Full Name:

15-740/18-740, Spring 2018

Exam 2
May 3, 2018, 3:00pm-4:20pm

Instructions:

e Write your answers in the space provided below the problem. If you make a mess, clearly indicate your final
answer. A few pages of scratch paper are provided at the end of the text booklet, but your final answer should
be written in the space provided.

e Show your work and discuss your answer. You will be graded more on your explanation than on your final
answer.

e The exam has a maximum score of 75 points.

e The problems are of varying difficulty. The point value of each problem is indicated. Pile up the easy points
quickly and then come back to the harder problems.

e This exam is CLOSED BOOK, CLOSED NOTES. You may use a calculator, but no networked devices (e.g.,
phones, laptops, etc.).

e The exam introduces techniques and key ideas from research papers and asks you to analyze them. Confine
your answers to the ideas that are presented in the ezam. We are not looking for answers that involve other
techniques in these papers which we do not present.

Do not write below this line

Problem Your Score Possible Points
1 15
2 50
3 10
Total 75

Pipelining and Data Hazards

Problem 1. (15 points total):

Recall that the stages in the simple 5-stage pipeline that we discussed in class are: IF (instruction fetch), ID
(instruction decode and register fetch), EX (execute), MEM (memory access), and WB (write back).

Assume that data hazards are handled by forwarding (aka bypassing) whenever possible. Whenever forwarding
is insufficient, assume that stalling is used to resolve data hazards. You can also assume that there are no cache
misses, and that data dependences through memory (e.g., a store to memory location A followed immediately by a
load from A) do not cause any additional stalls.

Consider the following assembly

lw $t0, 0($s0)

add $t0, $t0, $s0 # $t0
addi $t1, $t0, 9 # $t1
sw $t1, 0($s0)

1w $t2, 0($t1)

1w $t3, 0($t2)

1w $t5, 4($t4)

addi $s0, $s0, 32

lu $t6, 0($t5)

sw $t6, 0($s0)

$t0 + $s0
$t0 + 9

A. In the diagram below, indicate which instruction (if any) is in each pipeline stage during a given cycle by filling
in the appropriate box with one of the following: F (IF stage), D (ID stage), E (EX stage), M (MEM stage)
or W (WB stage). If an instruction stalls, just fill in the same letter twice.

You should also indicate all instances of forwarding by drawing an arrow from the stage from which data is
forwarded to the stage in which data is used. Also indicate the register being forwarded.

5 points
Instr Co | C1 |C2 | C3 | Cqy | C5 | Cos |C7r | C8|Cog | Clo|Ci1|Ci2]| Ci3]|Cia| cCi5]| cCrg| 1z
1w $t0, 0($s0) F|DIE|M $%/O
add $t0, $t0, $s0O FIp|DAE i W
T\4

addi $t1, $t0, 9 FIFID ;4 W

554
sw $t1, 0($s0) F D §E |\M W
1w $t2, 0($t1) FID ‘\'E */\\\4\/$lq
1w $t3, 0($t2) FID DT»E M W
1w $t5, 4($t4) FIFIDIE H\g@lc
addi $s0, $s0, 32 FlD E\M W
1w $t6, 0($t5) F b XE; qu é?ig
sw $t6, 0($s0)]: O EfM| W

Page 2 of 16

B. Billy heard that memory latency is a problem for processors, and decided to modify the pipeline in an attempt
to fix it. Consider a new microarchitecture where the MIEM stage happens before the EX stage. Make minimal
changes to the assembly so that it fits into the new pipeline. Do not aggressively reschedule the instructions.

2 points

D mp Lol addan 4 ak e ol PDMI@ Lo,

o 4E5 (k4 > awl 949, 444 1
FES (444)

A

C. Fill in the pipeline diagram for the above instructions as in part A. Handle data hazards by forwarding whenever
possible, and stalling otherwise.

