15-494/694: Cognitive Robotics

Lecture 15:

Machine learning with
scikit-learn

Dave Touretzky
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Machine Learning

« ML is a branch of Artificial Intelligence.

« “Learning” does not mean human-like
learning.

* It means extracting information from
data. This has many uses in robotics.

« Types of learning algorithm:

- Supervised (labeled data)
- Unsupervised (unlabeled data)
- Reinforcement



Supervised Learning

 For each training point, there is a desired
output value.

e Error measure: difference between actual
output and desired output.

- Example: sum-squared error

E = Z (di_yi)z

e Learning adjusts the model parameters to
reduce the error.
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Unsupervised Learning

« Data points are unlabeled: there is no
“correct” answer.

* Learning discovers structure in the data.

« Examples:
- Clustering: finding categories.

- Dimensionality reduction: finding key
features and relationships between
features. Useful for data compression.



Reinforcement Learning

« Model is trained via a reinforcement
signal that tells it how well it Iis doing.

« We don't tell it the right answer, just
reward it when it does well.

 Example:

- Learning to play a game by reinforcing
wins. Program can learn by playing
against itself.



Supervised Learning:
Classification

* Desired outputs are binary.

« Examples:
- Tell “spam” from “not spam”.

- Distinguish images containing cats from
those without cats.

- Recognize handwritten digits 0-9.



Supervised Learning:
Regression

« Desired outputs are continuous, possibly
vectors.

« Examples:
- Predict stock prices.

— Calculate inverse kinematics solutions for
a hon-linear robot.



Parametric vs. Non-Parametric
Models

 Parametric models describe data using
equations with a small number of
parameters.

- Example: Gaussian distribution.
- Parameters are mean p and variance o

* Pros: compact representation; easy to
test new data points.

 Cons: what if your data doesn't fit the
equation?



Parametric vs. Non-Parametric
Models

 Non-parametric models don't make any
assumptions about the distribution of the
data. The data represents itself.

* Pros: “training” Is instantaneous. Can
represent arbitrary distributions.

« Cons: can take a lot of memory to store
all the data, and classifying new points
can be slow.



Nearest-Neighbor Classifier

 Simplest non-parametric classifier.

* Noisy data can be a problem.
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k-Nearest-Neighbor

 Still a non-parametric classifier.

« Majority vote to find the correct class.
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Gaussian Mixture Model

e Parametric model: Gaussian distributions.

—(x—un)”

2

p(x | u,0) = e ©

How do we
find the
correct
values of
the
parameters?

Learning
algorithm!
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scikit-learn

 Open source collection of machine
learning algorithms implemented In
Python.

 Documentation at scikit-learn.org

» Installed on the lab machines:
import sklearn
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Sample Learning Problem:
Color Classes

« Assume objects come in a small number
of colors.

« We want to know what the colors are.
- This Is a clustering problem.

 Given a new object, we want to determine
its color class.

- This is a classification problem.
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Training Data: RGB Values
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Feature Space

 Three-dimensional feature space: RGB.

« 320 x 240 = 76,800 data points per
Image.

e Let's assume that each color class can be
modeled as a gaussian distribution:

- Mean color u
- Covariance matrix X
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Expectation-Maximization
Algorithm

« Unsupervised learning algorithm for
finding clusters in data.

* Learns the yu and X parameters for a set of
gaussians.

* You must guess the number of classes.

 Runs quickly but can get stuck in local
minima.
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E-M Clustering

18



E-M Algorithm

« Expectation step:

- For each point x, for each gaussian (u,X),

calculate the likelihood of x having been
generated by the /-th gaussian: P(x]|u,X.).

 Maximization step:

- For each gaussian, recalculate its mean
and covariance p,X based on the

likelihood-weighted data points.

 Repeat for several iterations. o



E-M In scikit-learn

gmm = GaussianMixture(n components=7)
gmm.fit (data)
means = gmm.means

covariances = gmm.covariances_

classes = gmm.predict(new data)
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Color Classification:
Visualizing the Result

« Each color class is modeled as an
ellipsoid in 3D space (RGB space).

e Too hard to plot. So instead:

- Generate R-vs-G and B-vs-G plots.

- Draw the ellipses in feature space
determined by the covariance values.
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Scatter Plots With
Gaussian Ellipses
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Classification

« Once we've learned the color classes, we
can assign a class to each pixel.

- This gives us a color-quantized image.

e Can then use these color classes to
classify new images the same way.
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Classified Image
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Refinements

« Can detect local minima by checking the
density of points near the mean of the
gaussian.

« Split/merge EM can reallocate gaussians if
some are being wasted and others are
spread between two clusters.

« BayesianGaussianMixture class In
scikit-learn can infer the number of
effective components.
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