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Training With Pytorch

Components needed to train a classifier:
● Model:

– Specify the input and output size
– Define the layers and connections
– Perform forward propagation

● Dataset loader: provides the training data
● Loss criterion: how we measure error
● Optimizer: updates the model parameters
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MNIST3 Model Is A CNN
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Defining the Model mnist3

class OneConvLayer(nn.Module):

  def __init__(self, in_dim, out_dim, nkernels):
    super(OneConvLayer, self).__init__()
    self.network1 = nn.Sequential(
      nn.Conv2d(in_channels=1,
                out_channels=nkernels,
                kernel_size=5,
                stride=1,
                padding=2),
      nn.BatchNorm2d(nkernels),
      nn.ReLU(),
      nn.MaxPool2d(kernel_size=2)
    )
    self.network2 = nn.Linear(nkernels*14*14,        
                              out_dim)
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Defining mnist3 (cont.)

  def forward(self, x):
    out = self.network1(x)
    out = out.view(out.size(0), -1)
    out = self.network2(out)
    return out

model = OneConvLayer(28*28, 10, 32)
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Automatic Differentiation

● Each layer of the model (Conv2D, ReLU, 
MaxPool, Linear) knows how to calculate 
its own derivative.

● When the layer produces its output (a 
tensor), the tensor is given attributes that 
allow backpropagation of the gradient.

– This is another way that tensors differ 
from ordinary numpy arrays.



Dataset Loader

● Reads in training data from a file
● Supplies data in chunks according to the 

batch size we specify
● Shuffles the data if asked to do so

trainset = torchvision.datasets.MNIST(
                    root='./mnist_data',
                    download = True,
                    transform = transforms.ToTensor())

trainloader = torch.utils.data.DataLoader(
                         dataset = trainset,
                         batch_size = batchSize,
                         shuffle = True)



Loss Functions

How do we measure error?
● Mean Square Error: nn.MSELoss

● Cross-Entropy: nn.CrossEntropyLoss

● Lots of other choices.

criterion = nn.CrossEntropyLoss()

E =
1
2P

∑
p

(d p− y p)2

E = ∑
p

−d p log ( y p)−(1−d p) log(1− y p)



Optimizers

● Once we’ve measured the error gradient, 
what do we do about it?

● An optimizer adjusts the weights based 
on the gradient and various parameters: 
learning rate, momentum, etc.

● Lots of choices: SGD, ADAM, etc.

optimizer = torch.optim.SGD(model.parameters(), lr=0.005)



Training the Model

for epoch in range(nepochs):

  for (images,labels) in trainloader:

    images = images.view(-1, 28*28).to(device)
    labels = labels.to(device)
    outputs = model(images)

    optimizer.zero_grad()
    loss = criterion(outputs, labels)
    loss.backward()

    optimizer.step()

Move
data to

GPU



Object Recognition
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Object Recognition Challenge

● Computer vision researchers use 
challenge events to measure progress in 
the state of the art.

● PASCAL VOC (Visual Object Classes) 
Challenge:

– Ran from 2005 to 2012
– 2005 version had 4 categories (bicycles, 

motorcycles, people, cars) and 1,578 
training images

– 2012 version had 20 categories and 5,717 
training images
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ImageNet

● Created by Fei-Fei Li at Stanford.
● See www.image-net.org
● 15 million labeled images, 22,000 

categories
● ILSVRC: ImageNet Large Scale Visual 

Recognition Challenge: 2009-2017
– 1000 categories, including 118 dog breeds
– 1.2 million training images

http://www.image-net.org/
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AlexNet

● The winners of the 2012 ILSVRC:
– Alex Krizhevsky, Ilya Sutskever, and 

Geoffrey Hinton
– Deep convolutional neural net (DCNN)

called AlexNet
– Trained using two GPU boards
– Introduced ReLU in place of tanh
– Used “dropout” to reduce overfitting
– Error rate of 15.3% was 10% better than 

the runner-up
– Put deep neural nets on the map
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Dropout in AlexNet

● For each training step, disable 50% of the 
neurons for both the forward and 
backward pass.

