15-494/694: Cognitive Robotics

Lecture 14:
ImageNet and Transfer

Learning

Dave Touretzky

'ﬂrl.]r{wr X ’{:‘G\.‘
Cay, G
% Iy, Tech oy \0SP
Ay Electronics COMPUTING
{@* SCIENCE Robots R“"ﬂh

&y
i *¥e Information

In Futuristic Mk
hnv CHIMERY
at 7 O
iop, {;?y -"quq &
YA & S ~
£ &
.::'J %Q'?‘ O(,;
F A

% \
‘l.'l
&
%
{‘\.
,
Connectivity

Image from http://www.futuristgerd.com/2015/09/10

http://www.futuristgerd.com/2015/09/10

Training With Pytorch

Components needed to train a classifier:

e Model:

- Specify the input and output size
- Define the layers and connections
- Perform forward propagation

 Dataset loader: provides the training data
* Loss criterion: how we measure error
* Optimizer: updates the model parameters

MNIST3 Model Is A CNN

0
\ 1
| al fully 2
a8 connected
= weight matrix | 3
(32%14%14+1)
i x 10
- 5
i 6
7
2 X 2 max\ 3
oolin
%kernels 5x5 pixels P J)
stride 1 32 image maps Cross-
28 x 28 image padding 2 14 x 14 entropy
ReLU nonlinearity loss
image maps 28 x 28 function

batch normalization

parameters = 63,626

How many connections? Accuracy on training set: 98.3%

Defining the Model mnist3

class OneConvLayer(nn.Module):

def 1init (self, in dim, out dim, nkernels):
super(OneConvLayer, self). 1init ()
self.networkl = nn.Sequential(
nn.Conv2d(in channels=1,
out channels=nkernels,
Kernel size=5,
stride=1,
padding=2),
nn.BatchNorm2d(nkernels),
nn.ReLU(),
nn.MaxPool2d(kernel size=2)
)
self.network2 = nn.Linear(nkernels*14*14,
out dim)

Defining mnist3 (cont.)

def forward(self, Xx):

out = self.networkl(x)

out = out.view(out.size(Q), -1)
out = self.network2(out)

return out

model = OneConvLayer(28*28, 10, 32)

Automatic Differentiation

 Each layer of the model (Conv2D, RelU,
MaxPool, Linear) knows how to calculate
Iits own derivative.

 When the layer produces its output (a
tensor), the tensor is given attributes that
allow backpropagation of the gradient.

- This Is another way that tensors differ
from ordinary numpy arrays.

Dataset Loader

 Reads in training data from a file

* Supplies data in chunks according to the
batch size we specify

 Shuffles the data If asked to do so

trainset = torchvision.datasets.MNIST(
root="'./mnist_data’,
download = True,
transform = transforms.ToTensor())

trainloader = torch.utils.data.DatalLoader(
dataset = trainset,
batch size = batchSize,
shuffle = True)

L oss Functions

How do we measure error?
« Mean Square Error: nn.MSELosSs

_ L p__ ., P\2
E = 2P2p:(d y")
* Cross-Entropy: nn.CrossEntropylLoss
E =) —d"log(y")—(1-d")log(1-y")
p

e Lots of other choices.

criterion = nn.CrossEntropyLoss()

Optimizers

* Once we've measured the error gradient,
what do we do about it?

* An optimizer adjusts the weights based
on the gradient and various parameters:
learning rate, momentum, etc.

* Lots of choices: SGD, ADAM, etc.

optimizer = torch.optim.SGD(model.parameters(), Ir=0.005)

Training the Model

for epoch in range(nepochs):
for (images,labels) in trainloader:
images = images.view(-1, 28*28).to(device)
labels = labels.to(device) \
outputs = model(images)
optimizer.zero _grad()
loss = criterion(outputs, labels)

loss.backward()

optimizer.step()

Move
data to
GPU

Object Recognition

Object Recognition Challenge

« Computer vision researchers use
challenge events to measure progress in
the state of the art.

