02/16/11

Navigating with the Pilot

15-494 Cognitive Robotics
David S. Touretzky &
Ethan Tira-Thompson

Carnegie Mellon
Spring 2011

How Does the Robot Walk?

« Multiple walk engines incorporated into Tekkotsu:
- CMPack '02 AIBO walk engine from Veloso et al. (CMU), with

modifications by Ethan Tira-Thompson
UPennalizers AIBO walk engine from Lee et al. (U. Penn)
XWalk engine by Ethan Tira-Thompson for the Chiara

e Basic idea is the same:

02/16/11

Cyclic pattern of leg motions

Parameters control leg trajectory, body angle, etc.

Many different gaits are possible by varying phases of the legs
“Open loop” control: no force feedback

Can't adapt to rough terrain

Can move quickly, but not very accurately

15-494 Cognitive Robotics

Zh3L
o) hZL

m‘lﬁ‘fjj_g _Yha

|
L Zhal

- p
z L
ML\
L —
| Xh1

z f——t |
hzm}"hzﬂ‘(‘l T2 |Vhar

L]

K
ZiisRk Yher

ZhiR [Xni-ZnoL

2z, i
4_1_. Xo zﬂ”_'[j"ﬂfzfzn

V10 Xp 2 Xgp

D o
> ¥ ﬁ\
. »
Xh4 7

02/16/11 15-494 Cognitive Robotics

ERS-7 Legs

WX Ay Az

1. - shoulder B3 i} i
2. - elevator 0 i} 62.5

3. - knee 69 5 4] 9
4. - ball AUO87 4003 47
h4. - ball 7680 -18303 4.7

Diameter of ball of foot 15 23.433mm
Each link offset is relative to previous link

The shins shown in this diagram appear to be
slightly distorted compared to a real robot.
Corresponding measurements have been taken
from actual models.

Modified CMPack Walk Engine

46 Leg Parameters:

* Neutral kinematic position

(3x4)
« Lift velocity (3x4)
o Lift time (1x4)
 Down velocity (3x4)
e Down time (1x4)
« Sag distance (1)
» Differential drive (1)

5 Body Parameters:

Height of body (1)
Angle of body (1)
Hop amplitude (1)
Sway amplitude (1)
Walk period (1)

02/16/11

Modified fom Sonia Chernova's
lecture notes

15-494 Cognitive Robotics

Neutral Kinematic Position

« Position (x,y,z) of the leg on the ground at some fixed
point during the walk cycle.

 Where the legs would hit the ground if the robot were
pacing in place (traveling with zero velocity).

Path of the leg during
one walk cycle

lift down

< N
drive From Sonia Chernova's lecture notes

02/16/11 15-494 Cognitive Robotics 5

Leg Lift and Leg Plant

 Lift velocity vector (mm/sec) determines how leq is lifted
off the ground

 Down velocity vector (mm/sec) determines how leg is
placed back on the ground.

« Lift time and down time (1 value each per leg) control
the order of leg motions.

- EXpressed as a percentage of time through the walk cycle that
the leg is raised and lowered.

- Governs which legs move together and which move at opposite
times: pace vs. trot vs. gallop.

From Sonia Chernova's lecture notes

02/16/11 15-494 Cognitive Robotics 6

Body Angle/Height; Hop & Sway

 Body angle (radians) relative to the ground, measured at
the origin of the motion coordinate frame.

- Controls whether the robot is pitched up or down.

« Body height (mm) relative to the ground, measured at
the origin of the motion coordinate frame.

« Hop and sway amplitudes (mm) constrain the body's
vertical and horizontal oscillations during walking.

(Usually set to 0.)

From Sonia Chernova's lecture notes

02/16/11 15-494 Cognitive Robotics

Walk Period

* The walk period (msec) specifies the time of one walk
cycle.

* Note that this is independent of speed.

 To walk faster, the AIBO takes larger steps; it does not
change the period of the walk cycle the way a person

would do.
From Sonia Chernova's lecture notes

« Chiara walks are statically stable, and period does vary
with speed.

02/16/11 15-494 Cognitive Robotics

New CMPack Parameter:
Front & Back Leg Height Limits

« Height of the air path of the front and back legs.

« Upper bound: may not be reached, depending on other
leg motion parameters.

1/ N \\ IAir path height

-

From Sonia Chernova's lecture notes

02/16/11 15-494 Cognitive Robotics 9

Walk Parameter Optimization

« Many RoboCup groups use machine learning techniques
to optimize walk parameters.

