15-494/694: Cognitive Robotics

Lecture 9:

Path Planning with
Rapidly-exploring
Random Trees

Dave Touretzky

=X “'q . ‘ L1
a&f-‘\? W 'a"-‘g

% I Tech
(\0 E“* Electronics COMPUTING
{@r SCIENCE Robots Rﬂﬂuh

AR &B;
¢ Development e Information
In Futuristic MACHINERY
nuvaﬁnn .g?y Vig &
s TUq &
‘0'1" v 8 & ?“&L
b o o= o
o’ (__JQ?‘ CP

b, -
“\
<
&
%
f‘\.
o
Connectivity

% Future

Image from http://www.futuristgerd.com/2015/09/10

http://www.futuristgerd.com/2015/09/10

Outline

How is path planning used in robotics?
Path planning as state space search
RRTs: Rapidly-exploring Random Trees
The RRT-Connect algorithm

Collision detection

Smoothing

Path planning with constraints

Path Planning in Robotics

1. Navigation path planning

- How to get from the robot's current location to a goal.
- Avoid obstacles.

- Provide for localization.

2. Manipulation path planning

- Move an arm to grasp and manipulate an object.
- Avoid obstacles.
- Obey constraints (e.g., don't spill the coffee).

Navigation Planning

« 2D state space: (x,y) coordinates of the robot

- Treat the robot as a point or a circle.

-
= k Obstacle

inflation

« 3D state space: (x,y,0) pose of the robot

- Heading matters when the robot is asymmetric
- Heading matters when the robot's motion is constrained

Grid-Based Path Planning

* Discretizes the environment into a 2D grid.
« Can use best-first or A* search.

« Works okay in small spaces.

Figure from
http://www.gamasutra.com/blogs/MattKlingensmith/
20130907/199787/Overview_of _Motion_Planning.php

But it has its drawbacks:
« Treats the robot as a point. Unrealistic!

* Not efficient in higher dimensional state spaces.

Potential Field Path Planning

Hffrtractiun \

e Can fail due to local
minima in the
potential function.

» Consider a U-shaped
obstacle.

* Requires careful
tuning.

Figure from
http://www.gamasutra.com/blogs/MattKlingensmith/
20130907/199787/0Overview_of Motion_Planning.php

Cspace Transform

« The area around an obstacle that would cause a
collision with the robot.

RObOt\\RA

7

B

L.

x

Obstacle

Figure 4.4 - Mason, Mechanics Of Robotic Manipulation

Arm Path Planning

 Cspace transform blocks out regions of joint space

156 =

! e b

50 4\
2 0]
50 b ta .
1o
\ -150 :___::- ﬁ
1
150 100 -50 4] 50 100 150

Figure 4.5 - Mason, Mechanics Of Robotic Manipulation

1

State Space Search

The path planning problem:
Given an n-dimensional state space and

. a start state S=[sl,sz,...,sn]
. a goal state G=[g,,9.,...,9]

« an admissibility predicate P (collision test + constraints)

find a path from S to G such that every state on the path
satisfies P.

Best First or A* Search
Can Be Slow

« Can get trapped in a cul de sac for a long time.

e See search animation videos on YouTube.

« Random search might be faster.

10

Rapidly-exploring Random Trees

e Described in LaValle (1998), Kuffner & LaValle (2000)
e Create a tree with start state S as the root.

 Repeat up to K times:

Pick a point g ___in configuration space:

. . U{,:r“-ﬂ
- Sometimes q__ is really random VT
ran q) \ 'f qI'IF'I.'
- Sometimes q__ is the goal G 7 o
ran § — an-.anF‘.
-Findq__ ., the closest node to q_ \.

- Add a new node q__ by extendingq____ some

distance A toward q__ .

Image from
http://joonlecture.blogspot.com

-If g is close enough to the goal G, return. /2011/02/improving-optimality-
new

of-rrt-rrt.html

11

RRT Algorithm

Rapidly samples the state space.

Cannot get trapped in local & X
minima. A S

Works well in high-dimensional
spaces.
Does not generate smooth paths.

Can't tell when no solution exists; DS |
only quits when it exceeds the YRR 2
iteration limit K. ‘

http://msl.cs.uiuc.edu/rrt/treemovie.qif

12

http://msl.cs.uiuc.edu/rrt/treemovie.gif

RRTs for Arm Path Planning

« Each node encodes an
arm configuration in

joint space.

« Only add nodes that /3-
don't cause collisions r Start configuration

(with self or obstacles).

« Alternately (i) extend the
tree in random directions

and (ii) move toward the goal. {

rA

Slide courtesy of Glenn Nickens

13

Implementation Notes

- Finding q_ ., the nearest node in the treetoq__, is
the most expensive part of the algorithm.