5 points
Instr Co|Cl|Cr|cC3|ca|C5|Co|Cr|Cg|Co|cCio|cit|cia|cis|ca|es|ce|cir]|cs| el e
lw $t0, ($30)| F | D | M| E\ ¥ |
ard o, 4tede] [P [D [MFE R
M$H/$kgﬂ Fi b HMTE W,
sw §t4 (§o0) Flo [P ™ |w
lw $t2, 4t FIF|DM]EIW
fw $t3,(4t2) F DM E |w
adds 34,464 4 Flo MIE W
[415, (448) SEEIE
TS FIF 1o [MIEy,
tw $to,(36) F D M\ [w
g §E6 ($50) FIoM[E |w

Page 3 of 16

D. Discuss the pros and cons of Billy’s microarchitecture. Is it effective at hiding memory latency?

3 points

Pror <
| I

S owpodmie Roods bene Pd fom M W

ot csda

> Ex C*’O'Uz"7 % éw (No ANSYE. Ex Aonl

eI\ B B Ay Ave b Man > B
frovandiig)

Con”.
L Mo wshuthow (abvoimeed o cMgplaciment
adrenes)

= Mem daldh deePe WEN Ex— Memn xcwwwwb'?

No, uﬁs s faﬂedmu o /Q«M : wg Aua

Page 4 of 16

Potpourri

Problem 2. (50 points total):

A. Direct-to-Data Cache

Modern processors optimize for cache energy and performance by employing multiple levels of caching that
give the illusion of a large, high-bandwidth, low-latency memory on access patterns with good locality. Direct-
to-Data (D2D) cache' is a scheme that locates data across the entire cache hierarchy with a single lookup. To
navigate the cache hierarchy, D2D extends the TLB with per-cache-line location information that indicates in
which cache and which way within that cache the cache line is located.

Per Cache-Line Information

TLB Entry ~ e —

VPN .y | PPN
A\

Page Permissions etc.

' Cache ' Way Index
TLB N

Not cached /

Figure 1: D2D lookup mechanism via the TLB.

(a) D2D claims to significantly reduce the L2 latency and total cache hierarchy energy. Explain why.

5 points
ClL: {7 Tor AcCcess
N G Licko
o ; —~ 1 NCL 1O
N =k ;Af“r"l,/ [l ﬁ} A~
L 11 ovy (L wiy por Tt / ;
(ACTNM e (\ / '
wlid) o)
/M

vare el v /

!Sembrant A, Hagersten E, Black-Schaffer D. The Direct-to-Data (D2D) cache: navigating the cache hierarchy with a single lookup.
ISCA 2014

Page 5 of 16

(b) Discuss correctness- and performance-related challenges of implementing D2D in real systems. E.g., give
a scenario that could cause a problem if the system only had the mechanism presented in Figure 1.

5 points

m«?m/oq Fa‘%‘alﬁ‘e(i‘*fg o

e [77 .2 i :{2/?':» ‘
23) anchons st proadeast eh “r

(W [C’.d“ ofwr Mo b sms

(c) Huge pages of 2MB or 1GB are commonly used to improve the effectiveness of TLBs for in-memory
big-data processing. How do huge pages interact with D2D cache? Do they make the scheme more or less
practical?

5 points

H (A&L wa S

::§ T(,P) 15 empemons
‘7:’? Too muh AU,y l‘n‘s GLuess

f” Y]
C‘J‘a’d O f(’f m ﬂ‘* cocha g

]

How | efc.

B. Accelerators

(a) You are the chief architect of a forthcoming SoC. One of your engineers presents you with an accelerator
design that she claims improves energy-efficiency by 2,000x over an optimized software implementation.
Would you include this design in your SoC? Based on the case studies presented in lecture, what questions
would you want answered before moving forward?

5 points

W‘Mg 5" A amswns b e
> Daes o odubs miny”

s~
)

@ {/\R'M i-" AF{ At (i"/(l%v‘ ‘i"a .
@ o doec it inferfec W/

-
{

ot o th Usﬂwf/

Page 6 of 16

(b) Why are accelerators particularly interesting now vs. 10-20 years ago?

