
01/19/11 15-494 Cognitive Robotics 1

State Machines

15-494 Cognitive Robotics
David S. Touretzky &
Ethan Tira-Thompson

Carnegie Mellon
January 2011

01/19/11 15-494 Cognitive Robotics 2

Robot Control Architectures

● State machines are the simplest and most widely used
robot control architecture.

● Easy to implement; easy to understand.

● Not very powerful:

– Action sequences must be laid out in advance, as a series of
state nodes.

– No dynamic planning.

– Failure handling must be programmed explicitly.

● But a good place to start.

01/19/11 15-494 Cognitive Robotics 3

Basic Idea

● Robot moves from state to state.

● Each state has an associated action: speak, move, etc.

● Transitions triggered by sensory events or timers.

01/19/11 15-494 Cognitive Robotics 4

Tekkotsu State Nodes

● In Tekkotsu, state machine nodes are behaviors.

● StateNode is a child of BehaviorBase.

● To enter a state, call its start() method, which will call its
doStart() method if one has been supplied.

● To leave a state, call its stop() method.

● StateNodes can listen for and process events just like
any other behavior.

01/19/11 15-494 Cognitive Robotics 5

Types of State Nodes

BehaviorBase

SoundNode

● State nodes encapsulate complex actions, such as
creating and launching a motion command.

LogNode

VisualRoutinesStateNode

StateNode

MCNode<T>

MotionSequenceNode

WalkToTargetNode

LedNode

WalkEngineNode

TailWagNode

PostureNode

All of these
contain Motion
Commands

HeadPointerNode

ArmNode

SpeechNode

01/19/11 15-494 Cognitive Robotics 6

Transitions
● Transitions in Tekkotsu are also behaviors.

– Transition and StateNode are both subclasses of BehaviorBase.

● A transition's start() is called whenever its source state
node becomes active.

● Transitions listen for sensor, timer, or other events, and
when their conditions are met, they fire.

● When a transition fires, it deactivates its source node(s)
and then activates its destination node(s).

01/19/11 15-494 Cognitive Robotics 7

Look Turn

Reach

Wait

Transition firing activates state node Look.

01/19/11 15-494 Cognitive Robotics 8

Look Turn

Reach

Wait

Look's start() calls StateNode::start().

01/19/11 15-494 Cognitive Robotics 9

Look Turn

Reach

Wait

Outgoing transitions become active and begin
listening for events.

01/19/11 15-494 Cognitive Robotics 10

Look Turn

Reach

Wait

Random things happen....

Event EventEvent

01/19/11 15-494 Cognitive Robotics 11

Look Turn

Reach

Wait

And then, something we've been looking for...

Event EventEvent Event!

01/19/11 15-494 Cognitive Robotics 12

Look Turn

Reach

Wait

Transition decides to fire.

Event!

01/19/11 15-494 Cognitive Robotics 13

Look Turn

Reach

Wait

Transition deactivates the source node, Look.

Event!

01/19/11 15-494 Cognitive Robotics 14

Look Turn

Reach

Wait

Transition activates the destination node, Reach.

01/19/11 15-494 Cognitive Robotics 15

Look Turn

Reach

Wait

Transition deactivates.

01/19/11 15-494 Cognitive Robotics 16

Look Turn

Reach

Wait

Reach activates its outgoing transition, which
starts listening for events as Reach performs
whatever action it's supposed to.

01/19/11 15-494 Cognitive Robotics 17

Transition Types

RandomTrans

LostTargetTrans

SmoothCompareTrans<T>

01/19/11 15-494 Cognitive Robotics 18

State Machine Compiler

● Tekkotsu programmers don't normally write C++ code to
build state machines one node or link at a time.

● They use a shorthand notation instead.

● The shorthand is turned into C++ by a state machine
compiler.

● But to understand what
the shorthand is doing,
we need to build our first
state machine by hand.

01/19/11 15-494 Cognitive Robotics 19

Programs As State Machines

Your program is the parent StateNode:

#include “Behaviors/StateMachine.h”

class BarkHowlBlinkBehavior : public StateNode {

public:
 BarkHowlBlinkBehavior() :
 StateNode("BarkHowlBlinkBehavior") {}

01/19/11 15-494 Cognitive Robotics 20

Setup and Teardown
● Programs must include a setup() function to construct

the state machine as a child of the parent state node.

