

15-494/694: Cognitive Robotics

Dave Touretzky

Lecture 14:
ImageNet and Transfer
Learning

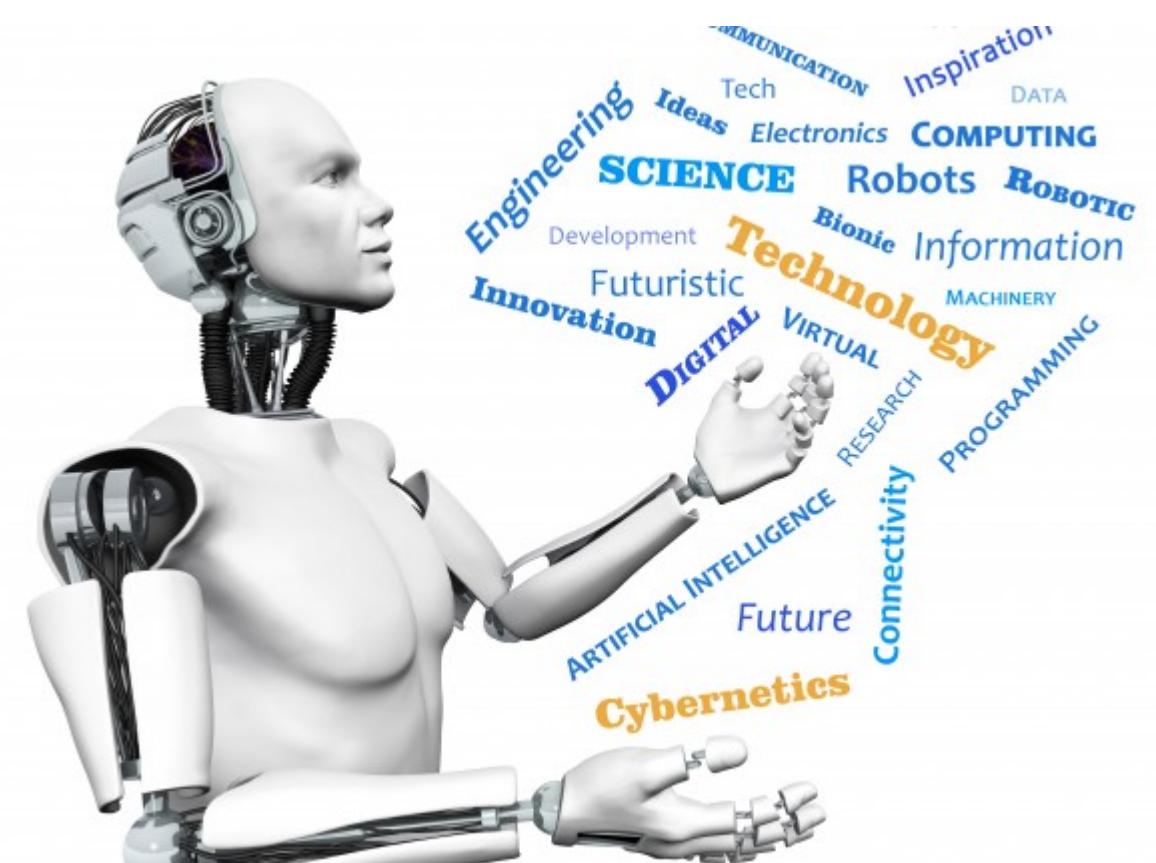


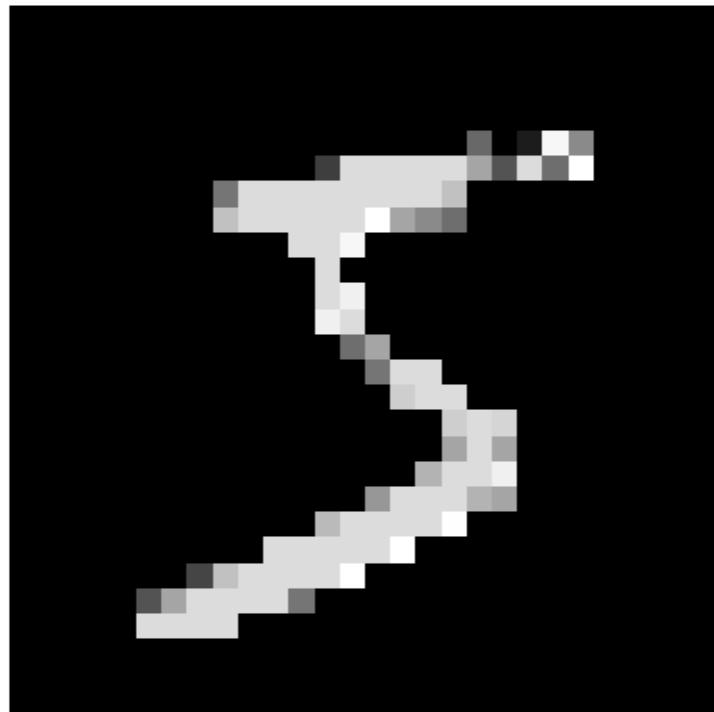
Image from <http://www.futuristgerd.com/2015/09/10>