5 points
- t/
: . : | 3 | — . 0 - /..
- Dok Sbin Mk me i (vl St G cduncr
YA } J
7 e
7 1P [} { i 4 2 { ,;‘./’,'N/!/Vf('{" ~
{ & " 444 MY (4 =
N 1) (e /) o l T4 WL ofs o Y o
\ _, A\
P d ol st *(/Af)/Uf Yo .
— | Aoty @AM i 9.
1 P €

C. Nano Instruction Set Computers

Huang et al. proposed an ISA extension that decouples the data access and register write operations in a load
instruction?. Each load instruction is split into 2 nano-instructions:

1d.D 1t, I(rA)

1d.wb rD, 1t

The first nano-instruction performs the data access, and the second nano-instruction orders the load and writes
the result back to the register. The former behaves much like a conventional load except that it places the
contents at memory address I(rA) into the destination load tag 1t, which is stored in a new associative structure
called the Load Tag Table (LTT). The LTT tracks the address, value, status bits, and exception information
of pending loads.

1d rD, I(rh) =

As an example, the following sequence of instructions translates into NISC with load decoupling as shown:

add r5, r6, r7
blt r3, r5, B

3 €

1d r3, 0(r20)
div r4, r3, r8
j D

1d r14, -40(r2)

add ¥5, 16, rT
blt r3; x5, B
jcC

B: 1d.D 1t0, 0(zr20)
1d.wb r3, 1t0
div r4, r3, r8
j D

C: 1d.D 1t1, -40(r2)

1d.wb ri14, 1ti1

2Huang Z, Hilton AD, Lee BC. Decoupling loads for nano-instruction set computers. ISCA 2016.

Page 7 of 16

(a) What are the advantages of this decoupling for in-order processors?
5 points

Dt’— w“(l"?) fefo i M’r«fn‘u« ide loaf Ial&u%‘

kg iyym/'pg 7‘0& AdsS vt %{M’f 2 ﬂ ~ MWM -

(b) Can the performance benefits of decoupled loads be achieved by simply increasing the register file size by
the number of LTT entries? Why or why not?

5 points
o COMY M(m()ﬁ@«., ad o umu(bhe
/ il wofln Stae

W a(/iCYlU
(Ang«m Hod oldocnss r‘jﬁfkw bl o2 ('f{" T%@l';a/{ M(/B

(c) Do you expect this design to be significantly beneficial with OoO processors? Why or why not?
5 points

Mbv Qo a(/rmjc/j has Mechapiomse Fo
loads caion 1w tle mrﬂm)

Page 8 of 16

D. Register allocation

Registers are often used to communicate values between nearby instructions such that the register is read only
once before it is overwritten. E.g., in SPEC 2000, 86% of instructions have their destination register over-
written before they are committed.® A large body of research exploits this property to improve OoO processor
performance and efficiency. Give an example of how one could do so.

5 points
N | £ alleed: &« =lesiel
: - ') M/ Pt To allocate & 3 lusaia/l
?)LZ)&(Jdea - ‘% N2y = / % U\
ool tle iy wehl commk
regdn ol tle WM

0 bsir \,/\.«\,p B

(Y\:‘MU\ U\’f\(‘{ "j ¢ On Hy
d

E. EPIC on Itanium

Intel’s Itanium architecture is an EPIC ISA. EPIC ISAs group independent instructions into bundles, with a
stop bit in each instruction indicating the end of a bundle. The semantics are that all instructions inside a
bundle can be safely executed in parallel. Unlike VLIW, bundles can contain a variable number of instructions
of different types. EPIC claims to address two major drawbacks of VLIW. What are these drawbacks?

5 points
/(, ’)) ok
(! aLTa i" hTy .
&
4
Ve / [} y
(09 b (A1

C [s) q~. ' i yom (Mg -
/ﬂ\\r\f L\ o 17«“‘” (. XX A in L\ﬂ/u@l»(lﬁ’gz. f(SO "](ZDM

LA U
T ool sf*'wﬂ/‘z the ek 3(4 it
< U

3Balkan D, Sharkey J, Ponomarev D, and Ghose K. SPARTAN: ..., PACT 2006.

