

15-494/694: Cognitive Robotics

Dave Touretzky

Lecture 15:

Machine learning with
scikit-learn

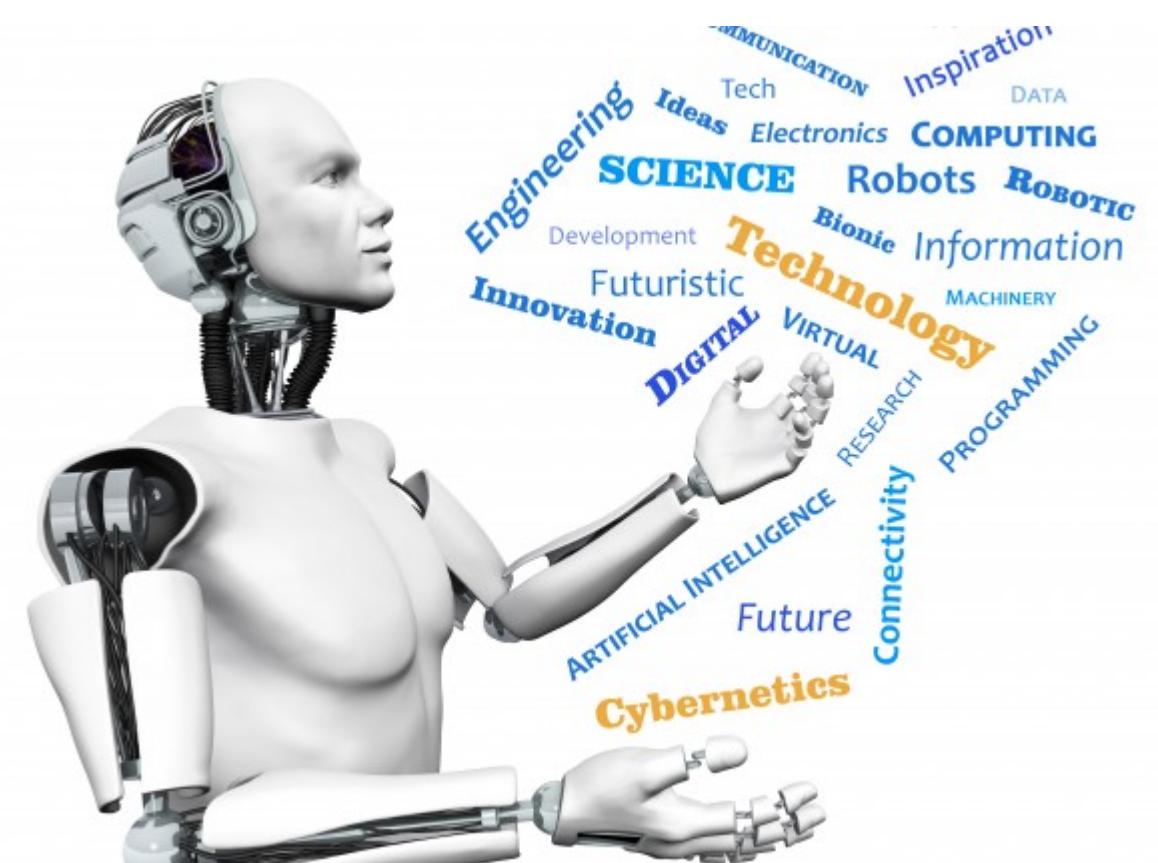


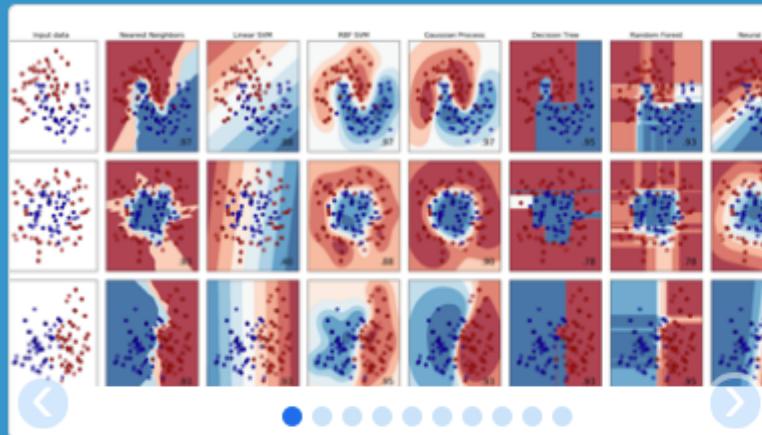
Image from <http://www.futuristgerd.com/2015/09/10>

Machine Learning

- ML is a branch of Artificial Intelligence.
- “Learning” does not mean human-like learning.
- It means extracting information from data. This has many uses in robotics.
- Types of learning algorithm:
 - Supervised (labeled data)
 - Unsupervised (unlabeled data)
 - Reinforcement

scikit-learn

- Open source collection of machine learning algorithms implemented in Python.
- Documentation at scikit-learn.org
- Install: **pip3 install scikit-learn**
- To use the module:
import sklearn



scikit-learn

Machine Learning in Python

- Simple and efficient tools for data mining and data analysis
- Accessible to everybody, and reusable in various contexts
- Built on NumPy, SciPy, and matplotlib
- Open source, commercially usable - BSD license

Classification

Identifying to which category an object belongs to.