Training With Pytorch

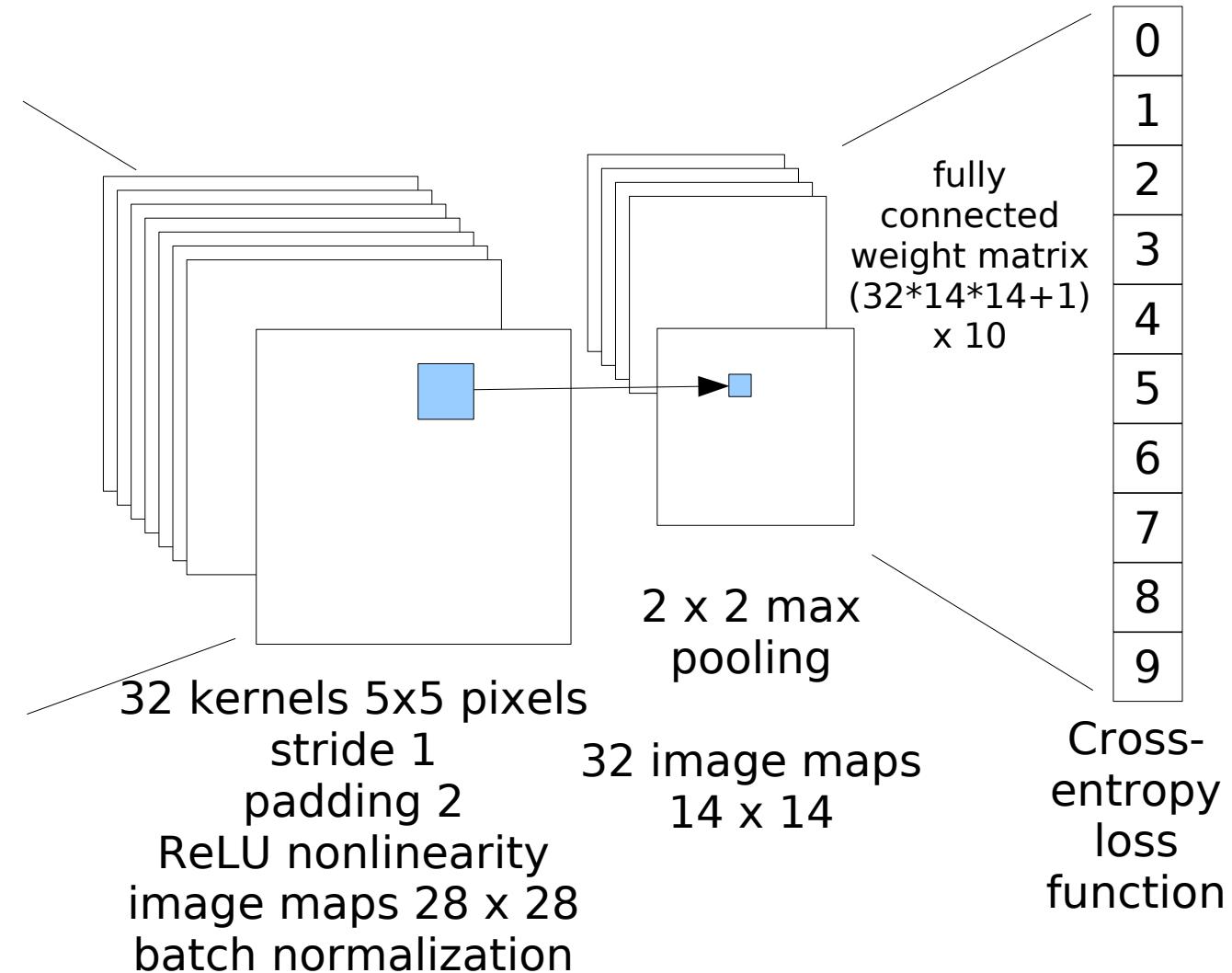
Components needed to train a classifier:

- Model:
 - Specify the input and output size
 - Define the layers and connections
 - Perform forward propagation
- Dataset loader: provides the training data
- Loss criterion: how we measure error
- Optimizer: updates the model parameters

MNIST3 Model Is A CNN



28 x 28 image



parameters = 63,626
How many connections?

Accuracy on training set: 98.3%

Defining the Model mnist3

```
class OneConvLayer(nn.Module):  
  
    def __init__(self, in_dim, out_dim, nkernels):  
        super(OneConvLayer, self).__init__()  
        self.network1 = nn.Sequential(  
            nn.Conv2d(in_channels=1,  
                     out_channels=nkernels,  
                     kernel_size=5,  
                     stride=1,  
                     padding=2),  
            nn.BatchNorm2d(nkernels),  
            nn.ReLU(),  
            nn.MaxPool2d(kernel_size=2)  
        )  
        self.network2 = nn.Linear(nkernels*14*14,  
                               out_dim)
```

Defining mnist3 (cont.)

```
def forward(self, x):  
    out = self.network1(x)  
    out = out.view(out.size(0), -1)  
    out = self.network2(out)  
    return out
```

```
model = OneConvLayer(28*28, 10, 32)
```

Automatic Differentiation

- Each layer of the model (Conv2D, ReLU, MaxPool, Linear) knows how to calculate its own derivative.
- When the layer produces its output (a tensor), the tensor is given attributes that allow backpropagation of the gradient.
 - This is another way that tensors differ from ordinary numpy arrays.

Dataset Loader

- Reads in training data from a file
- Supplies data in chunks according to the batch size we specify
- Shuffles the data if asked to do so

```
trainset = torchvision.datasets.MNIST(  
    root='./mnist_data',  
    download = True,  
    transform = transforms.ToTensor())
```

```
trainloader = torch.utils.data.DataLoader(  
    dataset = trainset,  
    batch_size = batchSize,  
    shuffle = True)
```

Loss Functions

How do we measure error?

- Mean Square Error: `nn.MSELoss`

$$E = \frac{1}{2P} \sum_p (d^p - y^p)^2$$

- Cross-Entropy: `nn.CrossEntropyLoss`

$$E = \sum_p -d^p \log(y^p) - (1-d^p) \log(1-y^p)$$

- Lots of other choices.

```
criterion = nn.CrossEntropyLoss()
```

Optimizers

- Once we've measured the error gradient, what do we do about it?
- An optimizer adjusts the weights based on the gradient and various parameters: learning rate, momentum, etc.
- Lots of choices: SGD, ADAM, etc.

```
optimizer = torch.optim.SGD(model.parameters(), lr=0.005)
```

Training the Model

```
for epoch in range(nepochs):  
    for (images,labels) in trainloader:  
        images = images.view(-1, 28*28).to(device)  
        labels = labels.to(device)  
        outputs = model(images)  
  
        optimizer.zero_grad()  
        loss = criterion(outputs, labels)  
        loss.backward()  
  
        optimizer.step()
```