« PASCAL VOC (Visual Object Classes)
Challenge:

- Ran from 2005 to 2012

- 2005 version had 4 categories (bicycles,
motorcycles, people, cars) and 1,578
training images

- 2012 version had 20 categories and 5,717
training images

12

ImageNet

* Created by Fei-Fel Li at Stanford.
« See www.image-net.org

* 15 million labeled images, 22,000
cateqgories

* ILSVRC: ImageNet Large Scale Visual
Recognition Challenge: 2009-2017

- 1000 categories, including 118 dog breeds
- 1.2 million training images

13

http://www.image-net.org/

AlexNet

e The winners of the 2012 ILSVRC:

- Alex Krizhevsky, llya Sutskever, and
Geoffrey Hinton

- Deep convolutional neural net (DCNN)
called AlexNet

- Trained using two GPU boards
- Introduced RelLU in place of tanh
- Used “dropout” to reduce overfitting

- Error rate of 15.3% was 10% better than
the runner-up

- Put deep neural nets on the map

14

Dropout in AlexNet

* For each training step, disable 50% of the
neurons for both the forward and
backward pass.

 Reduces overfitting.

Figure from
https://medium.com/coinmonks/paper-
review-of-alexnet-caffenet-winner-in-
ilsvrc-2012-image-classification-
b93598314160

(a) Standard Neural Net (b) After applying dropout.
15

Data Augmentation in AlexNet

 Take random 224x224 crops of a
256x256 image, plus their horizontal
reflections. Increases training set size by
a factor of 32°x2 = 2048.

« Add random factors to RGB values to
simulate variations in lighting.

* These steps help the network generalize
better.

16

11
224 14
11 WL
224 Strid
Lof4

55

AlexNet Architecture

27
13 13 13 \
I . -k
o — R L FE R 13 >
27 3 ‘: 13 5
sy W ||
192 192 128 2048
27 128) — 2048
X \ 13
3 = 1000
A 3[’ 13 o »| |Dense
T 27 ERY Pt Dense| |Dense
3
128 —
128 192 132 Max »0a8
Poolin
Max Max g
Pooling Pooling

Local Response
Mormalization

Local Response
Mormalization

All hidden layers were split in two and trained on different GPU
boards due to GPU memory limitations.

17

AlexNet Layer 1 Kernels

AlexNet's 96 11x11 layer 1
kernels.

First 48 trained on GPU 1 look for
edges.

Second 48 trained on GPU 2 look
for color.

This separation is a natural
consequence of the
normalization terms in the early
layers.

Visualizations of filters

18

Generic Object Recognition CNN

}" Phira
-
gy
=
- e
o
— "] e % o ~0
c Mo
| o ~o Pasg
] o o
-] [+]
o o F» p
o o eat
. . [+] o
convolution + max pooling vec |4 \:
nonlinearity | o
| |
convolution + pooling layers fully connected layers Nx binary classification

https://adeshpande3.github.io/A-Beginner%27s-Guide-To-Understanding-Convolutional-Neural-Networks/

19

https://adeshpande3.github.io/A-Beginner%27s-Guide-To-Understanding-Convolutional-Neural-Networks/

After AlexNet

* AlexNet had 8 layers: 5 convolutional and
3 fully connected.

* In 2015 Microsoft won the ILSVRC using a
deep neural network with 100 layers.

* By the end of the ILSVRC in 2017, the
best entrants were seeing accuracies of
over 95% (error rate < 5%).

20

Residual Blocks

 Residual blocks were introduced In
ResNet:

- For really deep networks, it's hard for the
error signal to propagate backwards
through many layers.

- Solution: add shortcut connections, e.q.,
from layer i to layer i+2, so that error
can back-propagate more quickly.

- A residual block contains hidden layers
with a shortcut connection.