Applications: Spam detection, Image recognition.

Algorithms: SVM, nearest neighbors, random forest, ...

[— Examples](#)

Regression

Predicting a continuous-valued attribute associated with an object.

Applications: Drug response, Stock prices.

Algorithms: SVR, ridge regression, Lasso, ...

[— Examples](#)

Clustering

Automatic grouping of similar objects into sets.

Applications: Customer segmentation, Grouping experiment outcomes

Algorithms: k-Means, spectral clustering, mean-shift, ...

[— Examples](#)

Dimensionality reduction

Reducing the number of random variables to consider.

Applications: Visualization, Increased efficiency

Algorithms: PCA, feature selection, non-negative matrix factorization.

[— Examples](#)

Model selection

Comparing, validating and choosing parameters and models.

Goal: Improved accuracy via parameter tuning

Modules: grid search, cross validation, metrics.

[— Examples](#)

Preprocessing

Feature extraction and normalization.

Application: Transforming input data such as text for use with machine learning algorithms.

Modules: preprocessing, feature extraction.

[— Examples](#)

Supervised Learning

- For each training point, there is a desired output value.
- Error measure: difference between actual output and desired output.
 - Example: sum-squared error

$$E = \frac{1}{2} \sum (d_i - y_i)^2$$

- Learning adjusts the model parameters to reduce the error.

Unsupervised Learning

- Data points are unlabeled: there is no “correct” answer.
- Learning discovers structure in the data.
- Examples:
 - Clustering: finding categories.
 - Dimensionality reduction: finding key features and relationships between features. Useful for data compression.

Reinforcement Learning

- Used for *sequential decision problems*.
- Model is trained via a reinforcement signal that tells it how well it is doing.
- We don't tell it the right answer, just reward it when it does well.
- Example:
 - Learning to play a game by reinforcing wins. Program can learn by playing against itself.

Supervised Learning: Classification

- Desired outputs may be binary, or probabilities of class membership.
- Examples:
 - Tell “spam” from “not spam”.
 - Distinguish images containing cats from those without cats.
 - Recognize handwritten digits 0-9.

Supervised Learning: Regression

- Desired outputs are continuous, possibly vectors.
- Examples:
 - Interpolate values of a nonlinear function.
 - Predict stock prices.
 - Calculate inverse kinematics solutions for a non-linear robot.

Parametric vs. Non-Parametric Models

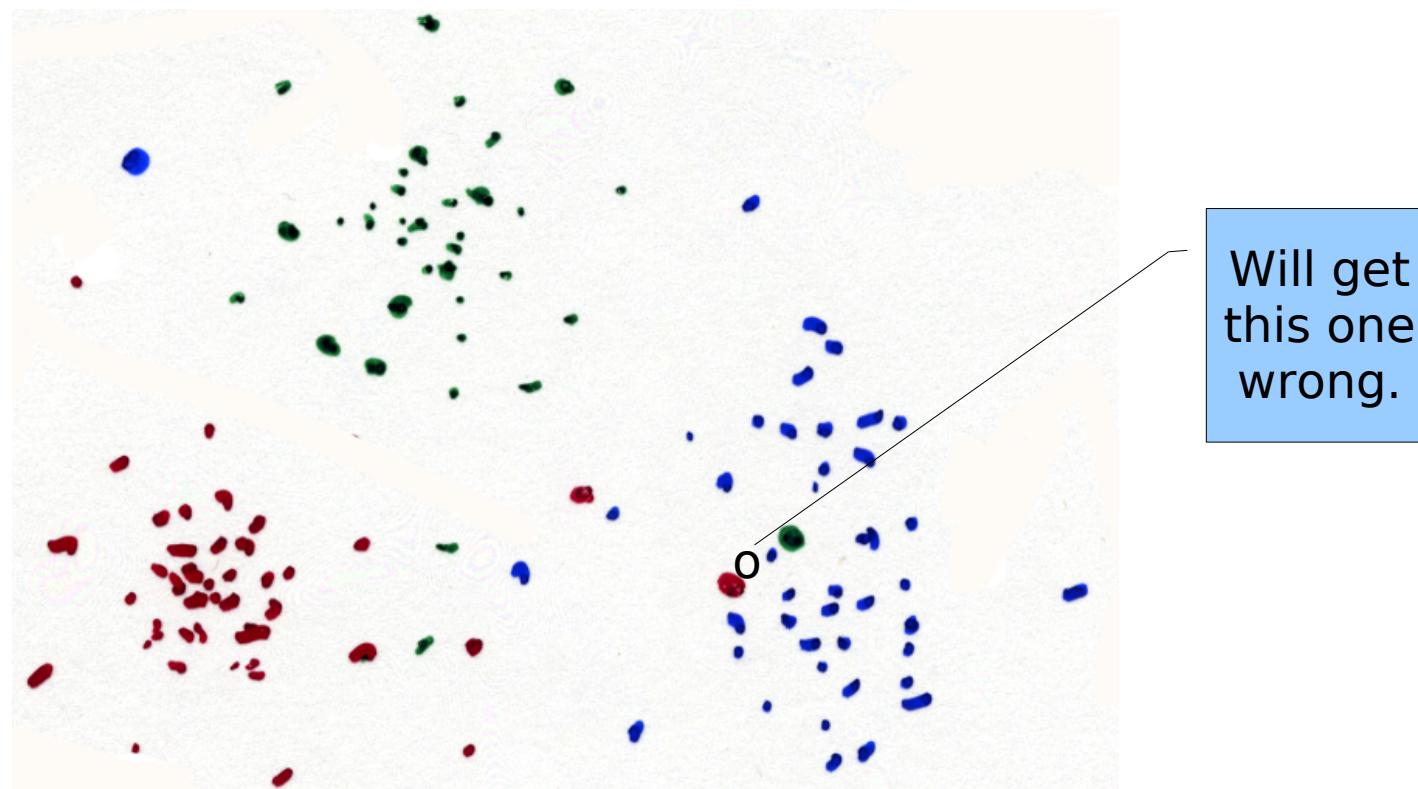
- Parametric models describe data using equations with a small number of parameters.
 - Example: Gaussian distribution.
 - Parameters are mean μ and variance σ
- **Pros:** compact representation; easy to test new data points.
- **Cons:** what if your data doesn't fit the equation?