- Use K-D trees to efficiently find q ?

nearest

- In practice, K-D trees are slower unless you have a huge
number of nodes (several thousand).

 Why only go a distance A toward the goal state G? Why
not go as far as we can, in steps of A?

- With no obstacles, this reaches the goal very quickly, but
random search will get there nearly as quickly as we
keep extending the nearest node to the goal.

- But when obstacles are present, this can waste time filling
out branches that will ultimately fail.

- Generating lots of extra nodes bloats the tree, which slows
down the algorithm.

14

RRT-Connect Algorithm

« Variant of RRT that grows two trees:

- one from the start state toward the goal
- one from the goal state toward the start Goal

« When the two trees
connect, a solution !
has been found.

 Not guaranteed to
be better than RRT, f

but often helps. i
Robot

15

RRTs in An Open Field

RRT-Connect For Arms

e Use IK to calculate the
goal configuration.

« Use FK to calculate
arm configurations for
collision detection.

End
configuration

Slide courtesy of Glenn Nickens

Start
configuration e

Collision Detection

Represent the robot and the obstacles as convex
polygons.

In 2D, use the Separating Axis Theorem to check for
collisions.

- Easy to code
- Fast to compute

In 3D, things get more complex.

- Tekkotsu uses the GJK (Gilbert-Johnson-Keerthi) algorithm,
used in many physics engines for video games.

18

Algorithm to Apply the SAT

 For every edge of polygon A and of polygon B:

- Project all the vertices onto the line normal to that edge.
- Calculate the min and max coordinates for each polygon

- |If minA < minB and maxA > minB OR
Iif mMinB < minA and maxB > minA
then the polygons collide.

« If you find any edge projection in which the ranges
don't overlap, the polygons do not collide.

19

Arm Collision Detection

 Represent each link as a separate polygon.
« Check for:

- Self-collisions other than link n with link n+1
- Collisions of a link with an obstacle

20

Path Smoothing

« The random component of RRT-Connect search often
results in a jerky and meandering solution.

« Solution: apply a path smoothing algorithm.
 Repeat N times:

- Pick two points on the path at random

- See If we can linearly interpolate between those points
without collisions.

- If so, then snip out that segment of the path.

21

Smoothing An Arm Trajectory

e Start state
 |Intermed. states
e End state

Slide courtesy of Glenn Nickens

Smoothed version u

22

Path Planning With Constraints

« With no closeable fingers, arm motion is constrained to
be within about 60° of finger direction or we'll lose the
object.

__ g — JP_& ;
: -u =
v
‘*‘. == (video)
g

a

http://www.youtube.com/watch?v=90DQ754YVoc

23

Implementing Constraints

. Each time we generate a new state q__ :

- Check to see if q_ _ obeys the constraint.

- For finger motion constraint, check if the direction of
motion from parent state q ____ to new state q__ is

within 60° of the finger direction.

- Whatif q doesn't obey the constraint?

- Reject it and pick a new q__ from which we'll generate a
new q

new

- Or try to “fix" q__ by perturbing its value slightly so as to
satisfy the constraint.

24

Path Planning Failure

RRT path planning can legitimately fail if:

 There is no route to the goal due to obstacles blocking
every path from start to goal.

 The paths to the goal don't lie entirely within the
allowed world bounds (world map too small).

But it can also fail if:
e The iteration limit was set too low.

 The start state is already in collision with something.

 The goal state is in collision with something.

25

Running Out of Iterations

Goal

A7 S Kk g
2 e
5)
2 {

: I'*.ﬁ
A 1

O =S
&
[
e
i

<
ji
-4
-
Q
O

26

Path Planning Failure:
Goal State Is In Collision

Clone
[1871,692]

Obstacle
inflation

Robot body

represented as
/a series of
polygons.
o=
O Py 7\
Goal

e
pose

Obstacle

Starting

) / pose

(-182,-524)

27

Full 3D Path Planning:
The Plano Movers Problem

PO _OMPL
ﬁl‘ﬁﬂ:h_m_- Planner Bounding box
Stan Pose
Position Rotation
X -496) ooo [3]
¥ 7057 (o) ooo [
z 4062 [3) 000 [
Goal Pose
Pasition Ratathon
X 20000 [3 oo [2]
¥ 2057 [oo [J
z 4062 [2) ooo [

i Salve 3 L Clear 3 ;_ Anirmate Speed: 1—8. ... -__:__-_.. .____..--.-...._...-

Figure from Open Motion Planning Library:

http://www.gamasutra.com/blogs/MattKlingensmith/ . :
20130907/199787/0verview_of Motion_Planning.php http //O m pl ' kavra kl Ia b .0 rg

28

	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