Move
data to
GPU

Object Recognition

Object Recognition Challenge

- Computer vision researchers use challenge events to measure progress in the state of the art.
- PASCAL VOC (Visual Object Classes) Challenge:
 - Ran from 2005 to 2012
 - 2005 version had 4 categories (bicycles, motorcycles, people, cars) and 1,578 training images
 - 2012 version had 20 categories and 5,717 training images

ImageNet

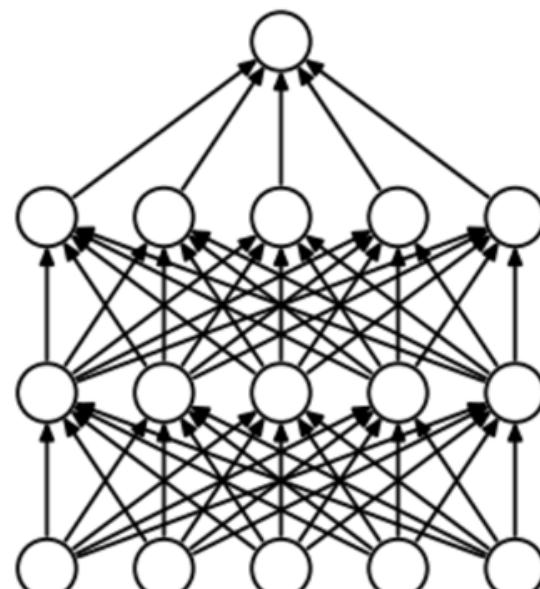
- Created by Fei-Fei Li at Stanford.
- See www.image-net.org
- 15 million labeled images, 22,000 categories
- ILSVRC: ImageNet Large Scale Visual Recognition Challenge: 2009-2017
 - 1000 categories, including 118 dog breeds
 - 1.2 million training images

AlexNet

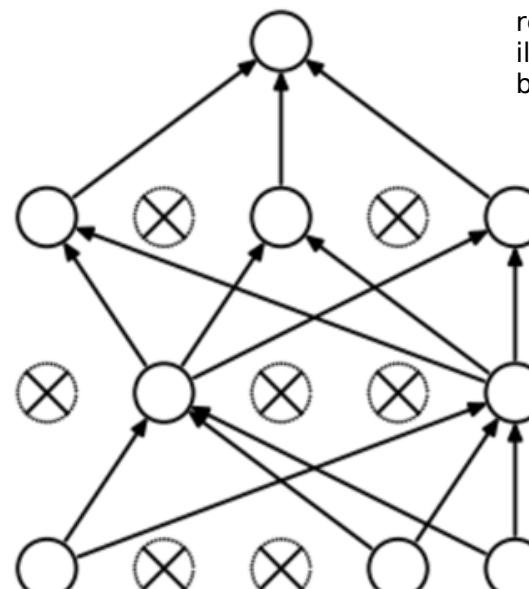
- The winners of the 2012 ILSVRC:
 - Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton
 - Deep convolutional neural net (DCNN) called AlexNet
 - Trained using two GPU boards
 - Introduced ReLU in place of tanh
 - Used “dropout” to reduce overfitting
 - Error rate of 15.3% was 10% better than the runner-up
 - Put deep neural nets on the map

Dropout in AlexNet

- For each training step, disable 50% of the neurons for both the forward and backward pass.
- Reduces overfitting.



(a) Standard Neural Net



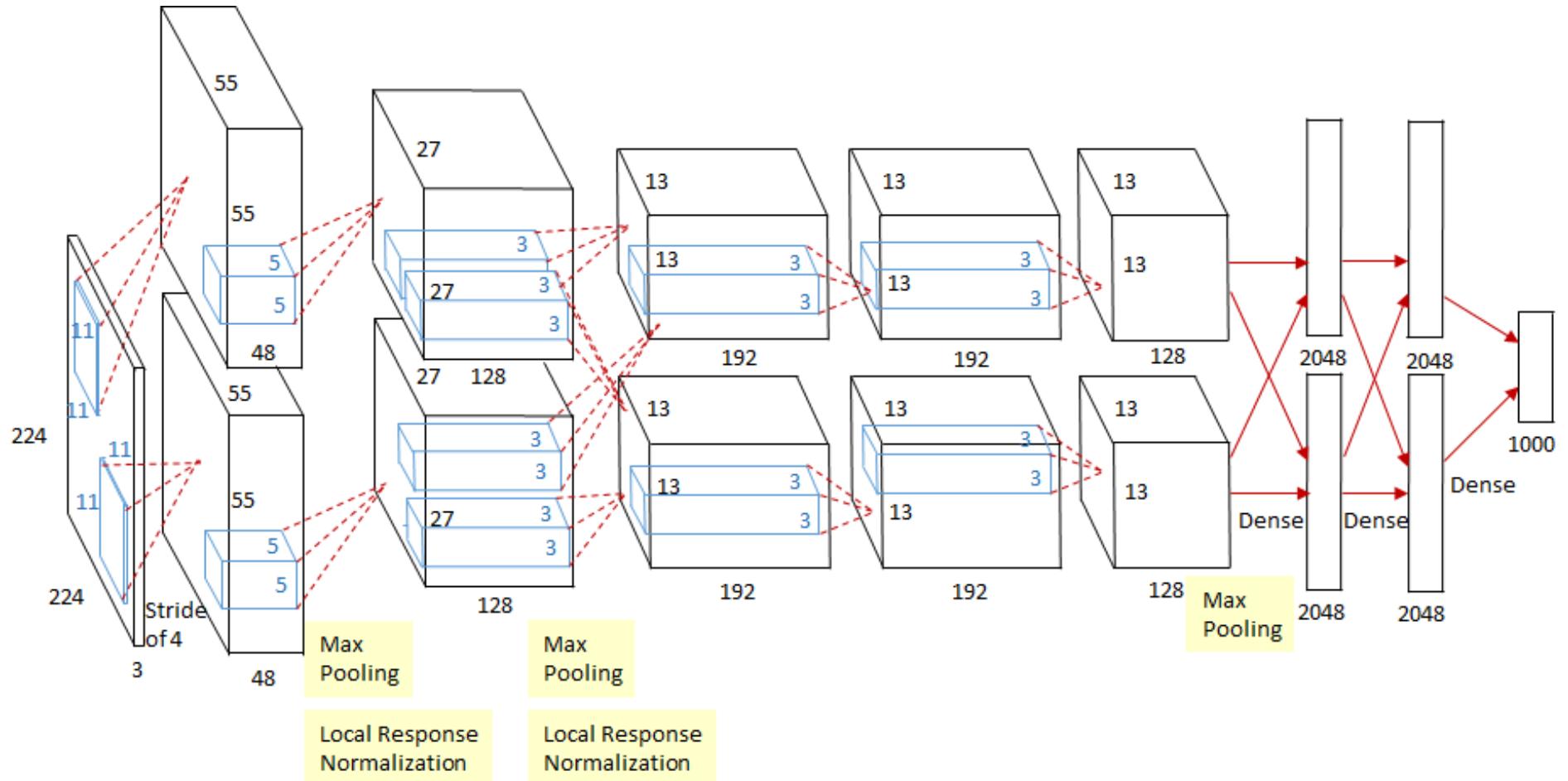
(b) After applying dropout.