Parametric vs. Non-Parametric Models

- Non-parametric models don't make any assumptions about the distribution of the data. The data represents itself.
 - Particle filters are non-parametric models.
- **Pros:** “training” is instantaneous. Can represent arbitrary distributions.
- **Cons:** can take a lot of memory to store all the data, and classifying new points can be slow.

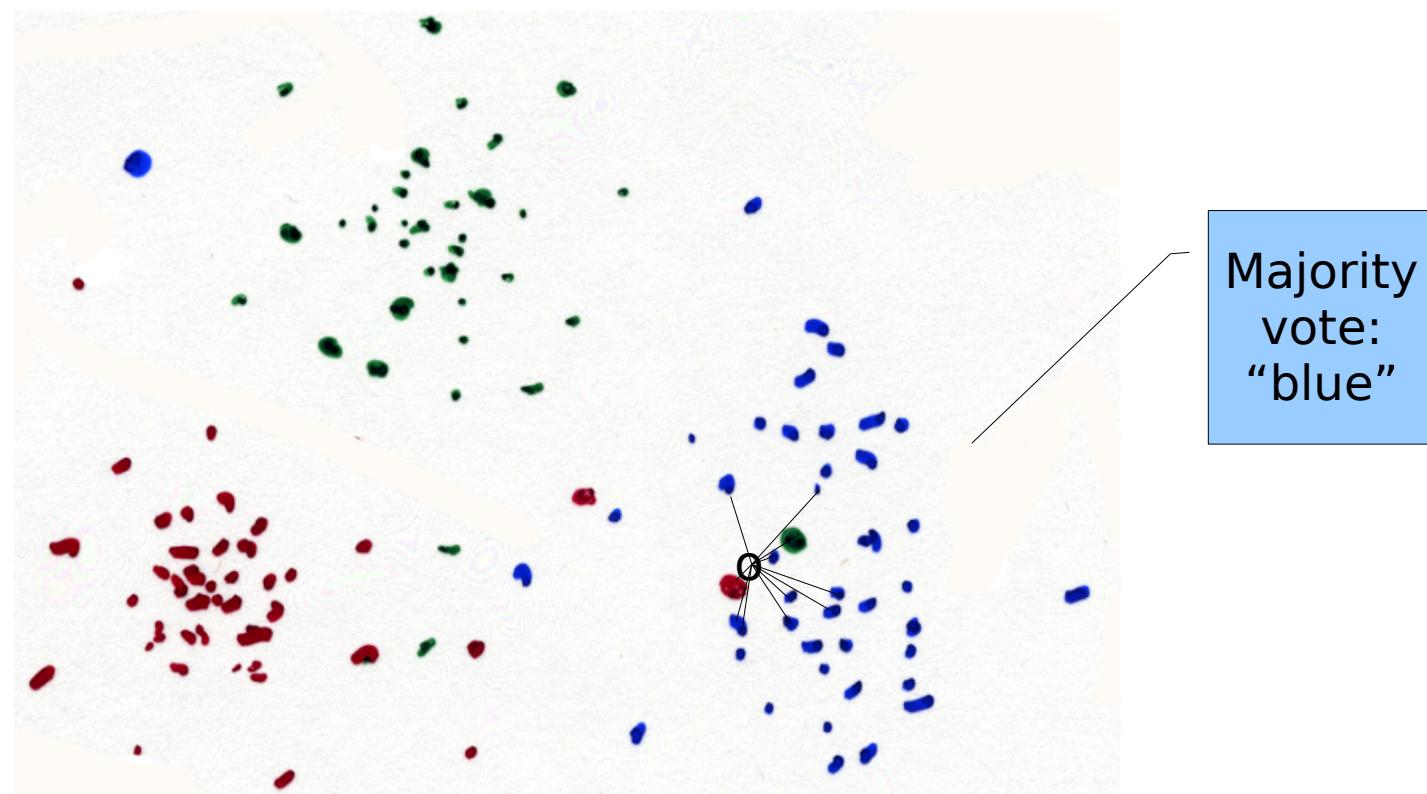
Nearest-Neighbor Classifier

- Simplest non-parametric classifier.
- Noisy data can be a problem.



