
01/26/11 15-494 Cognitive Robotics 1

Shape Representations

15-494 Cognitive Robotics
David S. Touretzky &
Ethan Tira-Thompson

Carnegie Mellon
Spring 2011

01/26/11 15-494 Cognitive Robotics 2

Types of Shapes

● Basic:

– PointData, LineData, EllipseData

● Complex:

– PolygonData, BlobData, MarkerData

● 3-D:

– SphereData, BrickData

● Robot shape:

– AgentData

01/26/11 15-494 Cognitive Robotics 3

Shapes Live in a ShapeSpace

● SketchSpace and ShapeSpace are duals:

● We'll be using camSkS and camShS: the camera spaces.

SketchSpace ShapeSpace

Rendering

Extraction

01/26/11 15-494 Cognitive Robotics 4

SHAPEVEC and SHAPEROOTVEC
● Often we want to work with collections of shapes.

● A “SHAPEVEC” is a vector of shapes of a specific type:

 std::vector<Shape<BlobData> >

● A “SHAPEROOTVEC” is a vector of generic
shapes, useful when we mix shapes of different types:

 std::vector<ShapeRoot>

● There are macros for creating and iterating over these
vectors:

– NEW_SHAPEVEC, NEW_SHAPEROOTVEC

– SHAPEVEC_ITERATE, SHAPEROOTVEC_ITERATE

This space is
required

01/26/11 15-494 Cognitive Robotics 5

Vectors of Shapes

$nodeclass ShapeExample : VisualRoutinesStateNode : doStart {
 NEW_SKETCH(camFrame, uchar, sketchFromSeg());

 NEW_SHAPEVEC(blob_shapes, BlobData,
 BlobData::extractBlobs(camFrame,100));

 if (blob_shapes.size() > 0) {
 NEW_SKETCH(blob0, bool, blob_shapes[0]->getRendering());
 }

 SHAPEVEC_ITERATE(blob_shapes, BlobData, myblob)
 cout << "Id: " << myblob->getId()
 << " Color: " << myblob->getColor()
 << " Area: " << myblob->getArea()
 << endl;
 END_ITERATE;

}

01/26/11 15-494 Cognitive Robotics 6

Some Orange and Yellow Blobs

01/26/11 15-494 Cognitive Robotics 7

Extracted Blob Shapes

Inverted:
right click

Id: 10001 Color: [253,119,15] Area: 2351
Id: 10002 Color: [253,119,15] Area: 1256
Id: 10003 Color: [193,177,9] Area: 1378
Id: 10004 Color: [193,177,9] Area: 1065
Id: 10005 Color: [193,177,9] Area: 705

01/26/11 15-494 Cognitive Robotics 8

Line Shapes

● A line has two endpoints, which can be

– Valid or invalid (e.g., line runs out of the camera frame)

– Active or inactive

If both endpoints are inactive, line extends to infinity.

● Lines have several derived properties that are
maintained automatically:

– Length

– Orientation (0 to )

– Normal vector )




line

normal
vector

01/26/11 15-494 Cognitive Robotics 9

Extracting the Lines
$nodeclass LineExample : VisualRoutinesStateNode : doStart {
 NEW_SKETCH(camFrame, uchar, sketchFromSeg());

 NEW_SKETCH(pink_stuff, bool,
 visops::colormask(camFrame,"pink"));

 NEW_SHAPEVEC(lines, LineData,
 LineData::extractLines(pink_stuff));

}

01/26/11 15-494 Cognitive Robotics 10

Extracted Line Shapes

● “Select All Shapes” displays everything.

● “ID” checkbox displays shape IDs.

01/26/11 15-494 Cognitive Robotics 11

Line EndPoints
● Lines have two endpoints: end1Pt and end2Pt

● Order is arbitrary

● Extracting endpoints:

– end1Pt(), end2Pt() -- simple accessor functions

– leftPt(), rightPt() –- compare X coords.

– topPt(), bottomPt() –- compare Y coords.