Figure from
<https://medium.com/coinmonks/paper-review-of-alexnet-caffenet-winner-in-ilsvrc-2012-image-classification-b93598314160>

Data Augmentation in AlexNet

- Take random 224x224 crops of a 256x256 image, plus their horizontal reflections. Increases training set size by a factor of $32^2 \times 2 = 2048$.
- Add random factors to RGB values to simulate variations in lighting.
- These steps help the network generalize better.

AlexNet Architecture



All hidden layers were split in two and trained on different GPU boards due to GPU memory limitations.

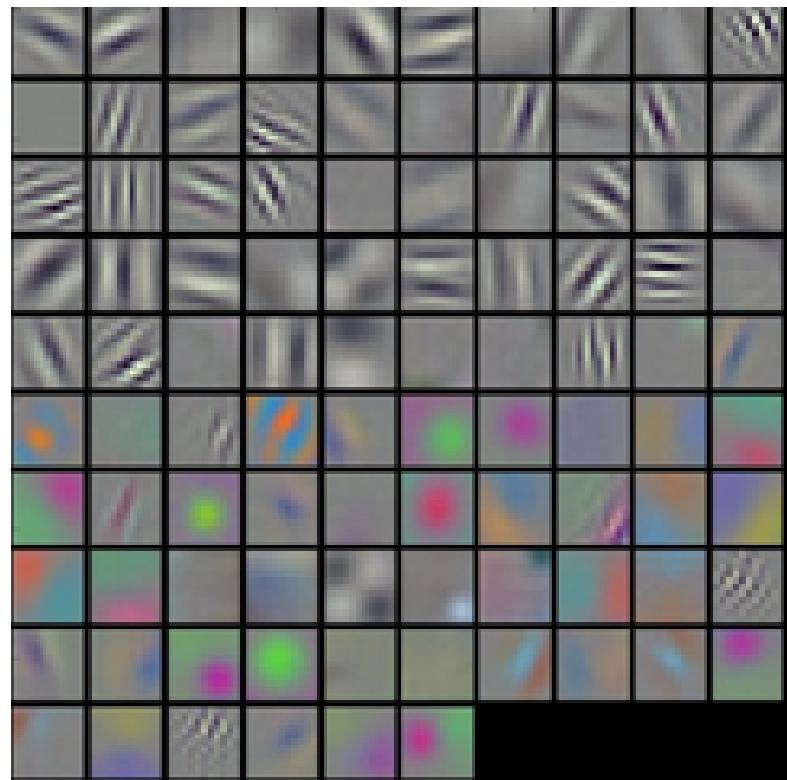
AlexNet Layer 1 Kernels

AlexNet's 96 11x11 layer 1 kernels.

First 48 trained on GPU 1 look for edges.

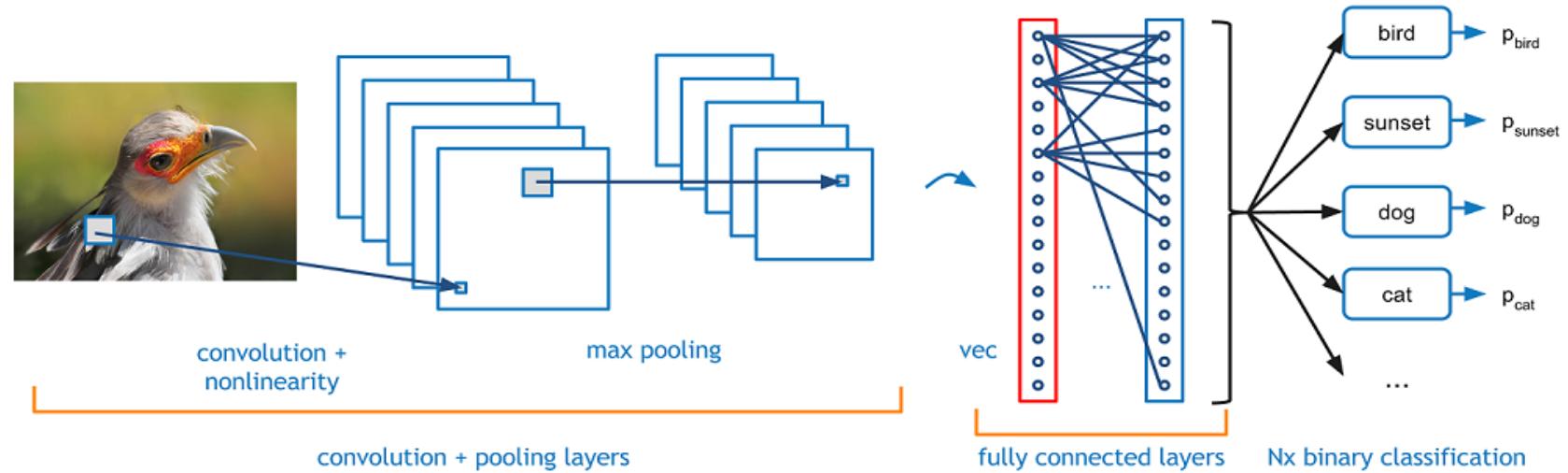
Second 48 trained on GPU 2 look for color.