k-Nearest-Neighbor

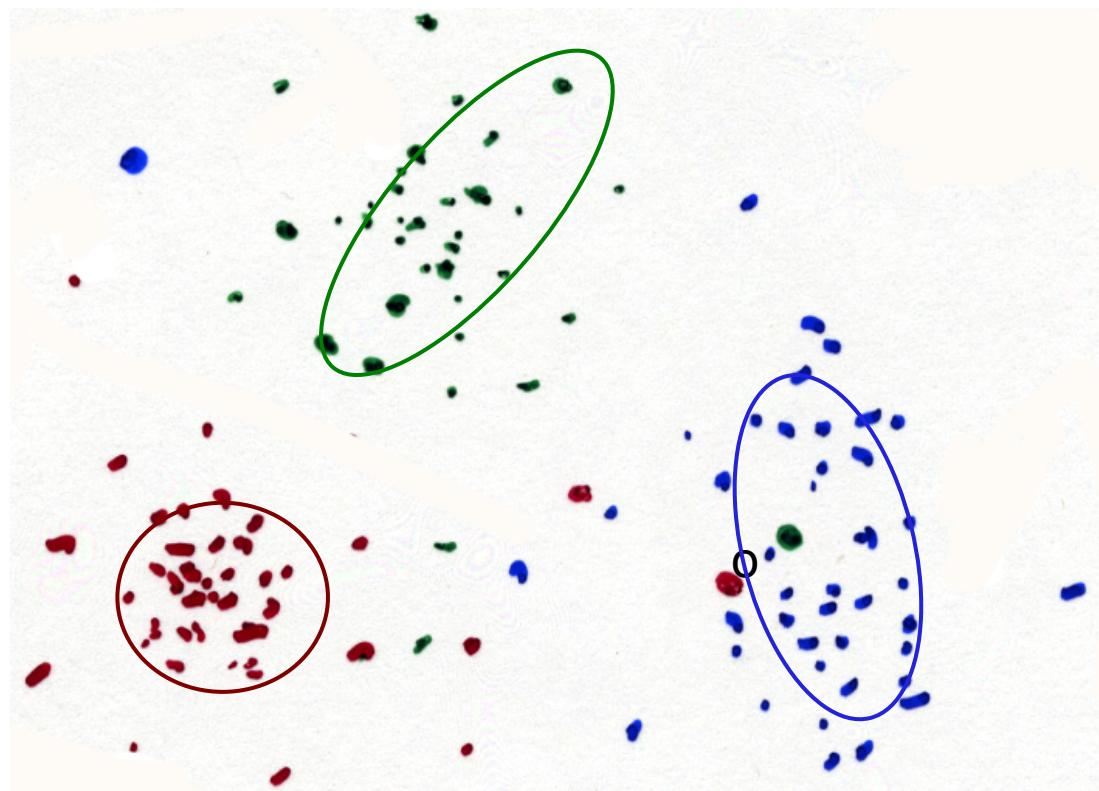
- Still a non-parametric classifier.
- Majority vote to find the correct class.



Gaussian Mixture Model

- Parametric model: Gaussian distributions.

$$p(x \mid \mu, \sigma) = e^{\frac{-(x-\mu)^2}{\sigma^2}}$$



How do we
find the
correct
values of
the
parameters?

Learning
algorithm!

Sample Learning Problem: Color Classes

- Assume objects come in a small number of colors.
- We want to know what the colors are.
 - This is a clustering problem.
- Given a new object, we want to determine its color class.
 - This is a classification problem.

