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« Why have a world map?

 What's in Cozmo's world map?
 Cozmo localization

 Object pose: quaternions

« Designing our own world map
« Obstacle detection



Why Have A World Map?

 Represent objects available to the robot.
 Landmarks to be used for localization.

* Obstacle avoidance during path planning.



What's in Cozmo's World Map?

« Cozmo himself
* The light cubes, once seen

 The charger, once sensed or seen
 Faces that have been detected
« User-defined obstacles (rectangles)



world viewer Shows The Map




Light Cube Markers

“Paperclip” 1:
“Anglepoise Lamp” 2:@
- @@gaum




The Charger

e Talks to Cozmo via BTLE (same as cubes)
« Base frame is front lip; marker in back.
» robot.is on _charger is True or False
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Origin ID

 The robot's origin_id starts at 1.

 Every time Cozmo is picked up and put
down, he may get a new origin_id value.

 Landmarks can pull him back to an old id.
» Object origin_id's start at -1 (invalid).

 Every time the robot sees an object, that
object's origin_id is updated to match the
robot's.

 Object poses are only valid if their
origin_id matches the robot's.



Cozmo's Localization

e The cubes serve as visual landmarks that
contribute to Cozmo's localization.

 The charger also contributes, if Cozmo
has seen the marker.

« When Cozmo is on the charger, he knows
exactly where he is.

 If a cube changes position, did the cube
move, or did Cozmo move?

- Cozmo knows when he has moved.



Object Pose

 The robot, cubes, and charger have a
pose attribute that is an instance of
cozmo.util.Pose.

e robot.pose.position is (X,y,z) coordinates.

e robot.pose.rotation is complicated:

- a guaternion gives the full 3D pose

- angle z gives the orientation about
the z-axis, which is usually all you care
about
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Quaternions

« A quaternion g iIs a four-dimensional
complex number (w,x,y,z) or (q.,9,,9..9,)-

W IS a point on the real axis, and x,y,z are
points on the I,j,k Imaginary axes.

q=w+ x'i +yj+ zk
i-i = j-j = kk =1ijk=-1
-] = k jk = 1 K-i = ]

jii = —k k-] = —I irk = —]
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Quaternions and Rotations

The mathematical properties of
quaternions mirror those of 3D rotations:
multiplication is not commutative!

Image source: https://aha.betterexplained.com
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Magnitude of a Quaternion

q=w+ x1+yj+ zk

lall = Vw'+x’+y*+2°

For pure rotations we want ||g||=1.
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Quaternions as Poses

e Quaternions describe rotations in terms of
an axis of rotation and an angle 6.

 Think of a pose as a rotation from the
world reference frame (z up, x forward) to
the object's reference frame.

« We can also represent rotations using 4x4
transformation matrices.

« To compose rotations:

- Multiply the transformation matrices, or
- Multiply the quaternions
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Simple Cases

 “No rotation”:
q = (1, 0,0, 0)

» Rotation by 6 about the z axis:
q = (cos#, 0,0, sin 0)

e General case:

- The magnitude of the rotation is sin 6.

- The direction of rotation is indicated by
distributing sin 6 among the i,j,k axes.

- Real w = cos 6 iIs a normalization term.
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Our Planned World Map

 ArUco markers
« Walls (defined by ArUco markers)

« Robot position maintained by our particle
filter, not robot.pose

e Cubes and charger imported from their
SDK repesentations.

e Other object types, to be detected by
OpenCV code you will write.
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Collision Detection

 Represent the robot and the obstacles as
convex polygons.

e In 2D, use the Separating Axis Theorem
to check for collisions.

- Easy to code
- Fast to compute

 In 3D, things get more complex.

- The GJK (Gilbert-Johnson-Keerthi)
algorithm iIs used in many physics
engines for video games.
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Collision Detection: Circles

e Let d = distance between centers
. Let r,r, be the radii

« No collision ifd > r+r,
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Collision Detection:
Circle and Convex Polygon

« Separating axes to check are the lines
joining the center of the circle to the
vertices of the polygon.
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Collision Detection:
Two Convex Polygons

 The Separating Axis Theorem can be used
to detect collisions between two convex
polygons.

 Time is proportional to the number of
vertices.

« To handle non-convex polygons,
decompose them into sets of convex
polygons and check for collisions between
any two components.
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Separating Axis Theorem

Separating
axis

“If two convex polygons
don't overlap, then there
exists a line, parallel to
one of their edges that
separates them.”
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Separating Axis Theorem

Interval/
overlap length

ina
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Collision Detection Algorithm

We only need to find one separating axis to
be assured of no collision.

def collision check(polyl,poly2):

for axis 1n Edges(polyl) U Edges(poly2):
base = pependicular to(axis)
projl = project verts(polyl, base)
proj2 = project verts(poly2, base)
1f not overlap(projl,proj2):

return False
return True
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How To Build A World Map

« SLAM: Simultaneous Localization and
Mapping algorithm.

« Each particle stores:

- a hypothesis about the robot's location

- a hypothesis about the map, e.q., a set of
landmark identities and locations.

e Particles score well If:

- Landmark locations match the sensor
values predicted by the robot's location.

- Both the robot location and the landmark
locations are jittered during resampling.
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