 CMPack uses a genetic algorithm.

« Candidates are evaluated by having the robot walk and
measuring the results.

« CMPack got 20% speedup over previous hand-tuned
gaits.

02/16/11 15-494 Cognitive Robotics 10

Tekkotsu Walk Editor

* Root Control > File Access > XWalk Edit
« Values are stored in a walk parameter file

- Default parameter file is walk.plist

% TekkotsuMon: Controller (forklift) - 0 X " | TekkotsuMon: Controller (forklift) -

Walk Edit b Meutral -

0. -Walk GUIL test change! S5end Input: 0. MeuLeg[xFL] (120} Send Input

1. Slow Motion (1) | | 1. NeuLeg[xFR] (120) |

2. Eody > 2. Meuleg[xEL] -90)

3. Meutral > 3. MeulLeqg[xER] (- 90

4. lift_vel > Raw Cam Seg. Cam 4. NeuLeg[yFL] (8D Raw Cam Seg. Cam
. down_vel > . MeulLeg[yFR] -8

6. lifi_time > R 6. MeulLeg[yEL] (F) S

7. down_time € e 7. NeuLeg[yBR] (- 70) SN

8. calibration » | Take Snapshots 8. NeuLeg[zFL] (0 Take Snapshots

9, Load Walk » |[Auto-Advancing] 9. NeuLeg[zFR] (0) [Auto-Advancing]

10. Save Walk Advance Frame 10. NeulLeg[zEL] (I Advance Frame

11. MeulLeg[zER] (D)
« Back Refresh Add Edit « Back Refresh Add Edit

=< Stopped In-5top =< Stopped Un-5top

02/16/11 15-494 Cognitive Robotics

Chiara Gaits

 One leg at a time (default).

- Requires the least power.
- Slow: 6 beats/cycle.

 Two legs at a time.

- Intermediate speed and power.
- 3 beats/cycle.

 Three legs at a time: tripod gait.

- Fastest gait that is still statically stable.
- Requires lots of power.
- 2 beats/cycle.

02/16/11 15-494 Cognitive Robotics

walk.plist

walk2.plist

walk3.plist

12

A Five-Legged Galit

 Sherene Campbell of Florida A&M University got the
Chiara to walk on five legs so it could use its right front
leg as a pincer. (See video on YouTube.)

02/16/11 15-494 Cognitive Robotics 13

XWalkMC

« XWalkMC is a motion command that uses the Chiara
walk engine to calculate leg trajectories.

« Walking is controlled by three parameters:

- x velocity (forward motion) - D -
-y velocity (lateral motion: strafing) {ﬁ@
- angular velocity (rotation) @D

02/16/11 15-494 Cognitive Robotics

14

WalkNode

e Subclass of StateNode

« Activates a WalkMC on start()

« Deactivates it on stop()

* Provides functions to set (x,y,a) velocities
 WalkNode($, xdisp, ydisp, adisp, time, WalkNode::DISP)

- Displacements in mm and radians; time in sec.

- Use a time of 0 to request maximum velocity.
« WalkNode($, xvel, yvel, avel, time, WalkNode::VEL)

- Velocities xvel, yvel in mm/sec; avel in rad/sec; time in sec

02/16/11 15-494 Cognitive Robotics 15

Waypoint Engine

 Takes the robot through a path defined by a series of

waypoints.

« Each waypoint specifies a position (x,y) and orientation.

 Three waypoint types:

lefi
%ﬂw vard

Egocentric

“Three steps
forward”

02/16/11

1
N y Y
X
Offset Absolute
“Three steps “To (30,12)"
north”

15-494 Cognitive Robotics 16

Controlling Body Orientation

%\ N\
o A
o 4
anglelsRelative == true anglelsRelative == false
The angle is relative to the The angle is relative to the
path, so an angle of O world coordinate system,
means the robot's body so the body will hold a

will follow the direction of constant heading while
travel. walking.

02/16/11 15-494 Cognitive Robotics 17

Arcing Trajectories

« Paths can be either straight lines or arcs.

« Arc parameter (in radians, not degrees) corresponds to
the angle of the circle which is swept.

e Don't use values > 180°.

02/16/11 15-494 Cognitive Robotics

18

Track Path (Error Correction)

« setCurPos() function can be used to correct position if
you have a localization module.

 When trackPath flag is true, the robot will attempt to
return to its planned path after a perturbation.

 When false, it just goes straight to the destination.

