
15-494/694: Cognitive Robotics

Lecture 14:
ImageNet and Transfer
Learning

Image from http://www.futuristgerd.com/2015/09/10

Dave Touretzky

http://www.futuristgerd.com/2015/09/10

Training With Pytorch

Components needed to train a classifier:
● Model:

– Specify the input and output size
– Define the layers and connections
– Perform forward propagation

● Dataset loader: provides the training data
● Loss criterion: how we measure error
● Optimizer: updates the model parameters

3

MNIST3 Model Is A CNN

0

1

2

3

4

5

6

7

8

9

28 x 28 image

32 kernels 5x5 pixels
stride 1

padding 2
ReLU nonlinearity

image maps 28 x 28
batch normalization

2 x 2 max
pooling

32 image maps
14 x 14

fully
connected

weight matrix
(32*14*14+1)

x 10

parameters = 63,626
How many connections? Accuracy on training set: 98.3%

Cross-
entropy

loss
function

4

Defining the Model mnist3

class OneConvLayer(nn.Module):

 def __init__(self, in_dim, out_dim, nkernels):
 super(OneConvLayer, self).__init__()
 self.network1 = nn.Sequential(
 nn.Conv2d(in_channels=1,
 out_channels=nkernels,
 kernel_size=5,
 stride=1,
 padding=2),
 nn.BatchNorm2d(nkernels),
 nn.ReLU(),
 nn.MaxPool2d(kernel_size=2)
)
 self.network2 = nn.Linear(nkernels*14*14,
 out_dim)

5

Defining mnist3 (cont.)

 def forward(self, x):
 out = self.network1(x)
 out = out.view(out.size(0), -1)
 out = self.network2(out)
 return out

model = OneConvLayer(28*28, 10, 32)

6

Automatic Differentiation

● Each layer of the model (Conv2D, ReLU,
MaxPool, Linear) knows how to calculate
its own derivative.

● When the layer produces its output (a
tensor), the tensor is given attributes that
allow backpropagation of the gradient.

– This is another way that tensors differ
from ordinary numpy arrays.

Dataset Loader

● Reads in training data from a file
● Supplies data in chunks according to the

batch size we specify
● Shuffles the data if asked to do so

trainset = torchvision.datasets.MNIST(
 root='./mnist_data',
 download = True,
 transform = transforms.ToTensor())

trainloader = torch.utils.data.DataLoader(
 dataset = trainset,
 batch_size = batchSize,
 shuffle = True)

Loss Functions

How do we measure error?
● Mean Square Error: nn.MSELoss

● Cross-Entropy: nn.CrossEntropyLoss

● Lots of other choices.

criterion = nn.CrossEntropyLoss()

E =
1
2P

∑
p

(d p− y p)2

E = ∑
p

−d p log (y p)−(1−d p) log(1− y p)

Optimizers

● Once we’ve measured the error gradient,
what do we do about it?

● An optimizer adjusts the weights based
on the gradient and various parameters:
learning rate, momentum, etc.

● Lots of choices: SGD, ADAM, etc.

optimizer = torch.optim.SGD(model.parameters(), lr=0.005)

Training the Model

for epoch in range(nepochs):

 for (images,labels) in trainloader:

 images = images.view(-1, 28*28).to(device)
 labels = labels.to(device)
 outputs = model(images)

 optimizer.zero_grad()
 loss = criterion(outputs, labels)
 loss.backward()

 optimizer.step()

Move
data to

GPU

Object Recognition

12

Object Recognition Challenge

● Computer vision researchers use
challenge events to measure progress in
the state of the art.

● PASCAL VOC (Visual Object Classes)
Challenge:

– Ran from 2005 to 2012
– 2005 version had 4 categories (bicycles,

motorcycles, people, cars) and 1,578
training images

– 2012 version had 20 categories and 5,717
training images

13

ImageNet

● Created by Fei-Fei Li at Stanford.
● See www.image-net.org
● 15 million labeled images, 22,000

categories
● ILSVRC: ImageNet Large Scale Visual

Recognition Challenge: 2009-2017
– 1000 categories, including 118 dog breeds
– 1.2 million training images

http://www.image-net.org/

14

AlexNet

● The winners of the 2012 ILSVRC:
– Alex Krizhevsky, Ilya Sutskever, and

Geoffrey Hinton
– Deep convolutional neural net (DCNN)

called AlexNet
– Trained using two GPU boards
– Introduced ReLU in place of tanh
– Used “dropout” to reduce overfitting
– Error rate of 15.3% was 10% better than

the runner-up
– Put deep neural nets on the map

15

Dropout in AlexNet

● For each training step, disable 50% of the
neurons for both the forward and
backward pass.