Training Data: RGB Values

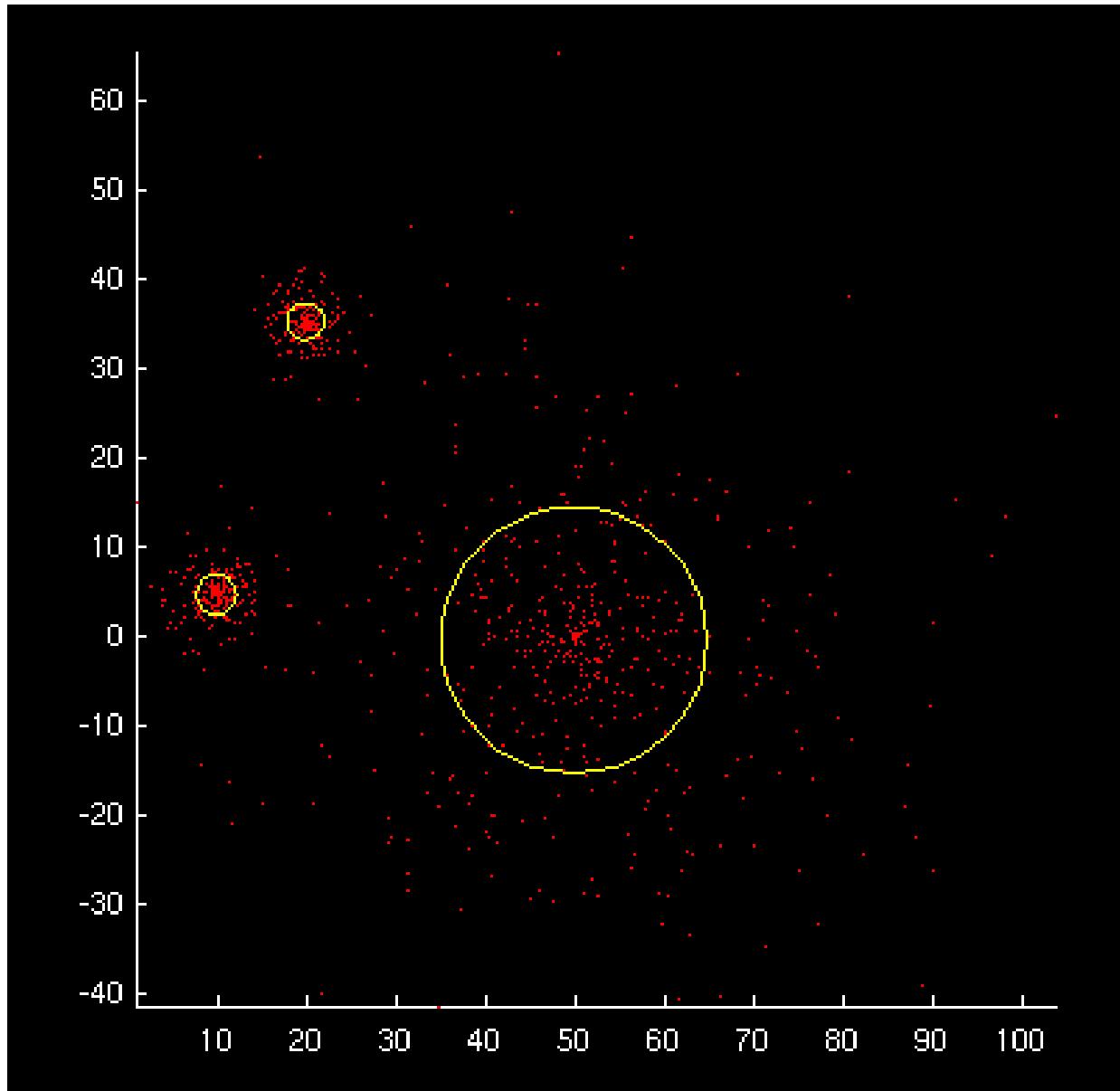
Feature Space

- Three-dimensional feature space: RGB.
- $320 \times 240 = 76,800$ data points per image.
- Let's assume that each color class can be modeled as a gaussian distribution:
 - Mean color μ
 - Covariance matrix Σ

Expectation-Maximization Algorithm

- Unsupervised learning algorithm for finding clusters in data.
- Learns the μ and Σ parameters for a set of gaussians.
- You must guess the number of classes.
- Runs quickly but can get stuck in local minima.