● Reduces overfitting.
Figure from 
https://medium.com/coinmonks/paper-
review-of-alexnet-caffenet-winner-in-
ilsvrc-2012-image-classification-
b93598314160
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Data Augmentation in AlexNet

● Take random 224x224 crops of a 
256x256 image, plus their horizontal 
reflections. Increases training set size by 
a factor of 322×2 = 2048.

● Add random factors to RGB values to 
simulate variations in lighting.

● These steps help the network generalize 
better.
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AlexNet Architecture

All hidden layers were split in two and trained on different GPU 
boards due to GPU memory limitations.
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AlexNet Layer 1 Kernels

AlexNet’s 96 11x11 layer 1 
kernels.

First 48 trained on GPU 1 look for 
edges. 

Second 48 trained on GPU 2 look 
for color.

This separation is a natural 
consequence of the 
normalization terms in the early 
layers. 
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Generic Object Recognition CNN

https://adeshpande3.github.io/A-Beginner%27s-Guide-To-Understanding-Convolutional-Neural-Networks/ 

https://adeshpande3.github.io/A-Beginner%27s-Guide-To-Understanding-Convolutional-Neural-Networks/
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After AlexNet

● AlexNet had 8 layers: 5 convolutional and 
3 fully connected.

● In 2015 Microsoft won the ILSVRC using a 
deep neural network with 100 layers.

● By the end of the ILSVRC in 2017, the 
best entrants were seeing accuracies of 
over 95% (error rate < 5%).
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Residual Blocks

● Residual blocks were introduced in 
ResNet:

– For really deep networks, it’s hard for the 
error signal to propagate backwards 
through many layers.

– Solution: add shortcut connections, e.g., 
from layer i to layer i+2, so that error 
can back-propagate more quickly.

– A residual block contains hidden layers 
with a shortcut connection.
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ResNet Architecture

Images from https://towardsdatascience.com/an-overview-of-resnet-and-its-variants-5281e2f56035 

A Residual Block

https://towardsdatascience.com/an-overview-of-resnet-and-its-variants-5281e2f56035
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Mobile Implementations

● People want to implement computer 
vision on mobile phones. Networks must 
be reduced in size.

● Various architectures explore ways to 
reduce the size of the network and the 
number of multiply-add operations.

– Separable convolutions
– Bottlenecks

● Examples: MobileNet, SqueezeNet
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Separable Convolutions
3x3 kernel covering 6 channels

3x3x6 = 54 weights

One 3x3 kernel applied 
to all 6 channels 
(depthwise convolution)

Linear weighted 
combination of the 6 
results (pointwise 
convolution)

3x3 + 6 = 15 weights

Image modified from 
https://www.sciencedirect.com/science/article/pii/S0168169918318696 

https://www.sciencedirect.com/science/article/pii/S0168169918318696
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Bottlenecks with Residuals

MobileNet: 
residual 
bottleneck

MobileNetV2: 
inverted residual 
bottleneck

Images from https://towardsdatascience.com/mobilenetv2-inverted-residuals-and-linear-bottlenecks-8a4362f4ffd5 

wide widenarrow narrow

narrow narrowwide wide

“Wide” layers have many channels.
”Narrow” layers have few channels.

Depthwise convolution applies the 
same 3x3 kernel to all channels.

https://towardsdatascience.com/mobilenetv2-inverted-residuals-and-linear-bottlenecks-8a4362f4ffd5
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PyTorch Vision Models

● PyTorch contains several pre-trained 
object recognition models, including 
AlexNet, ResNet, Inception, VGG, and 
MobileNetV2.

● Look in torchvision.models for a list.

● Models are trained on the ImageNet 
dataset.
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MobileNetV2 on VEX AIM

● See the course’s demos folder.

● Uses pre-trained MobileNetV2 model from 
torchvision.models.

● Feeds a 224x224 camera image into the 
network and reports the top 5 labels.
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Transfer Learning
● How can we quickly train a visual 

classifier for a new object class?

● Use the last hidden layer of a pre-trained 
ImageNet classifier as a feature vector.

● Train a classifier on the new categories 
using just 1-2 layers of trainable weights, 
or just use k-nearest neighbor.

● This is how Teachable Machine works.
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my_class1

my_class2

my_class3
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Teachable Machine

https://teachablemachine.withgoogle.com

https://teachablemachine.withgoogle.com/
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