● Reduces overfitting.
Figure from
https://medium.com/coinmonks/paper-
review-of-alexnet-caffenet-winner-in-
ilsvrc-2012-image-classification-
b93598314160

16

Data Augmentation in AlexNet

● Take random 224x224 crops of a
256x256 image, plus their horizontal
reflections. Increases training set size by
a factor of 322×2 = 2048.

● Add random factors to RGB values to
simulate variations in lighting.

● These steps help the network generalize
better.

17

AlexNet Architecture

All hidden layers were split in two and trained on different GPU
boards due to GPU memory limitations.

18

AlexNet Layer 1 Kernels

AlexNet’s 96 11x11 layer 1
kernels.

First 48 trained on GPU 1 look for
edges.

Second 48 trained on GPU 2 look
for color.

This separation is a natural
consequence of the
normalization terms in the early
layers.

19

Generic Object Recognition CNN

https://adeshpande3.github.io/A-Beginner%27s-Guide-To-Understanding-Convolutional-Neural-Networks/

https://adeshpande3.github.io/A-Beginner%27s-Guide-To-Understanding-Convolutional-Neural-Networks/

20

After AlexNet

● AlexNet had 8 layers: 5 convolutional and
3 fully connected.

● In 2015 Microsoft won the ILSVRC using a
deep neural network with 100 layers.

● By the end of the ILSVRC in 2017, the
best entrants were seeing accuracies of
over 95% (error rate < 5%).

21

Residual Blocks

● Residual blocks were introduced in
ResNet:

– For really deep networks, it’s hard for the
error signal to propagate backwards
through many layers.

– Solution: add shortcut connections, e.g.,
from layer i to layer i+2, so that error
can back-propagate more quickly.

– A residual block contains hidden layers
with a shortcut connection.

22

ResNet Architecture

Images from https://towardsdatascience.com/an-overview-of-resnet-and-its-variants-5281e2f56035

A Residual Block

https://towardsdatascience.com/an-overview-of-resnet-and-its-variants-5281e2f56035

23

Mobile Implementations

● People want to implement computer
vision on mobile phones. Networks must
be reduced in size.

● Various architectures explore ways to
reduce the size of the network and the
number of multiply-add operations.

– Separable convolutions
– Bottlenecks

● Examples: MobileNet, SqueezeNet

24

Separable Convolutions
3x3 kernel covering 6 channels

3x3x6 = 54 weights

One 3x3 kernel applied
to all 6 channels
(depthwise convolution)

Linear weighted
combination of the 6
results (pointwise
convolution)

3x3 + 6 = 15 weights

Image modified from
https://www.sciencedirect.com/science/article/pii/S0168169918318696

https://www.sciencedirect.com/science/article/pii/S0168169918318696

25

Bottlenecks with Residuals

MobileNet:
residual
bottleneck

MobileNetV2:
inverted residual
bottleneck

Images from https://towardsdatascience.com/mobilenetv2-inverted-residuals-and-linear-bottlenecks-8a4362f4ffd5

wide widenarrow narrow

narrow narrowwide wide

“Wide” layers have many channels.
”Narrow” layers have few channels.

Depthwise convolution applies the
same 3x3 kernel to all channels.

https://towardsdatascience.com/mobilenetv2-inverted-residuals-and-linear-bottlenecks-8a4362f4ffd5

26

27

PyTorch Vision Models

● PyTorch contains several pre-trained
object recognition models, including
AlexNet, ResNet, Inception, VGG, and
MobileNetV2.

● Look in torchvision.models for a list.

● Models are trained on the ImageNet
dataset.

28

MobileNetV2 on VEX AIM

● See the course’s demos folder.

● Uses pre-trained MobileNetV2 model from
torchvision.models.

● Feeds a 224x224 camera image into the
network and reports the top 5 labels.

29

Transfer Learning
● How can we quickly train a visual

classifier for a new object class?

● Use the last hidden layer of a pre-trained
ImageNet classifier as a feature vector.

● Train a classifier on the new categories
using just 1-2 layers of trainable weights,
or just use k-nearest neighbor.

● This is how Teachable Machine works.

30

my_class1

my_class2

my_class3

31

Teachable Machine

https://teachablemachine.withgoogle.com

https://teachablemachine.withgoogle.com/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