E-M Clustering



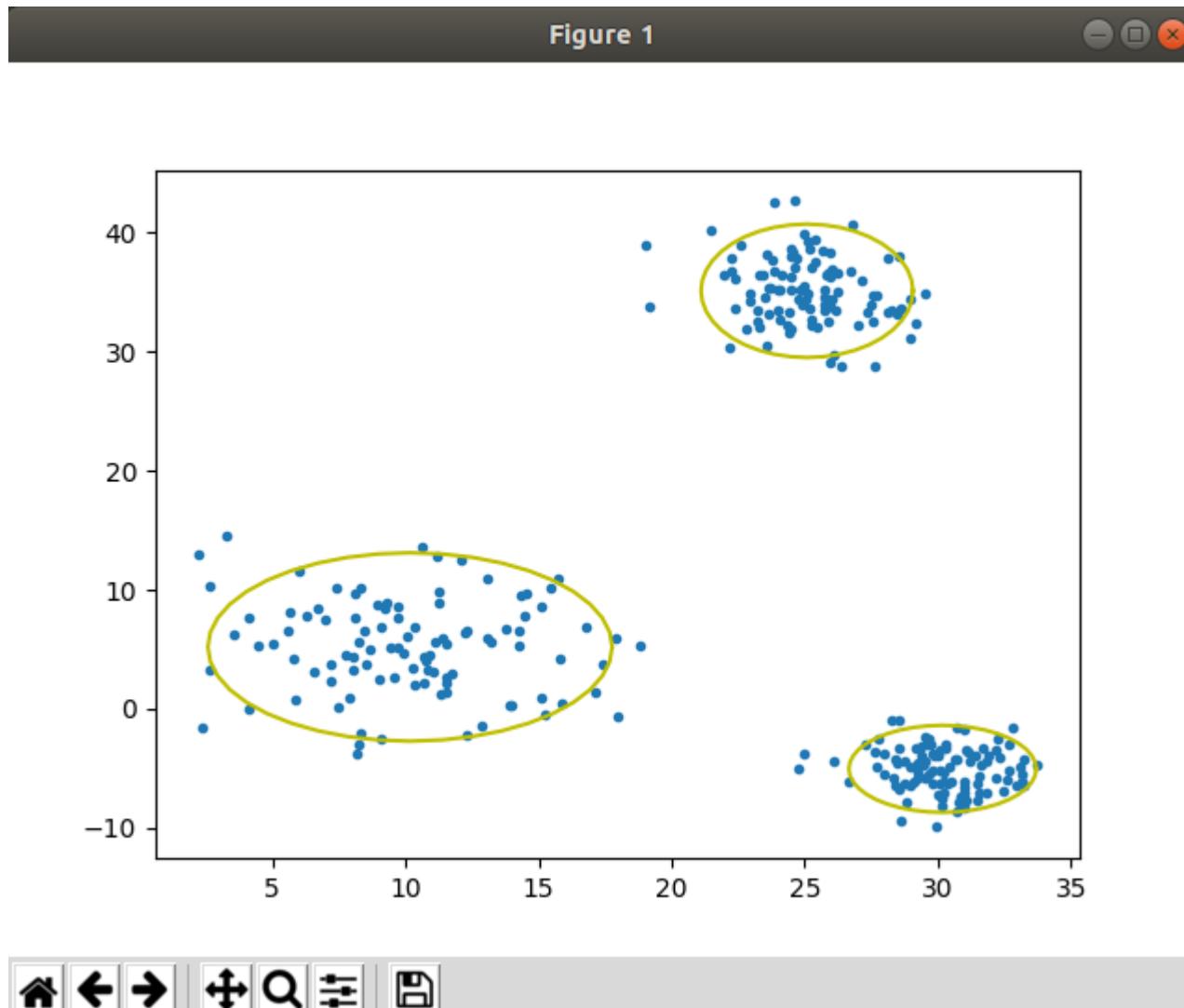
E-M Algorithm

- Expectation step:
 - For each point \mathbf{x} , for each gaussian (μ_i, Σ_i) , calculate the likelihood of \mathbf{x} having been generated by the i -th gaussian:
 $P(\mathbf{x} | \mu_i, \Sigma_i)$.
- Maximization step:
 - For each gaussian, recalculate its mean and covariance μ_i, Σ_i based on the likelihood-weighted data points.
- Repeat for several iterations.

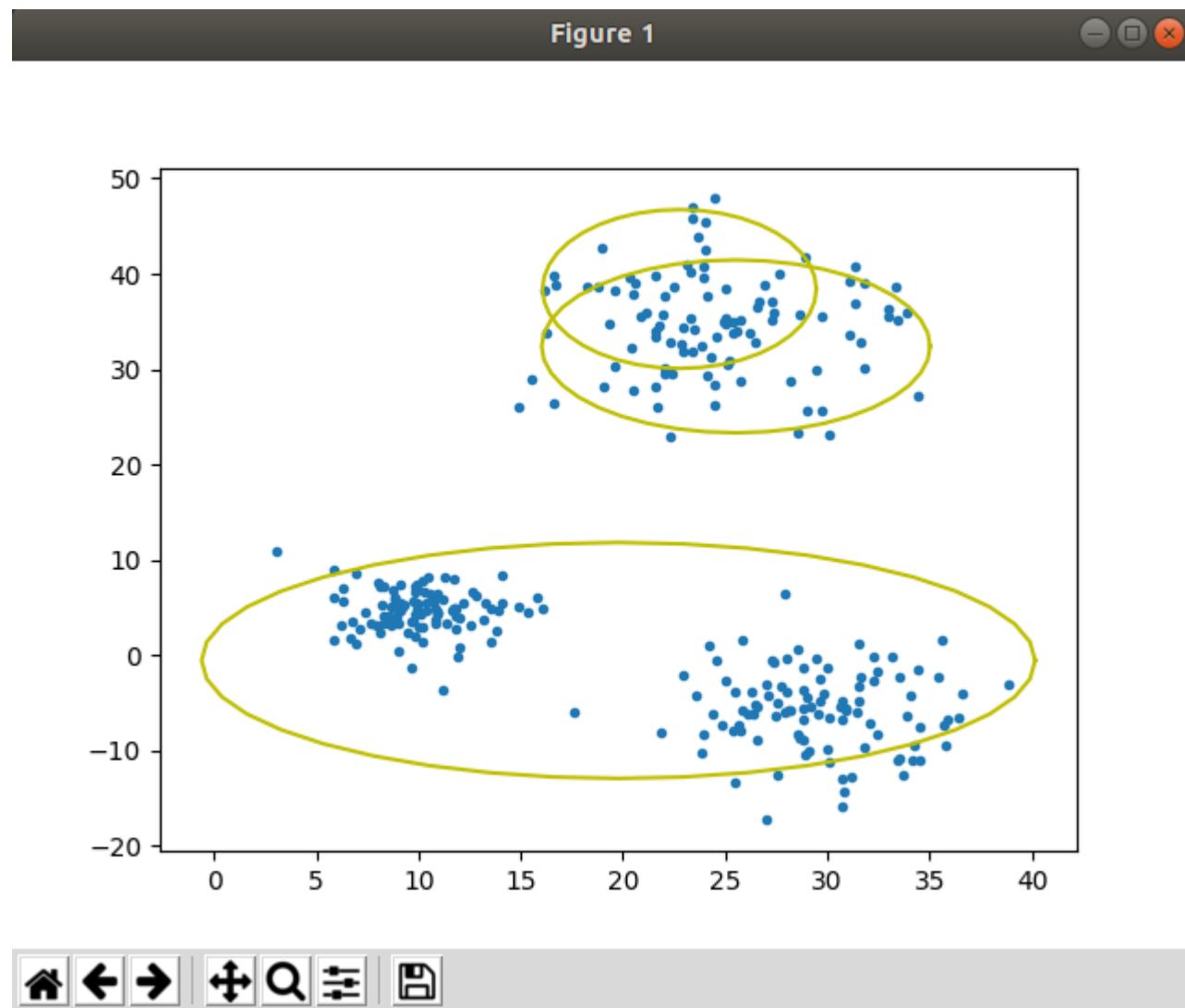
E-M in scikit-learn

```
from sklearn.mixture import GaussianMixture
gmm = GaussianMixture(n_components=7)
gmm.fit(data)
means = gmm.means_
covariances = gmm.covariances_
classes = gmm.predict(new_data)
```