This separation is a natural consequence of the normalization terms in the early layers.



Visualizations of filters

Generic Object Recognition CNN



<https://adeshpande3.github.io/A-Beginner%27s-Guide-To-Understanding-Convolutional-Neural-Networks/>

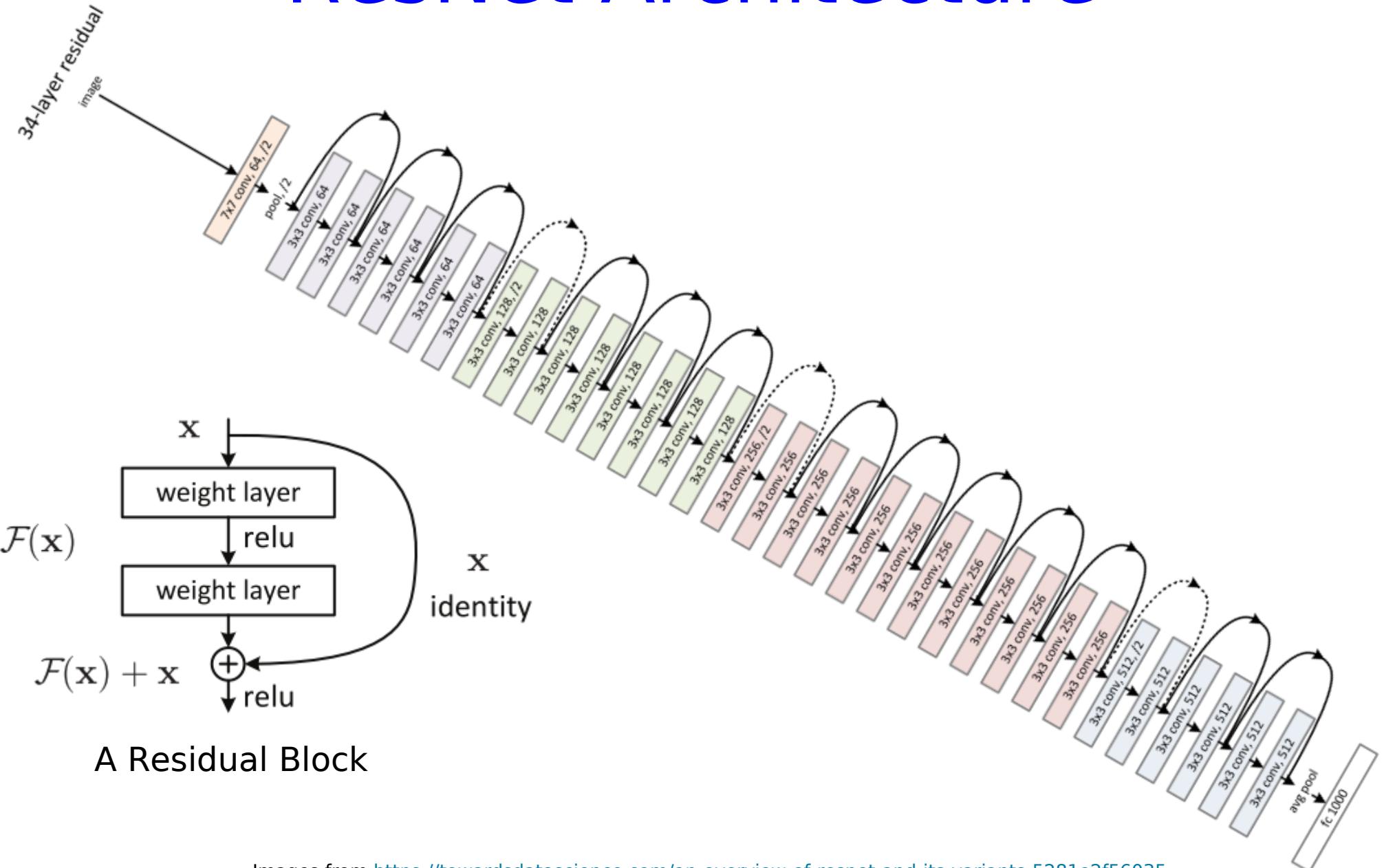
After AlexNet

- AlexNet had 8 layers: 5 convolutional and 3 fully connected.
- In 2015 Microsoft won the ILSVRC using a deep neural network with 100 layers.
- By the end of the ILSVRC in 2017, the best entrants were seeing accuracies of over 95% (error rate < 5%).

Residual Blocks

- Residual blocks were introduced in ResNet:
 - For really deep networks, it's hard for the error signal to propagate backwards through many layers.
 - Solution: add shortcut connections, e.g., from layer i to layer $i+2$, so that error can back-propagate more quickly.
 - A residual block contains hidden layers with a shortcut connection.