● Orientation predicates:

– IsHorizontal –- true if slope is < 60 degrees

– IsVertical –- true if slope is > 30 degrees

– These thresholds are user-adjustable

01/26/11 15-494 Cognitive Robotics 12

Extracting the Leftmost Point

$nodeclass LineExample : VisualRoutinesStateNode : doStart {
 NEW_SKETCH(camFrame, uchar, sketchFromSeg());

 NEW_SKETCH(orange_stuff, bool,
 visops::colormask(camFrame,"orange"));

 NEW_SHAPE(line, LineData,
 LineData::extractLine(orange_stuff));

 NEW_SHAPE(leftpt, PointData, line->leftPtShape());

 leftpt->setColor(rgb(0,255,0));

}

01/26/11 15-494 Cognitive Robotics 13

Extracted Point Shape

● leftpt's parent is line

● line's parent is orange_stuff: a shape
whose parent is a sketch

01/26/11 15-494 Cognitive Robotics 14

Logical EndPoint Descriptions

● firstPt() –- if line is horizontal, returns leftPt(), else
returns topPt()

● secondPt() –- similar: returns rightPt() or bottomPt()

● How do we compare two lines? Example:

– Two lines are “close” if their first endpoints are close,
and their second endpoints are also close.

– But what about lines whose orientations
straddle the critical horizontal/vertical
threshold of 60 degrees?

● line1->firstPt(line2) –- returns first point of line2 based
on line1's decision about horizontal/vertical

first=left

first=top

01/26/11 15-494 Cognitive Robotics 15

Constructing New Lines

● Use a LineData(camShS, ...) constructor to make new
lines in camera space.

● Since we want to use smart pointers for shapes, the
result should be fed to a Shape<LineData> constructor.

– The NEW_SHAPE macro does this for us:

NEW_SHAPE(myline, LineData, new LineData(camShS, ...));

● Can define a new line by specifying:

– two points

– a point plus an orientation (0 to )

01/26/11 15-494 Cognitive Robotics 16

NEW_SHAPE

● NEW_SHAPE is a bit of syntactic sugar:

 NEW_SHAPE(myline, LineData,
 new LineData(camShS,pt1,pt2))

● Expands into:

 Shape<LineData> myline(new LineData(camShS,pt1,pt2));
if (myline.isValid())
 myline->V(“myline”); // make viewable

● Use NEW_SHAPE_N for shapes not to be viewable.

01/26/11 15-494 Cognitive Robotics 17

Parents and Viewable IDs

foo
 id: 11
 parentId: 0

bar
 id: 17
 parentId: 11

baz
 id: 19
 parentId: 17

xam
 id: 23
 parentId: 19

foo 11

xam 23

On the Robot SketchGUI
Display

Not
viewable

01/26/11 15-494 Cognitive Robotics 18

Mixing Sketches and Shapes

● Problem: which side of an orange line has more yellow
blobs?

● If all we have is a line segment, people can still interpret
it as a “barrier”.

● How do we make the robot do this?

01/26/11 15-494 Cognitive Robotics 19

Lines as Barriers
$nodeclass LineExample : VisualRoutinesStateNode : doStart {
 NEW_SKETCH(camFrame, uchar, sketchFromSeg());
 NEW_SKETCH(orange_stuff, bool,

 visops::colormask(camFrame,"orange"));
 NEW_SKETCH(yellow_stuff, bool,

 visops::colormask(camFrame,"yellow"));

 NEW_SHAPE(boundary_line, LineData,
 LineData::extractLine(orange_stuff));

 NEW_SKETCH(topside, bool,
 visops::topHalfPlane(boundary_line));

 NEW_SKETCH(side1, bool, yellow_stuff & topside);
 NEW_SKETCH(side2, bool, yellow_stuff & ! topside);

01/26/11 15-494 Cognitive Robotics 20

Lines as Barriers (cont.)
 NEW_SHAPEVEC(side1blobs, BlobData,

 BlobData::extractBlobs(side1,50));
 NEW_SHAPEVEC(side2blobs, BlobData,

BlobData::extractBlobs(side2,50));

 vector<Shape<BlobData> > &winners =
 side1blobs.size() > side2blobs.size() ?

side1blobs : side2blobs;

 NEW_SKETCH(result, bool, visops::zeros(yellow_stuff));

 SHAPEVEC_ITERATE(winners, BlobData, b)
 result |= b->getRendering();
 END_ITERATE;

 boundary_line->setInfinite(); // for display purposes

}

01/26/11 15-494 Cognitive Robotics 21

Lines As Barriers

Subtle point: bool overrides uchar in the SketchGUI, so selecting
yellow_stuff allows the top yellow blob to display even though
the inverted (orange) topside is covering its appearance in
camFrame. (Competing bools are averaged.)