● setup() is called automatically the first time the parent's
start() is called.

● A teardown() function is automatically provided to
destroy the state machine. Called by ~StateNode().

01/19/11 15-494 Cognitive Robotics 21

Registering Nodes and Links

● Each node created by setup() must be registered with its
parent using the addNode() method.

SoundNode *bark_node = new SoundNode("bark","barkmed.wav");
addNode(bark_node);

● Transitions are registered with their source nodes via the
source node's addTransition() method.

bark_node->addTransition(new TimeOutTrans(howl_node,5000));

● The variable startnode must be set to point to
the starting node of the state machine.

01/19/11 15-494 Cognitive Robotics 22

Setup Example
virtual void setup() {

 SoundNode *bark_node = new SoundNode("bark","barkmed.wav");
 SoundNode *howl_node = new SoundNode("howl","howl.wav");
 StateNode *wait_node = new StateNode("wait");
 addNode(bark_node); addNode(howl_node); addNode(wait_node);

 EventTrans *btrans =
 new EventTrans(wait_node,

 EventBase::buttonEGID,
 ChiaraInfo::GreenButOffset,

 EventBase::activateETID);
 btrans->setSound("ping.wav");
 bark_node->addTransition(btrans);

 howl_node->addTransition(new CompletionTrans(wait_node));
 wait_node->addTransition(new TimeOutTrans(bark_node,15000));

 startnode = bark_node;
 }

01/19/11 15-494 Cognitive Robotics 23

Extensions to the Basic Formalism

● Extension 1: multi-states (parallelism).

– Several states can be active at once.

– Provides for parallel processing (but coroutines, not threads).

● Extension 2: hierarchical structure.

– State machines can nest inside other state machines.

● Extension 3: message passing.

– When a state posts an event that triggers a transition, it can
include a message that will be passed to the destination state.

– This makes state transitions resemble procedure calls.

01/19/11 15-494 Cognitive Robotics 24

Multi-State Machines

01/19/11 15-494 Cognitive Robotics 25

Blink Using LedEngine::cycle()
● Blink uses a motion command called LedMC, which is a

child of LedEngine.

● The LedEngine::cycle() method never completes.

● When the howl completes, we want to leave both the
howl state and the blink state.

● We can do this by telling CompletionTrans that only one
of its source nodes needs to signal a completion in order
for the transition to fire.

● When it does fire, it will deactivate both source nodes.

01/19/11 15-494 Cognitive Robotics 26

Setting Up the Blink

LedNode *blink_node = new LedNode(“blink”);
addNode(blink_node);
blink_node->getMC()->cycle(RobotInfo::AllLEDMask,1500,1.0);

TimeOutTrans *htrans = new TimeOutTrans(howl_node,5000);
htrans->addDestination(blink_node);
bark_node->addTransition(htrans);

CompletionTrans *ctrans = new CompletionTrans(wait_node,1);
howl_node->addTransition(ctrans);
blink_node->addTransition(ctrans);

htrans ctrans

01/19/11 15-494 Cognitive Robotics 27

Cleaning Up the Blink:
Turn The LEDs Off

LedNode *noblink = new LedNode(“noblink”);

noblink->getMC()->set(RobotInfo::AllLEDMask, 0.0);
noblink->setPriority(MotionManager::kBackgroundPriority);

StateNode *launcher = new Statenode(“launcher”);

NullTrans *ntrans = new NullTrans(bark_node);
ntrans->addDestination(noblink);

launcher->addTransition(ntrans);

startnode = launcher;

01/19/11 15-494 Cognitive Robotics 28

Shorthand Notation

bark: SoundNode($,”barkmed.wav”)

howl: SoundNode($,”howl.wav”)

wait: StateNode

bark =T(5000)=> howl

bark =B(RobotInfo::GreenButOffset)=> wait

01/19/11 15-494 Cognitive Robotics 29

Shorthand Notation
● Node definition:

nodename: NodeClass(constructor_args)[initializers]