ResNet Architecture

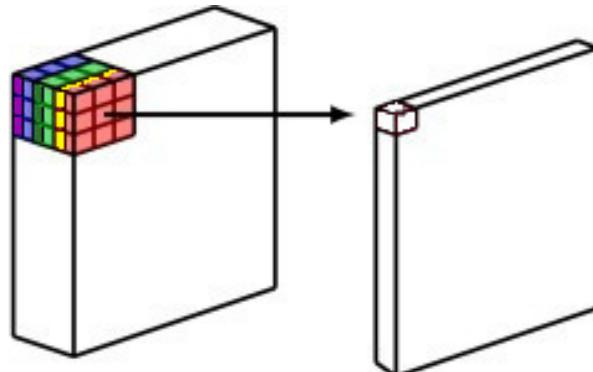


Images from <https://towardsdatascience.com/an-overview-of-resnet-and-its-variants-5281e2f56035>

Mobile Implementations

- People want to implement computer vision on mobile phones. Networks must be reduced in size.
- Various architectures explore ways to reduce the size of the network and the number of multiply-add operations.
 - Separable convolutions
 - Bottlenecks
- Examples: MobileNet, SqueezeNet

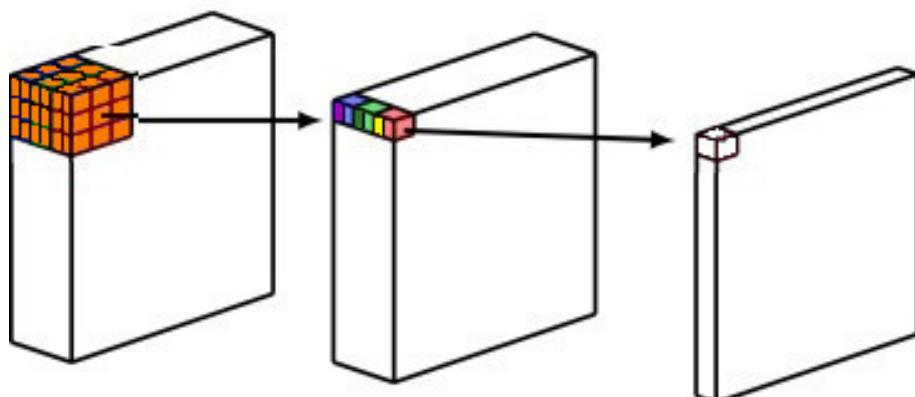
Separable Convolutions



(a) Conventional Convolutional Neural Network

3x3 kernel covering 6 channels

$3 \times 3 \times 6 = 54$ weights



Depthwise Convolution

Pointwise Convolution

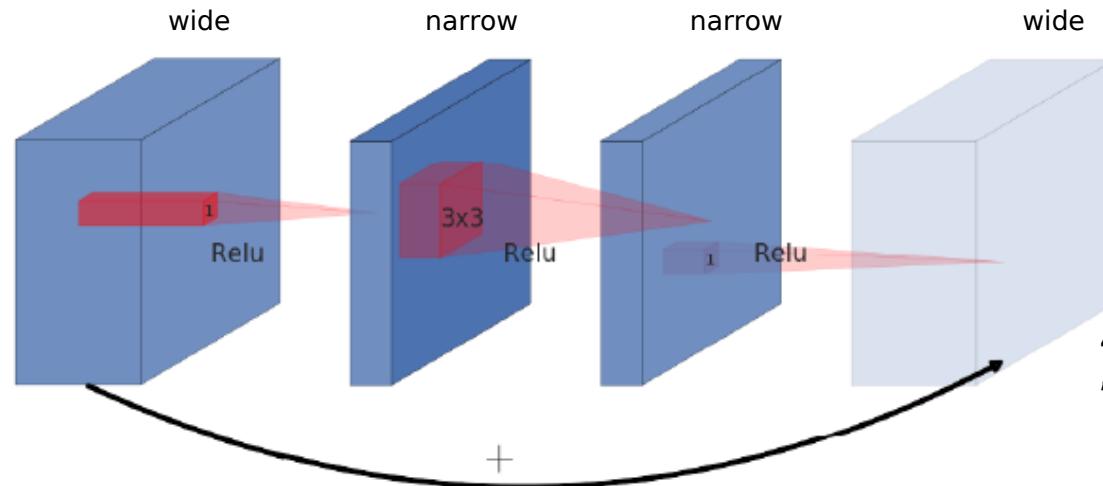
(b) Depthwise Separable Convolutional Neural Network

One 3x3 kernel applied to all 6 channels
(depthwise convolution)

Linear weighted combination of the 6 results (pointwise convolution)