21

ResNet Architecture

weight layer
]—'(x) l relu
weight layer

identity

A Residual Block

Images from https://towardsdatascience.com/an-overview-of-resnet-and-its-variants-5281e2f56035

22

https://towardsdatascience.com/an-overview-of-resnet-and-its-variants-5281e2f56035

Mobile Implementations

* People want to implement computer
vision on mobile phones. Networks must
be reduced in size.

* Various architectures explore ways to
reduce the size of the network and the
number of multiply-add operations.

- Separable convolutions
- Bottlenecks

 Examples: MobileNet, SqueezeNet

23

Separable Convolutions

i

g

(a) Conventional Convolutional Neural Network

&ﬂ/

e

Depthwise Convolu-

; Pomtwise Comvolution
tion

(b) Depthwise Separable Convolutional Neural Network

Image modified from
https://www.sciencedirect.com/science/article/pii/S0168169918318696

3x3 kernel covering 6 channels

3x3x6 = 54 weights

One 3x3 kernel applied
to all 6 channels
(depthwise convolution)

Linear weighted
combination of the 6
results (pointwise
convolution)

3x3 + 6 = 15 weights

24

https://www.sciencedirect.com/science/article/pii/S0168169918318696

Bottlenecks with Residuals

wide narrow narrow wide
MobileNet:
residual
u . I bottleneck
“Wide” layers have many channels.
/ "Narrow” layers have few channels.
|
narrow wide wide narrow __
MobileNetV?2:
inverted residual
bottleneck

lu6, Dwise

Depthwise convolution applies the
same 3x3 kernel to all channels.

Images from https://towardsdatascience.com/mobilenetv2-inverted-residuals-and-linear-bottlenecks-8a4362f4ffd5

25

https://towardsdatascience.com/mobilenetv2-inverted-residuals-and-linear-bottlenecks-8a4362f4ffd5

IBottleneck Layer

I
I
| [
I |
: :
: Convolution 2D |
|
| v | 1x1 Expansion Layer
I Bottleneck : v
I v : Normalization Layer
I Bottleneck | e
| .
| L 4 I Activation ReLU 6
: Bottleneck I v
| ¥ I 3x3 Depthwise
| I convolution
| Bottleneck | -
I v : Normalization Layer
I Bottleneck I ¥
| v | Activation ReLU 6
| I
Bottleneck
! | v
I v I 1x1 Projection Layer
| I
: Bottleneck I v
| v : Activation RelLU 6
: Convolution 2D 1x1 |
|
I v |
: Average Pooling 7x7 :
: ; '
I
| Convolution 2D 1x1 |
I
I
I
I

26

PyTorch Vision Models

 PyTorch contains several pre-trained
object recognition models, including
AlexNet, ResNet, Inception, VGG, and
MobileNetV2.

 Look In torchvision.models for a list.

 Models are trained on the ImageNet
dataset.

27

MobileNetV2 on VEX AIM

e See the course’s demos folder.

» Uses pre-trained MobileNetV2 model from
torchvision.models.

* Feeds a 224x224 camera image into the
network and reports the top 5 labels.

28

Transfer Learning

« How can we quickly train a visual
classifier for a new object class?

* Use the last hidden layer of a pre-trained
ImageNet classifier as a feature vector.

* Train a classifier on the new categories
using just 1-2 layers of trainable weights,
or just use k-nearest neighbor.

 This iIs how Teachable Machine works.

29

0

ety

o

-l

Lo

=] =0

— pc1 oA e N

1 o o

1 o o

o o

o o

o o

. . o o

convolution + max pooling vec | o \c;
nonlinearity | o

|
convolution + pooling layers fully connected layers @'nary classification

o O
ZLI_I DY O ’ my classl
—o —
~ O
P o —~0
i = ° o . my_class2
- N @ -
) L\ @
=] o
° o ‘ my class3
;@ -
convolution + max pooling vec | o \E .
| nonlinearity | | o | | b |
| — @
convolution + pooling layers fully connected laye

30

Teachable Machine

https://teachablemachine.withgoogle.com

.o 30 Image Samples

‘]

@ & Youlube I3

31

https://teachablemachine.withgoogle.com/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