● Transition, short form examples:

 source =C=> target
 source =T(n)=> target
 source =E(g,s,t)=> target

● Transition, long form:

source >== transname:
 TransitionClass(constructor_args)[initializers] ==> targetnode

● Multiple sources/targets:

source >==Transition==> {targ1name, targ2name, ...}

01/19/11 15-494 Cognitive Robotics 30

$ and $$
● Use $ to refer to the name of the current node, e.g., these

are equivalent:

foo: Statenode ---

foo: StateNode($) bar: SoundNode($,”howl.wav”)

foo: StateNode(“foo”) bar: SoundNode(“bar”,”howl.wav”)

● In long form, use $$ to refer to the destination node of a
transition, e.g., these are equivalent:

foo >==EventTrans($$,EventBase::buttonEGID)==> bar

foo >==EventTrans(bar,EventBase::buttonEGID)==> bar

Must be present
to allow second

 argument

01/19/11 15-494 Cognitive Robotics 31

More Shorthand
>==NullTrans==> =N=>

>==CompletionTrans==> =C=>

>==CompletionTrans($,$$,n)==> =C(n)=>

>==TimeoutTrans($,$$,t)==> =T(t)=>

>==EventTrans($,$$,g,s,t)==> =E(g,s,t)=>

>== EventTrans($,$$,
 EventBase::buttonEGID,s) ==> =B(s)=>

>== TextMsgTrans($,$$,str)==> =TM(str)=>

>==RandomTrans==> =RND=>

>==SignalTrans<T>($,$$) ==> =S<T>=>

>==SignalTrans<T>($,$$,v)==> =S<T>(v)=>

success or failure transitions =S=> or =F=>

01/19/11 15-494 Cognitive Robotics 32

virtual void setup() {
 $statemachine{
 startnode:StateNode =N=> {noblink, bark}

 noblink: LedNode [setPriority(MotionManager::kBackgroundPriority);
 getMC()->set(RobotInfo::FaceLEDMask,0.0)]

 bark: SoundNode($,"barkmed.wav")
 =B(GreenButOffset)[setSound("ping.wav")]=> wait

 wait: StateNode =T(15000)=> bark

 bark =T(5000)=> {howl, blink}

 howl: SoundNode($,"howl.wav")

 blink: LedNode [getMC()->cycle(RobotInfo::AllLEDMask, 1500, 1.0)]

 {howl, blink} =C(1)=> wait
 }

} // end of setup()

file: BarkHowlBlinkBehavior.cc.fsm

01/19/11 15-494 Cognitive Robotics 33

#include “Behaviors/StateMachine.h”

$nodeclass MyMachine : StateNode {

 $nodeclass Greet : StateNode : dostart {
 cout << “Hello there!” << endl;
 }

 $nodeclass Sendoff : StateNode : doStart {
 cout << “So long!” << endl;
 }

 $setupmachine{
 startnode: Greet =T(5000)=> Sendoff
 }

}

REGISTER_BEHAVIOR(MyMachine);

Defining New Node Classes

01/19/11 15-494 Cognitive Robotics 34

Compiling Your FSM

● The Makefile looks for files with names of form *.fsm and
automatically runs them through the state machine
compiler, called “stateparser”.

● BarkHowlBlinkBehavior.cc.fsm generates a pure C++ file
called BarkHowlBlinkBehavior-fsm.cc.

● The .cc file is stored in:
 ~/project/build/PLATFORM_LOCAL/TARGET_xxx/

● You can run the stateparser directly:

 Tekkotsu/tools/sbin/stateparser BarkHowlBlinkBehavior.cc.fsm –

01/19/11 15-494 Cognitive Robotics 35

State Machine Events
● Entering or leaving a state generates a

stateMachineEGID event.

– activateETID for entering

– deactivateETID for leaving

● Firing of a transition generates a stateTransitionEGID
event.

● SignalTrans looks for a stateSignalEGID event

● You can use the Tekkotsu Event Logger to monitor these
events:

 Root Control > Status Reports > Event Logger

01/19/11 15-494 Cognitive Robotics 36

Storyboard Tool:
State Machine
Layout

01/19/11 15-494 Cognitive Robotics 37

Storyboard Tool: Storyboard Display

01/19/11 15-494 Cognitive Robotics 38

Storyboard Tool: Snapshots