Page 9 of 16

VLIW
Problem 3. (10 points total):

Consider the execution of following code segment to find the maximum value and its index in an array on a VLIW
machine.

for (i = 0; i < N; i++) {
if (max < a[i]) {
idx = 1i;
max = al[i];
}
}

The code above translates to the following instructions:

al: address of alil

=

t0: i, sO: idx, fO: max, aO:

loop: fld f1, 0O(al) # load alil
flt.d €1, £0, €1 # set if max < al[i]
fmax.d fO, fO, f1 # max = max < al[i] ? al[i] : max
beqz t1, skip # if max >= a[i], jump to skip
addi sO, tO, O # update idx

skip: addi al, al, 8 # bump a
addi tO, tO, 1 # increment i
bltu t0, a0, loop # loop

Our VLIW machine has five execution units:
e two integer units, latency one cycle, also used for branches
e one memory unit, latency two cycles, fully pipelined

e two floating point units, latency three cycles, fully pipelined, each unit can perform flt.d and fmax.d

Page 10 of 16

A. Schedule instructions for the VLIW machine naively without loop unrolling or software pipelining.

5 points
Label ALUI ALU2 MEM FPU1 FPU2
éoop: add a)al, g | fd ﬁ/p(m)
fredtl,fof) |frmaxd fofef

beqz t sKip
adds $0.t0,0

Skip |adde to,to,) | bltw (pag log

Muttiple <6lubiong /OOWL@ - b covvecds gElupron

Page 11 of 16

B. What is the maximum possible efficiency (i.e., fewest cycles-per-iteration) that can be attained by software
pipelining on this instruction sequence? (What is the bottleneck that limits the efficiency?)

5 points
3 W p U g e~
77&25&,(/ I a A cu{;mdmcy/ betroopon e
ﬁmm' ' v onw awerd buvabeas

C. Bonus: How would you change the instruction sequence to achieve higher efficiency?

g
= Splic the Mﬂﬂ? Ut goadis () 3) and_
W o o K@Fm&atz, e ande Ada 7£W
eoch wden v Yo ghnole | Povapude Hae
e »JS eache of Mue and Ahe omuponding
vnder dn M ,QJP,L‘,@Dg,LW‘

— WUsge predie afad W tchons dpefeael

Page 12 of 16

D. Bonus:

Software pipeline the above code as efficiently as you can.

(15 — 3 x cycles-per-iteration of your code) points

Label

ALU1

ALU2

MEM

FPU1

FPU2

addu al,al, 24

fra 1, 0(an)

addd to to, 3

Ho [2,-\6(@)

fld f3, -8(a)

addi alal, 24

fid 1 0(a)

fued £ Ao f)

fraot flof 10,

addd 10, ko, 3

Ga o, -16(a)

Md tz/fQO/'FZ

(’”““ fZD/FQO/FZ

Ha {a - ()

hed ¢3,f50f3

frrax f20, 130 [3

| Loop :

adda A\ al,24

[b) aads 0 to,~¢

L4 £, ocay)

th t’ /ﬁb/ YL/

[N AT T

odda bo, to, 3

[b) adae $20 to,75]

fia fo 16(an)

Pl d 9, o0, fl

frex f20,f20,2

bl bo agleg

[5)adds S, to,4

fid f3, -g(a)

bud t3, 203

1["”’1“OL &D/ [}0,7[3

(t)asds S10 b0, -6

Fw “’H@L’{“’/H

frer fro, o/

1) ada $ 20, 075]

Pitd ko taofa

oo fro f20fe

[B)addi S 30, to -

k.4 £3 £30 43

me [30/{30//3

(k)i S10, ks, 3

1t d t2, fio, fop

Fraonfo fiof20

nddi S0,510, 0

({,] addy S0 t0, 72

W) atdn 53210,)

H:').) addy 30 5200

L4, £3, [0, [30

T o Totin

(t3) adds 50,300

1
5/11‘

UJé/QJV)

Page

G%de, pv\ A vsakhen
Doy RalBvw e easUoyv

13 of 16

@MM

Scratch paper

Page 14 of 16

Scratch paper

Page 15 of 16

Scratch paper

Page 16 of 16

