15-494/694: Cognitive Robotics

Lecture 15:

Machine learning with
scikit-learn

Dave Touretzky
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Machine Learning

« ML is a branch of Artificial Intelligence.

 “Learning” does not mean human-like
learning.

* |t means extracting information from
data. This has many uses in robotics.

* Types of learning algorithm:

- Supervised (labeled data)
- Unsupervised (unlabeled data)
- Reinforcement



scikit-learn

* Open source collection of machine
learning algorithms implemented in
Python.

 Documentation at scikit-learn.org
 Install: p1p3 install scikit-learn

* To use the module:
import sklearn



Installation

Classification

Identifying to which category an object
belongs to.
Applications: Spam detection, Image

recognition.
Algorithms: SVM, nearest neighbors,

random forest, ... — Examples

Dimensionality reduction

Reducing the number of random variables to
consider.
Applications: Visualization, Increased

efficiency
Algorithms: PCA, feature selection, non-

negative matrix factorization. — Examples

Documentation =  Examples

Google Custom Search

scikit-learn

Machine Learning in Python

Regression

Predicting a continuous-valued attribute
associated with an object.
Applications: Drug response, Stock prices.

Algorithms: SVR, ridge regression, Lasso,
— Examples

Model selection

Comparing, validating and choosing
parameters and models.

Goal: Improved accuracy via parameter

tuning
Modules: grid search, cross validation,
metrics. — Examples

Clustering

Automatic grouping of similar objects into
sets.
Applications: Customer segmentation,

Grouping experiment outcomes
Algorithms: k-Means, spectral clustering,

mean-shift, ... — Examples

Preprocessing

Feature extraction and normalization.

Application: Transforming input data such as
text for use with machine learning algorithms.
Modules: preprocessing, feature extraction.

— Examples



Supervised Learning

* For each training point, there is a desired
output value.

* Error measure: difference between actual
output and desired output.

- Example: sum-squared error

1
E = EZ (di_yi)z

* Learning adjusts the model parameters to
reduce the error.
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Unsupervised Learning

 Data points are unlabeled: there is no
“correct” answer.

* Learning discovers structure in the data.

« Examples:
- Clustering: finding categories.

- Dimensionality reduction: finding key
features and relationships between
features. Useful for data compression.



Reinforcement Learning

Used for sequential decision problems.

Model Is trained via a reinforcement
signal that tells it how well it Iis doing.

We don't tell it the right answer, just
reward it when it does well.

Example:

- Learning to play a game by reinforcing
wins. Program can learn by playing
against itself.



Supervised Learning:
Classification

* Desired outputs may be binary, or
probabilities of class membership.

« Examples:
- Tell “spam” from “not spam”.

- Distinguish images containing cats from
those without cats.

- Recognize handwritten digits 0-9.



Supervised Learning:
Regression

* Desired outputs are continuous, possibly
vectors.

« Examples:

- Interpolate values of a nonlinear function.
- Predict stock prices.

— Calculate inverse kinematics solutions for
a hon-linear robot.



Parametric vs. Non-Parametric
Models

* Parametric models describe data using
equations with a small number of
parameters.

- Example: Gaussian distribution.
- Parameters are mean u and variance o

* Pros: compact representation; easy to
test new data points.

 Cons: what if your data doesn't fit the
equation?
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Parametric vs. Non-Parametric
Models

* Non-parametric models don't make any
assumptions about the distribution of the
data. The data represents itself.

- Particle filters are non-parametric models.

* Pros: “training” iIs instantaneous. Can
represent arbitrary distributions.

 Cons: can take a lot of memory to store
all the data, and classifying new points
can be slow.
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Nearest-Neighbor Classifier

* Simplest non-parametric classifier.

* Noisy data can be a problem.
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k-Nearest-Neighbor

» Still @ non-parametric classifier.
* Majority vote to find the correct class.
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Gaussian Mixture Model

* Parametric model: Gaussian distributions.

—(x—un)°

2

p(x | w,0) = e ©

How do we
find the
correct
values of
the
parameters?

Learning
algorithm!
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Sample Learning Problem:
Color Classes

 Assume objects come in a small number
of colors.

« We want to know what the colors are.
- This is a clustering problem.

* Given a new object, we want to
determine its color class.

- This is a classification problem.
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Training Data: RGB Values
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Feature Space

 Three-dimensional feature space: RGB.

« 320 x 240 = 76,800 data points per
image.

e Let's assume that each color class can be
modeled as a gaussian distribution:

- Mean color u
- Covariance matrix >
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Expectation-Maximization
Algorithm

 Unsupervised learning algorithm for
finding clusters in data.

* Learns the u and X parameters for a set of
gaussians.

* You must guess the number of classes.
* Runs quickly but can get stuck in local

minima.
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E-M Clustering
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E-M Algorithm

 Expectation step:

- For each point x, for each gaussian (u, %),

calculate the likelihood of x having been
generated by the j-th gaussian:
P(X | w, ).

 Maximization step:

- For each gaussian, recalculate its mean
and covariance u, 2 based on the

likelihood-weighted data points.

 Repeat for several iterations.
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E-M In scikit-learn

from sklearn.mixture import GaussianMixture
gmm = GaussianMixture(n components=7/)

gmm. fit(data)

means = gmm.means

covarliances = gmm.covarliances

classes = gmm.predict(new data)
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emdemo.py
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EM doesn't always succeed
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Color Classification:
Visualizing the Result

e Each color class is modeled as an
ellipsoid in 3D space (RGB space).

 Too hard to plot. So instead:

- Generate R-vs-G and B-vs-G plots.

- Draw the ellipses in feature space
determined by the covariance values.
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Scatter Plots With
Gaussian Ellipses
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Classification

* Once we've learned the color classes, we
can assign a class to each pixel.

- This gives us a color-quantized image.

e Can then use these color classes to
classify new images the same way.
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Classified Image
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Refinements

* Can detect local minima by checking the
density of points near the mean of the

gaussian.

* Split/merge EM can reallocate gaussians
If some are being wasted and others are
spread between two clusters.

 BayesianGaussianMixture class In
scikit-learn can infer the number of

effective components.
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