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Outline

● Why have a world map?
● What's in Cozmo's world map?
● Cozmo localization
● Object pose: quaternions
● Designing our own world map
● Obstacle detection
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Why Have A World Map?

● Represent objects available to the robot.

● Landmarks to be used for localization.

● Obstacle avoidance during path planning.
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What's in Cozmo's World Map?

● Cozmo himself
● The light cubes, once seen
● The charger, once sensed or seen
● Faces that have been detected
● User-defined obstacles (rectangles)
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world_viewer Shows The Map
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Light Cube Markers
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The Charger

● Talks to Cozmo via BTLE (same as cubes)
● Base frame is front lip; marker in back.
● robot.is_on_charger is True or False
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Origin ID
● The robot's origin_id starts at 1.
● Every time Cozmo is picked up and put 

down, he may get a new origin_id value.
● Landmarks can pull him back to an old id.
● Object origin_id's start at -1 (invalid).
● Every time the robot sees an object, that 

object's origin_id is updated to match the 
robot's.

● Object poses are only valid if their 
origin_id matches the robot's.
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Cozmo's Localization

● The cubes serve as visual landmarks that 
contribute to Cozmo's localization.

● The charger also contributes, if Cozmo 
has seen the marker.

● When Cozmo is on the charger, he knows 
exactly where he is.

● If a cube changes position, did the cube 
move, or did Cozmo move?

– Cozmo knows when he has moved.
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Object Pose

● The robot, cubes, and charger have a 
pose attribute that is an instance of 
cozmo.util.Pose.

● robot.pose.position is (x,y,z) coordinates.
● robot.pose.rotation is complicated:

– a quaternion gives the full 3D pose
– angle_z gives the orientation about 

the z-axis, which is usually all you care 
about
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Quaternions
● A quaternion q is a four-dimensional 

complex number (w,x,y,z) or (q
0
,q

1
,q

2
,q

3
).

● w is a point on the real axis, and x,y,z are 
points on the i,j,k imaginary axes.

q = w + x⋅i + y⋅j + z⋅k

i⋅i = j⋅j = k⋅k = i⋅j⋅k = −1

i⋅j = k j⋅k = i k⋅i = j

j⋅i = −k k⋅j = −i i⋅k = − j
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Quaternions and Rotations

The  mathematical properties of 
quaternions mirror those of 3D rotations: 
multiplication is not commutative!

Image source:   https://aha.betterexplained.com



13

Magnitude of a Quaternion

q = w + x⋅i + y⋅j + z⋅k

‖q‖ = √w2+x2+ y2+ z2

For pure rotations we want ‖q‖=1.
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Quaternions as Poses

● Quaternions describe rotations in terms of 
an axis of rotation and an angle .

● Think of a pose as a rotation from the 
world reference frame (z up, x forward) to 
the object's reference frame.

● We can also represent rotations using 4x4 
transformation matrices.

● To compose rotations:
– Multiply the transformation matrices, or
– Multiply the quaternions
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Simple Cases
● “No rotation”: 

q  =  (1, 0, 0, 0)

● Rotation by  about the z axis:

q  =  (cos , 0, 0, sin )

● General case:
– The magnitude of the rotation is sin 
– The direction of rotation is indicated by 

distributing sin  among the i,j,k axes.

– Real w = cos  is a normalization term.
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Our Planned World Map

● ArUco markers
● Walls (defined by ArUco markers)
● Robot position maintained by our particle 

filter, not robot.pose
● Cubes and charger imported from their 

SDK repesentations.
● Other object types, to be detected by 

OpenCV code you will write.



17

Collision Detection

● Represent the robot and the obstacles as 
convex polygons.

● In 2D, use the Separating Axis Theorem 
to check for collisions.

– Easy to code
– Fast to compute

● In 3D, things get more complex.
– The GJK (Gilbert-Johnson-Keerthi) 

algorithm is used in many physics 
engines for video games.
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Collision Detection: Circles

● Let d = distance between centers

● Let r
1
, r

2
 be the radii

● No collision if d > r
1
+r

2

r
1

r
2d
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Collision Detection:
Circle and Convex Polygon

● Separating axes to check are the lines 
joining the center of the circle to the 
vertices of the polygon.

r
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Collision Detection:
Two Convex Polygons

● The Separating Axis Theorem can be used 
to detect collisions between two convex 
polygons.

● Time is proportional to the number of 
vertices.

● To handle non-convex polygons, 
decompose them into sets of convex 
polygons and check for collisions between 
any two components.
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Separating Axis Theorem

“If two convex polygons 
don't overlap, then there 
exists a line, parallel to 
one of their edges that 
separates them.”
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Separating Axis Theorem
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Collision Detection Algorithm

We only need to find one separating axis to 
be assured of no collision.

def collision_check(poly1,poly2):
  for axis in Edges(poly1)  Edges(poly2):
     base = pependicular_to(axis)
     proj1 = project_verts(poly1, base)
     proj2 = project_verts(poly2, base)
     if not overlap(proj1,proj2):
        return False
  return True
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How To Build A World Map
● SLAM: Simultaneous Localization and 

Mapping algorithm.
● Each particle stores:

– a hypothesis about the robot's location
– a hypothesis about the map, e.g., a set of 

landmark identities and locations.

● Particles score well if:
– Landmark locations match the sensor 

values predicted by the robot's location.
– Both the robot location and the landmark 

locations are jittered during resampling.
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