02/16/11 15-494 Cognitive Robotics 19

Waypoint Walk Editor

« Root Control > File Access > WaypointWalk Control

« Allows interactive creation, execution of waypoint file.

TekkotsuMon: Controller (forklift)

Way pointWalkControl b

0. Execute Send Input:

1. [] Loop Waypoints | |
2. Add Egocentric Waypoin

3. Add Offset Waypoint

4. Add Absolute Waypoint Raw Cam 5eq. Cam

3. Load Waypuoints >

6. Save Waypoints N

{. Drift Error Correction S

. T Talke Snapshots

[Auto-Advancing]
Advance Frame

« Back Refresh Add

=< Stopped Un-5top

02/16/11 15-494 Cognitive Robotics

Sample Waypoint File

#WyP
#add {point|arc} {ego|off|abs} x val y val {hold|follow} angle val
speed val arc val

max_turn speed 0.65
track path 0

add point EGO 0.3 0 FOLLOW 0 0.1 0O
add_point EGO 6.5 © FOLLOW 0 0.1 1
#END 4 7 4 4D ~_
,)é')z/é); Orie;wtation arc value (radians)
’, (meters) speed (m/sec.)
Waypoint anglelsRelative
type mode

02/16/11 15-494 Cognitive Robotics 21

WaypointWalk

« WaypointWalk is a motion command.

« Can load waypoints from a waypoint file, or construct
them dynamically with function calls.

« Uses a XWalkMC to do the actual walking.

« XWalkMC will post status events indicating the progress
of the walk.

02/16/11 15-494 Cognitive Robotics

22

Manipulation by Walking

* Course project by Ethan Tira-Thompson
http://ethan.tira-thompson.com/stuff/16-741/project.html

* Inspired by Matt Mason's “mobipulator” project.

02/16/11 15-494 Cognitive Robotics 23

The Pilot

Higher level approach to locomotion.

- Walk a certain distance.
- Go to an object.

Specify policies to use:

— CIiff detection (IR sensor)
- Obstacle avoidance (turn off to knock down soda cans)
- Localization procedure

Experimental code; changing rapidly.

02/16/11 15-494 Cognitive Robotics

Specify effect to achieve, rather than mechanism:

24

Pilot Request Types

« walk — essentially a WalkMC request

« waypointWalk - provides Waypoint walk functionality

« setVelocity — set speed and go forever

* |ocalize - look for landmarks and invoke the particle filter

« goToShape - path plan and travel to the location of a
shape on the world map

« More functions are planned...

02/16/11 15-494 Cognitive Robotics 25

Trivial Pilot Example

$nodeclass MyPilotDemo : VisualRoutinesStateNode {

$nodeclass Goer : PilotNode($, PilotTypes::walk)
pilotreq.dx = 500; // forward half a meter

}

$setupmachine{
Goer =PILOT=> SpeechNode($,”I have arrived”)
}

REGISTER BEHAVIOR(MyPilotDemo);

02/16/11 15-494 Cognitive Robotics

: doStart {

26

Collision Detection

$nodeclass PilotLab3 : VisualRoutinesStateNode {

$nodeclass Forward500 : PilotNode($, PilotTypes::walk) : doStart {
pilotreq.dx = 500;
pilotreq.forwardSpeed = 100; // speed 100 millimeters/second
}

$nodeclass Backup : PilotNode($, PilotTypes::walk) : doStart {
pilotreq.dx = -100; // negative displacement means back up
pilotreq.forwardSpeed = 30; // speeds are always non-negative

}

$setupmachine {
forward: Forward500
forward =PILOT=> SpeechNode($,"done")
forward =PILOT(collisionDetected)=>
SpeechNode($,"Ouch! I hit something.") =C=> Backup
}

}

02/16/11 15-494 Cognitive Robotics 27

Path Planning

$nodeclass Dolt : PilotNode($, PilotTypes::goToShape) : doStart {

NEW_SHAPE(avoidMe, EllipseData,
new EllipseData(worldShS, Point(250, 500, 0O, allocentric),
80, 50, 0.5));
avoidMe->setColor(rgb(255,0,0));

NEW_SHAPE(destination, PointData,
new PointData(worldShS, Point(700, 700, O, allocentric)));

destination->setObstacle(false);

(£ world view: aibo5 (=13
| Clone | | aaaaaaaaaaa |]iD
pilotreq.targetShape = destination;
) \\
(™\
\ \|
N/
02/16/11 15-494 Cognitive Robotics

28