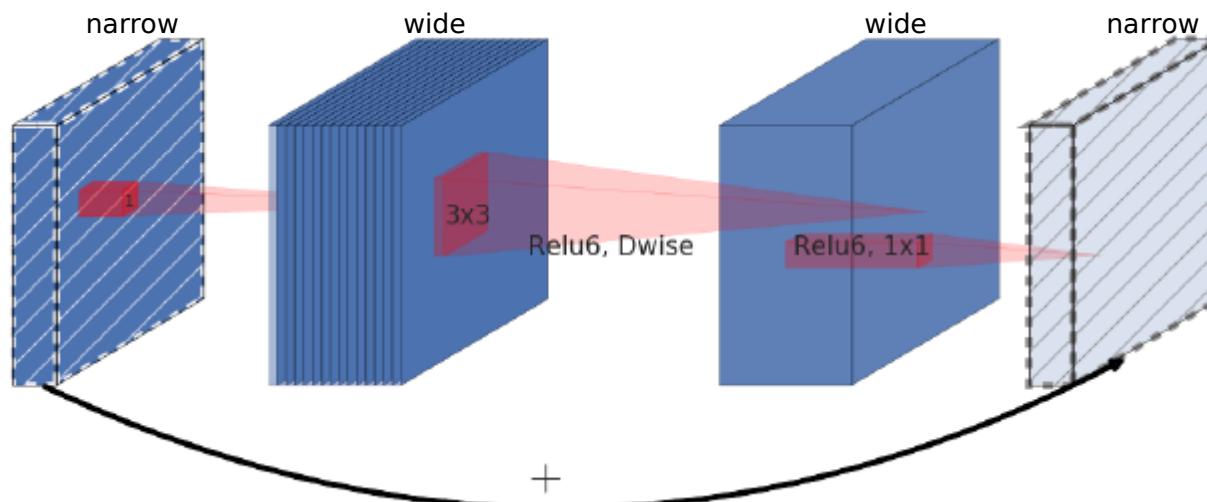
$3 \times 3 + 6 = 15$ weights

Bottlenecks with Residuals



MobileNet:
residual
bottleneck

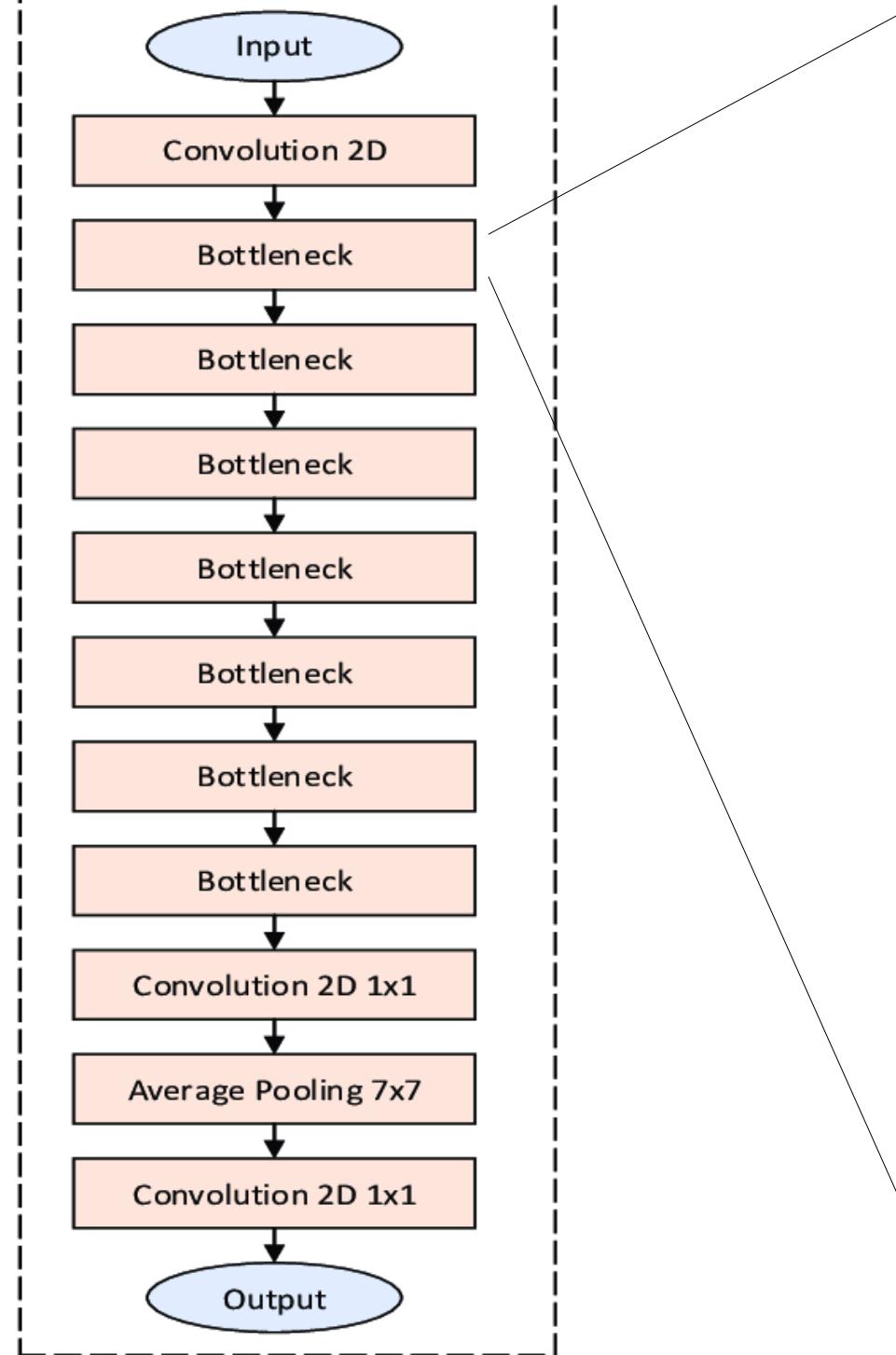
“Wide” layers have many channels.
“Narrow” layers have few channels.



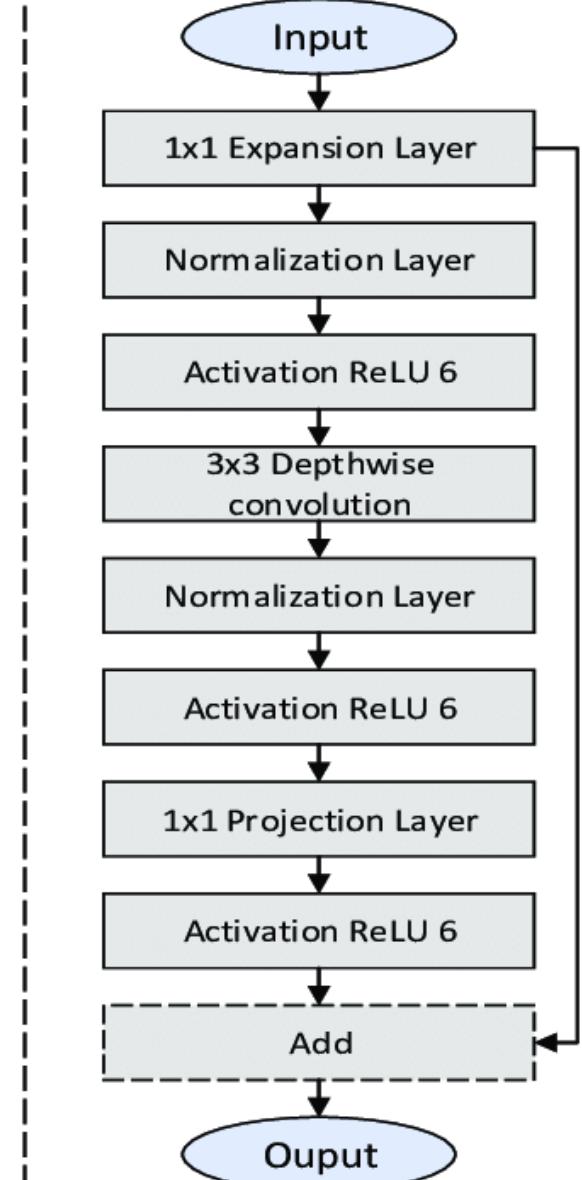
MobileNetV2:
inverted residual
bottleneck

Depthwise convolution applies the
same 3x3 kernel to all channels.