01/26/11 15-494 Cognitive Robotics 22

Lines As Barriers

01/26/11 15-494 Cognitive Robotics 23

Constructing a Perpendicular
$nodeclass LineExample : VisualRoutinesStateNode: doStart {
 NEW_SKETCH(camFrame, uchar, sketchFromSeg());
 NEW_SKETCH(orange_stuff, bool,

 visops::colormask(camFrame,"orange"));

 NEW_SHAPE(line1, LineData,
LineData::extractLine(orange_stuff));

 line1->leftPt().setActive(false);

 NEW_SHAPE(line2, LineData,
new LineData(camShS,line1->rightPt(),

 line1->getThetaNorm()));

 NEW_SKETCH(corner, bool,
 visops::seedfill(line1->getRendering() |

line2->getRendering(), 0));

 corner->setColor(rgb(0,255,0));
}

01/26/11 15-494 Cognitive Robotics 24

Constructing a Perpendicular

● Why isn't line2 shown as a child of line1?

01/26/11 15-494 Cognitive Robotics 25

Ellipses

● Used to describe circular or elliptical shapes.

● Different from blobs. Ellipse properties:

– semi-major, semi-minor axis lengths

– major axis orientation

● Ellipse extraction routine will ignore regions that aren't
roughly elliptical in shape.

01/26/11 15-494 Cognitive Robotics 26

Extracting Ellipses
$nodeclass EllipseExample : VisualRoutinesStateNode : doStart {

 NEW_SKETCH(camFrame, uchar, sketchFromSeg());
 NEW_SKETCH(orange_stuff, bool,

 visops::colormask(camFrame,"orange"));
 NEW_SKETCH(yellow_stuff, bool,

 visops::colormask(camFrame,"yellow"));

 NEW_SHAPEVEC(ellipses, EllipseData,
 EllipseData::extractEllipses(yellow_stuff));

 NEW_SHAPEVEC(ellipses2, EllipseData,
 EllipseData::extractEllipses(orange_stuff));

}

01/26/11 15-494 Cognitive Robotics 27

Extracting Ellipses

01/26/11 15-494 Cognitive Robotics 28

Assignment and Copying
● Sketches: assignment is deep; copying is shallow.

“A = 1” only makes sense for deep assignment.

“A += B” only makes sense for deep assignment.

So “A = B” should be deep as well.

NEW_SKETCH(A, bool, B) does shallow copy. For deep copy, do:
NEW_SKETCH(A, bool, visops::copy(B))

For shallow assignment, do: A.bind(B)

● Shapes: assignment and copying are both shallow.

Mostly we want to just pass shapes around, so shallow copy is all
that's necessary.

For deep copy, do: NEW_SHAPE(A, LineData, B->copy())

Deep assignment is not supported.

01/26/11 15-494 Cognitive Robotics 29

Point vs. PointData

● Point(x,y,z) uses fmat::Column<4>.

● Operators +-*/ == are defined on Point objects.

● EndPoint is a subclass of Point with a few extra
properties: valid, active.

● LineData contains two EndPoints.
EllipseData contains one Point defining its center.

● PointData is a shape representation with a Point inside.

● Why have both Point and PointData?

– Shapes aren't allowed to nest, so you can't put a PointData
inside a LineData or EllipseData.

01/26/11 15-494 Cognitive Robotics 30

Other Shape Types

● PolygonData can represent boundaries (like the edge of
the robot's playpen) or containers.

● SphereData can be used to represent a ball in 3-D.

● BrickData will be used for blocks world tasks.

● AgentData represents the robot's position (as a Point)
and orientation (as an AngTwoPi).

01/26/11 15-494 Cognitive Robotics 31

ShapeSpace:

A Look
Under

the Hood