emdemo.py



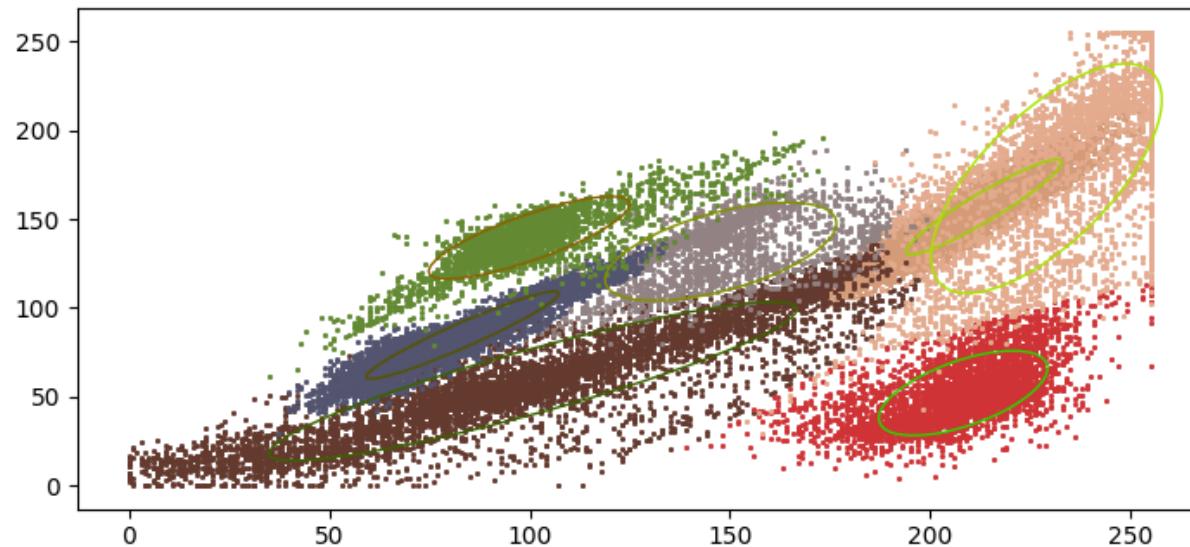
EM doesn't always succeed



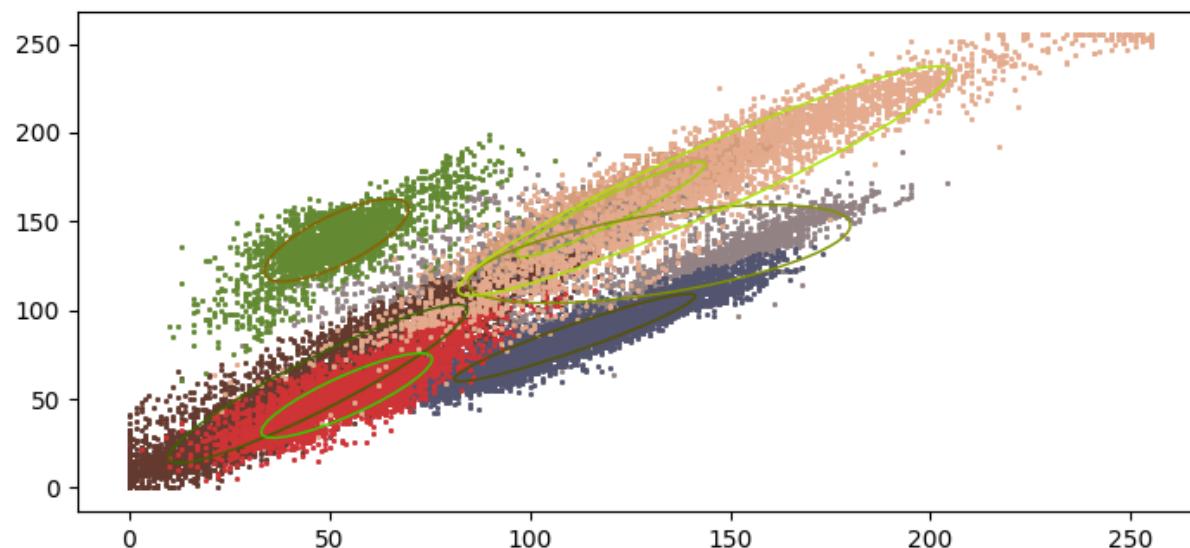
Color Classification: Visualizing the Result

- Each color class is modeled as an ellipsoid in 3D space (RGB space).
- Too hard to plot. So instead:
 - Generate R-vs-G and B-vs-G plots.
 - Draw the ellipses in feature space determined by the covariance values.

Scatter Plots With Gaussian Ellipses



Red
vs.
Green

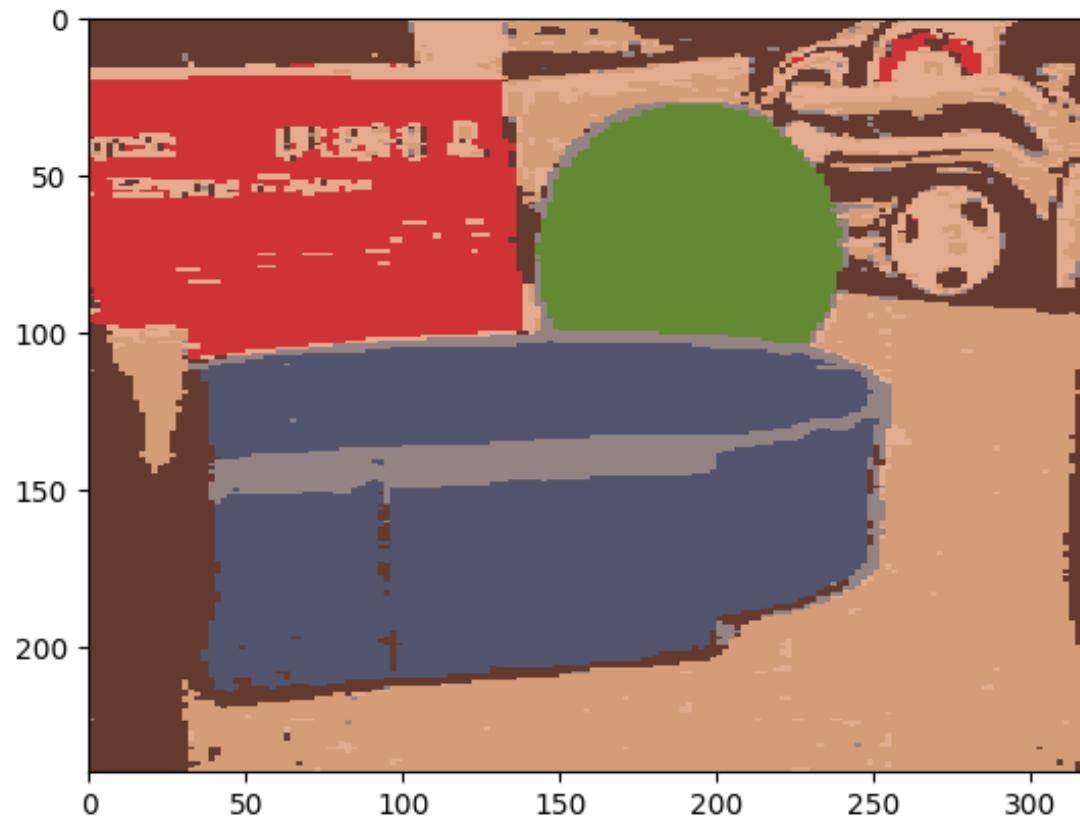


Blue
vs.
Green

Classification

- Once we've learned the color classes, we can assign a class to each pixel.
 - This gives us a color-quantized image.
- Can then use these color classes to classify new images the same way.

Classified Image



Original Image

Refinements

- Can detect local minima by checking the density of points near the mean of the gaussian.
- Split/merge EM can reallocate gaussians if some are being wasted and others are spread between two clusters.
- BayesianGaussianMixture class in scikit-learn can infer the number of effective components.