MobileNetv2



Bottleneck Layer



PyTorch Vision Models

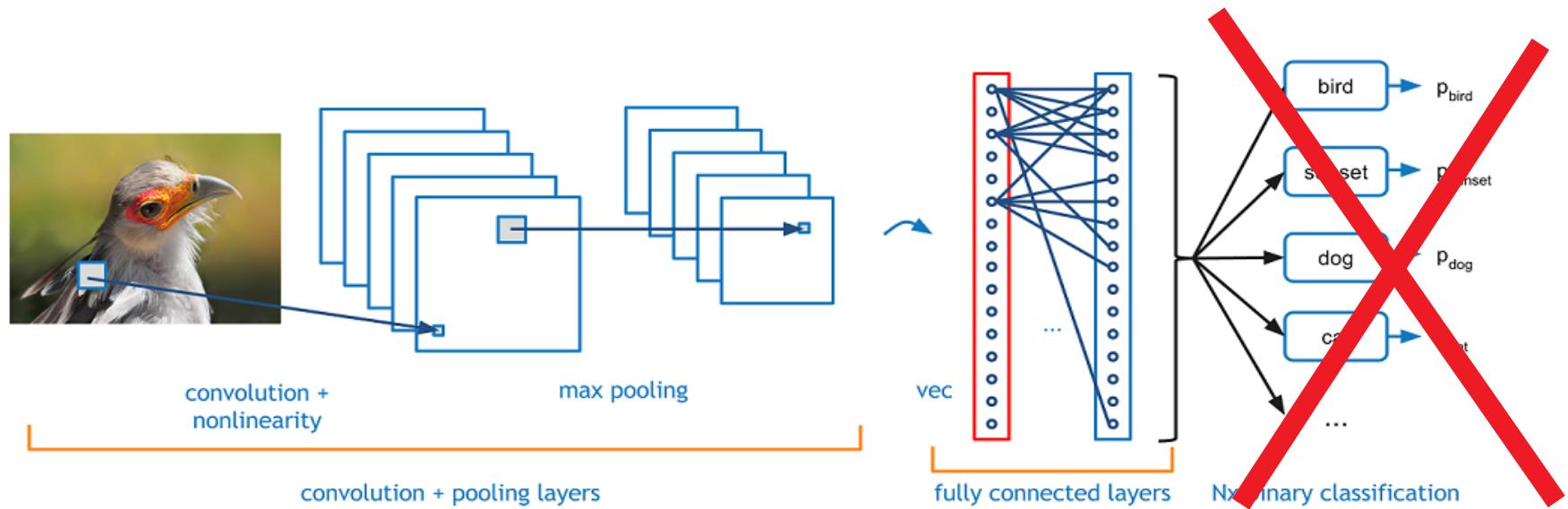
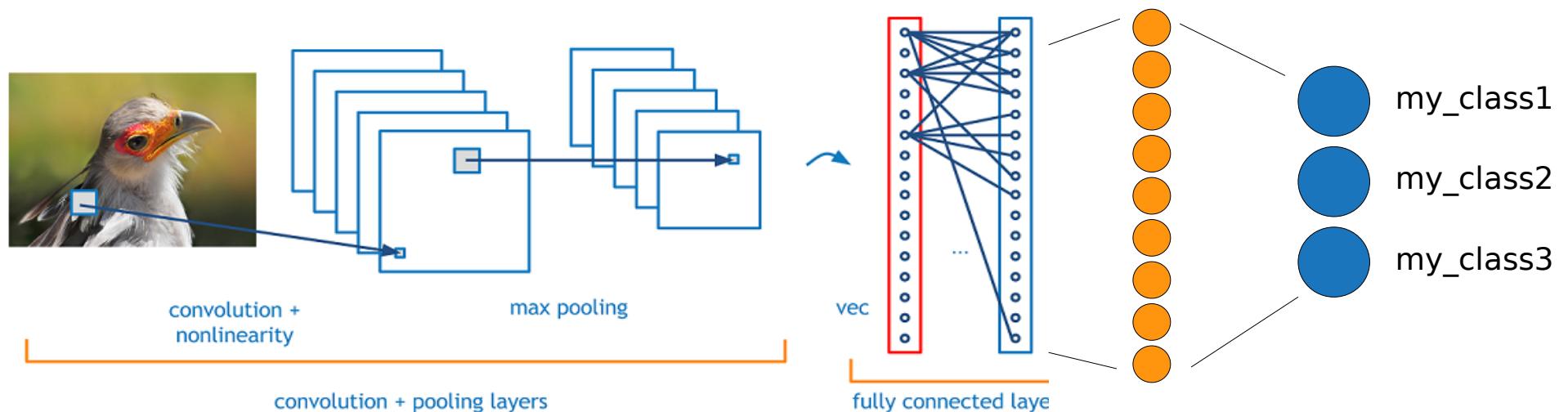
- PyTorch contains several pre-trained object recognition models, including AlexNet, ResNet, Inception, VGG, and MobileNetV2.
- Look in `torchvision.models` for a list.
- Models are trained on the ImageNet dataset.

MobileNetV2 on VEX AIM

- See the course's demos folder.
- Uses pre-trained MobileNetV2 model from `torchvision.models`.
- Feeds a 224x224 camera image into the network and reports the top 5 labels.

Transfer Learning

- How can we quickly train a visual classifier for a new object class?
- Use the last hidden layer of a pre-trained ImageNet classifier as a feature vector.
- Train a classifier on the new categories using just 1-2 layers of trainable weights, or just use k-nearest neighbor.
- This is how Teachable Machine works.



Teachable Machine

<https://teachablemachine.withgoogle.com>

