory system for future
multiprocessors. Therefore, multiproces-
sor caches are and will be a hot topic in the
coming years.

Acknowledgments
I am indebted to Lars Philipson and Mats

Brorsson for valuable comments on the manu-
script. I also appreciate the constructive criti-
cism of the referees. This work was supported
by the Swedish National Board for Technical
Development (STU) under contract numbers
85-3899 and 87-2427.

References
1. P. Stenstrom, “Reducing Contention in

Shared-Memory Multiprocessors,” Com-
puter, Vol. 21, No. 11, Nov. 1988, pp. 26-
37.

2. J. Archibald and J:L. Baer, “Cache Coher-
ence Protocols: Evaluation Using a Multi-
processor Simulation Model,’’ ACM Trans.
ComputerSystems, VoL4,No.4,Nov. 1986,
pp. 273-298.

3. A.J. Smith, “Line (Block) Size Choice for
CPU Cache Memories,” IEEE Trans. Com-
puters, Vol. C-36, No. 9, 1987, pp. 1,063-
1,075.

4. S . Eaners and R. Katz, “Evaluating the
Perf&nance of Four Snooping Cache Co-
herency Protocols,” Proc. 16th Int’l Symp.
Computer Architecture, 1989, pp. 2-15.

L. Rudolph and Z. Segall, “Dynamic Decen-
tralized Cache Schemes for MIMD Parallel
Architectures,” Proc. 11th Int’l Symp.
Computer Architecture, 1984, pp. 340-347.

A. Karlin et al., “Competitive Snoopy
Caching,” Proc. 27th Ann. Symp. Founda-
tions of Computer Science, 1986, pp. 244-
254.

7. A. Agarwal et al., “An Evaluation of Direc-
tory Schemes for Cache Coherence,” Proc.
15th Int’l Symp. Computer Architecture,
1988, pp. 280-289.

8. P. Stenstrom, “A Cache Consistency Proto-
col for Multiprocessors with Multistage
Networks,” Proc. 16th Inr’l Symp. Com-
puter Architecture, May 1989, pp. 407-415.

9. IEEE, Scalable Coherent Interface IEEE
PI596 - SCI Coherence Protocol, Mar.
1989.

10. A.W. Wilson Jr., “Hierarchical CacheBus
Architecture for Shared Memory
Multiprocessors,’’ 14th Int’l Symp. Com-
puter Architecture. 1987, pp. 244-252.

11, J. Goodman and P. Woest, “The Wisconsin
Multicube: A New Large-scale Cache-
Coherent Multiprocessor,” Proc. 15th Int’l
Conf. Computer Architecture, 1988, pp.
422-431.

12. S. Haridi and E. Hagersten, “The Cache
Coherence Protocol of the Data Diffusion
Machine,” Proc. PARLE 89, Vol. 1, Sprin-
ger-Verlag, 1989, pp. 1-18.

13. H. Cheong and A. Veidenbaum, “A Cache
Coherence Scheme With Fast Selective
Invalidation,” Proc. 15th Int’l Symp. Com-
puter Architecture, 1988, pp. 299-307.

14. S.L. Min and J:L. Baer. “A Timestamp-
Based Cache Coherence Scheme,” Proc.
1989 Inr’l Conf Parallel Processing, 1989,
pp. 1-23 - 1-32,

Per Stenstrom is an assistant professor of
computer engineering at Lund University,
where he has conducted research in parallel
processing since 1984. His research interests
encompass parallel architectures, especially
memory systems for multiprocessors. While a
visiting scientist in the Computer Science De-
partment at Camegie Mellon University (1987-
88). he investigated performance aspects of
memory systems in distributed systems.

Stenstrom received an MS degree in electrical
engineering in 1981 and a PhD degree in com-
puter engineering in 1990, both from Lnnd
University. He is a member of the IEEE and the
Computer Society.

Readers may write to the author at Lund
University, Dept. of Computer Engineering, PO
Box 118, S-221 00 Lund, Sweden.

COMPUTER

