15-494/694: Cognitive Robotics

Dave Touretzky

-y, °
ﬂﬂ’?lrf : ,a.:ﬂﬂ

Ty W
fech oy 0P

o *“Eﬂs
{\ Electronics COMPUTING

{@- SCIENCE Robots R“ﬂnh

Lecture 7:
T &8y,
PIRR *e Information
The WOFld Map I'nllo FUtUHSth‘ MACHINERY
Yatiq o Vip o
oﬁ. v A QE? ?_@-
&

Vo
Xy
&
Py
'?0

Connectivity

Image from http://www.futuristgerd.com/2015/09/10

http://www.futuristgerd.com/2015/09/10

Outline

« Why have a world map?

 What's in Cozmo's world map?
 Cozmo localization

 Object pose: quaternions

« Designing our own world map
« Obstacle detection

Why Have A World Map?

 Represent objects available to the robot.
 Landmarks to be used for localization.

* Obstacle avoidance during path planning.

What's in Cozmo's World Map?

« Cozmo himself
* The light cubes, once seen

 The charger, once sensed or seen
 Faces that have been detected
« User-defined obstacles (rectangles)

world viewer Shows The Map

Light Cube Markers

“Paperclip” 1:
“Anglepoise Lamp” 2:@
- @@gaum

The Charger

e Talks to Cozmo via BTLE (same as cubes)
« Base frame is front lip; marker in back.
» robot.is on _charger is True or False

A\

A
L/’
"

ﬁ

— —— 7_"ﬁ\'
R e
)

Origin ID

 The robot's origin_id starts at 1.

 Every time Cozmo is picked up and put
down, he may get a new origin_id value.

 Landmarks can pull him back to an old id.
» Object origin_id's start at -1 (invalid).

 Every time the robot sees an object, that
object's origin_id is updated to match the
robot's.

 Object poses are only valid if their
origin_id matches the robot's.

Cozmo's Localization

e The cubes serve as visual landmarks that
contribute to Cozmo's localization.

 The charger also contributes, if Cozmo
has seen the marker.

« When Cozmo is on the charger, he knows
exactly where he is.

 If a cube changes position, did the cube
move, or did Cozmo move?

- Cozmo knows when he has moved.

Object Pose

 The robot, cubes, and charger have a
pose attribute that is an instance of
cozmo.util.Pose.

e robot.pose.position is (X,y,z) coordinates.

e robot.pose.rotation is complicated:

- a guaternion gives the full 3D pose

- angle z gives the orientation about
the z-axis, which is usually all you care
about

10

Quaternions

« A quaternion g iIs a four-dimensional
complex number (w,x,y,z) or (q.,9,,9..9,)-

W IS a point on the real axis, and x,y,z are
points on the I,j,k Imaginary axes.

q=w+ x'i +yj+ zk
i-i = j-j = kk =1ijk=-1
-] = k jk = 1 K-i =]

jii = —k k-] = —I irk = —]

11

Quaternions and Rotations

The mathematical properties of
quaternions mirror those of 3D rotations:
multiplication is not commutative!

Image source: https://aha.betterexplained.com

12

Magnitude of a Quaternion

q=w+ x1+yj+ zk

lall = Vw'+x’+y*+2°

For pure rotations we want ||g||=1.

13

Quaternions as Poses

e Quaternions describe rotations in terms of
an axis of rotation and an angle 6.

 Think of a pose as a rotation from the
world reference frame (z up, x forward) to
the object's reference frame.

« We can also represent rotations using 4x4
transformation matrices.

« To compose rotations:

- Multiply the transformation matrices, or
- Multiply the quaternions

14

Simple Cases

 “No rotation”:
q = (1, 0,0, 0)

» Rotation by 6 about the z axis:
q = (cos#, 0,0, sin 0)

e General case:

- The magnitude of the rotation is sin 6.

- The direction of rotation is indicated by
distributing sin 6 among the i,j,k axes.

- Real w = cos 6 iIs a normalization term.

15

Our Planned World Map

 ArUco markers
« Walls (defined by ArUco markers)

« Robot position maintained by our particle
filter, not robot.pose

e Cubes and charger imported from their
SDK repesentations.

e Other object types, to be detected by
OpenCV code you will write.

16

Collision Detection

 Represent the robot and the obstacles as
convex polygons.

e In 2D, use the Separating Axis Theorem
to check for collisions.

- Easy to code
- Fast to compute

 In 3D, things get more complex.

- The GJK (Gilbert-Johnson-Keerthi)
algorithm iIs used in many physics
engines for video games.

17

Collision Detection: Circles

e Let d = distance between centers
. Let r,r, be the radii

« No collision ifd > r+r,

18

Collision Detection:
Circle and Convex Polygon

« Separating axes to check are the lines
joining the center of the circle to the
vertices of the polygon.

19

Collision Detection:
Two Convex Polygons

 The Separating Axis Theorem can be used
to detect collisions between two convex
polygons.

 Time is proportional to the number of
vertices.

« To handle non-convex polygons,
decompose them into sets of convex
polygons and check for collisions between
any two components.

20

Separating Axis Theorem

Separating
axis

“If two convex polygons
don't overlap, then there
exists a line, parallel to
one of their edges that
separates them.”

21

Separating Axis Theorem

Interval/
overlap length

ina

22

Collision Detection Algorithm

We only need to find one separating axis to
be assured of no collision.

def collision check(polyl,poly2):

for axis 1n Edges(polyl) U Edges(poly2):
base = pependicular to(axis)
projl = project verts(polyl, base)
proj2 = project verts(poly2, base)
1f not overlap(projl,proj2):

return False
return True

23

How To Build A World Map

« SLAM: Simultaneous Localization and
Mapping algorithm.

« Each particle stores:

- a hypothesis about the robot's location

- a hypothesis about the map, e.q., a set of
landmark identities and locations.

e Particles score well If:

- Landmark locations match the sensor
values predicted by the robot's location.

- Both the robot location and the landmark
locations are jittered during resampling.

24

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

