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Machine Learning

● ML is a branch of Artificial Intelligence.
● “Learning” does not mean human-like 

learning.
● It means extracting information from 

data. This has many uses in robotics.
● Types of learning algorithm:

– Supervised (labeled data)
– Unsupervised (unlabeled data)
– Reinforcement
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Supervised Learning

● For each training point, there is a desired 
output value.

● Error measure: difference between actual 
output and desired output.

– Example: sum-squared error

● Learning adjusts the model parameters to 
reduce the error.

E = ∑ (d i− y i)
2
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Unsupervised Learning

● Data points are unlabeled: there is no 
“correct” answer.

● Learning discovers structure in the data.

● Examples:
– Clustering: finding categories.
– Dimensionality reduction: finding key 

features and relationships between 
features. Useful for data compression.
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Reinforcement Learning

● Model is trained via a reinforcement 
signal that tells it how well it is doing.

● We don't tell it the right answer, just 
reward it when it does well.

● Example:
– Learning to play a game by reinforcing 

wins. Program can learn by playing 
against itself.



6

Supervised Learning: 
Classification

● Desired outputs are binary.
● Examples:

– Tell “spam” from “not spam”.

– Distinguish images containing cats from 
those without cats.

– Recognize handwritten digits 0-9.
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Supervised Learning: 
Regression

● Desired outputs are continuous, possibly 
vectors.

● Examples:
– Predict stock prices.

– Calculate inverse kinematics solutions for 
a non-linear robot.
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Parametric vs. Non-Parametric 
Models

● Parametric models describe data using 
equations with a small number of 
parameters.

– Example: Gaussian distribution.

– Parameters are mean  and variance 
● Pros: compact representation; easy to 

test new data points.
● Cons: what if your data doesn't fit the 

equation?
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Parametric vs. Non-Parametric 
Models

● Non-parametric models don't make any 
assumptions about the distribution of the 
data. The data represents itself.

● Pros: “training” is instantaneous. Can 
represent arbitrary distributions.

● Cons: can take a lot of memory to store 
all the data, and classifying new points 
can be slow.
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Nearest-Neighbor Classifier

● Simplest non-parametric classifier.
● Noisy data can be a problem.

Will get
this one
wrong.

o
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k-Nearest-Neighbor

● Still a non-parametric classifier.
● Majority vote to find the correct class.

Majority
vote:

“blue”

o
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Gaussian Mixture Model

● Parametric model: Gaussian distributions.

o

p (x | μ ,σ) = e
−(x−μ)

2

σ
2

How do we 
find the 
correct 
values of 
the 
parameters?

Learning 
algorithm!
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scikit-learn

● Open source collection of machine 
learning algorithms implemented in 
Python.

● Documentation at scikit-learn.org

● Installed on the lab machines:
import sklearn
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Sample Learning Problem:
Color Classes

● Assume objects come in a small number 
of colors.

● We want to know what the colors are.
– This is a clustering problem.

● Given a new object, we want to determine 
its color class.

– This is a classification problem.
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Training Data: RGB Values
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Feature Space

● Three-dimensional feature space: RGB.

● 320 x 240 = 76,800 data points per 
image.

● Let's assume that each color class can be 
modeled as a gaussian distribution:

– Mean color 
– Covariance matrix 
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Expectation-Maximization 
Algorithm

● Unsupervised learning algorithm for 
finding clusters in data.

● Learns the  and  parameters for a set of 
gaussians.

● You must guess the number of classes.

● Runs quickly but can get stuck in local 
minima.
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E-M Clustering
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E-M Algorithm

● Expectation step:

– For each point x, for each gaussian (i,i), 
calculate the likelihood of x having been 
generated by the i-th gaussian: P(x|i,i).

● Maximization step:
– For each gaussian, recalculate its mean 

and covariance i,i based on the 
likelihood-weighted data points.

● Repeat for several iterations.
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E-M in scikit-learn

gmm = GaussianMixture(n_components=7)

gmm.fit(data)

means = gmm.means_

covariances = gmm.covariances_

classes = gmm.predict(new_data)
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Color Classification:
Visualizing the Result

● Each color class is modeled as an 
ellipsoid in 3D space (RGB space).

● Too hard to plot. So instead:
– Generate R-vs-G and B-vs-G plots.
– Draw the ellipses in feature space 

determined by the covariance values.
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Scatter Plots With
Gaussian Ellipses

Red 
vs. 
Green

Blue 
vs. 
Green
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Classification

● Once we've learned the color classes, we 
can assign a class to each pixel.

– This gives us a color-quantized image.

● Can then use these color classes to 
classify new images the same way.
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Classified Image
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Refinements

● Can detect local minima by checking the 
density of points near the mean of the 
gaussian.

● Split/merge EM can reallocate gaussians if 
some are being wasted and others are 
spread between two clusters.

● BayesianGaussianMixture class in
scikit-learn can infer the number of 
effective components.
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