
02/16/11 15-494 Cognitive Robotics 1

Navigating with the Pilot

15-494 Cognitive Robotics
David S. Touretzky &
Ethan Tira-Thompson

Carnegie Mellon
Spring 2011

02/16/11 15-494 Cognitive Robotics 2

How Does the Robot Walk?
● Multiple walk engines incorporated into Tekkotsu:

– CMPack '02 AIBO walk engine from Veloso et al. (CMU), with
modifications by Ethan Tira-Thompson

– UPennalizers AIBO walk engine from Lee et al. (U. Penn)

– XWalk engine by Ethan Tira-Thompson for the Chiara

● Basic idea is the same:

– Cyclic pattern of leg motions

– Parameters control leg trajectory, body angle, etc.

– Many different gaits are possible by varying phases of the legs

– “Open loop” control: no force feedback

– Can't adapt to rough terrain

– Can move quickly, but not very accurately

02/16/11 15-494 Cognitive Robotics 3

02/16/11 15-494 Cognitive Robotics 4

Modified CMPack Walk Engine

46 Leg Parameters:

● Neutral kinematic position
(3x4)

● Lift velocity (3x4)

● Lift time (1x4)

● Down velocity (3x4)

● Down time (1x4)

● Sag distance (1)

● Differential drive (1)

5 Body Parameters:

● Height of body (1)

● Angle of body (1)

● Hop amplitude (1)

● Sway amplitude (1)

● Walk period (1)

Modified fom Sonia Chernova's
lecture notes

02/16/11 15-494 Cognitive Robotics 5

Neutral Kinematic Position

● Position (x,y,z) of the leg on the ground at some fixed
point during the walk cycle.

● Where the legs would hit the ground if the robot were
pacing in place (traveling with zero velocity).

Path of the leg during
one walk cycle

From Sonia Chernova's lecture notes

lift down

drive

02/16/11 15-494 Cognitive Robotics 6

Leg Lift and Leg Plant

● Lift velocity vector (mm/sec) determines how leg is lifted
off the ground

● Down velocity vector (mm/sec) determines how leg is
placed back on the ground.

● Lift time and down time (1 value each per leg) control
the order of leg motions.

– Expressed as a percentage of time through the walk cycle that
the leg is raised and lowered.

– Governs which legs move together and which move at opposite
times: pace vs. trot vs. gallop.

From Sonia Chernova's lecture notes

02/16/11 15-494 Cognitive Robotics 7

Body Angle/Height; Hop & Sway

● Body angle (radians) relative to the ground, measured at
the origin of the motion coordinate frame.

– Controls whether the robot is pitched up or down.

● Body height (mm) relative to the ground, measured at
the origin of the motion coordinate frame.

● Hop and sway amplitudes (mm) constrain the body's
vertical and horizontal oscillations during walking.
(Usually set to 0.)

From Sonia Chernova's lecture notes

02/16/11 15-494 Cognitive Robotics 8

Walk Period

● The walk period (msec) specifies the time of one walk
cycle.

● Note that this is independent of speed.

● To walk faster, the AIBO takes larger steps; it does not
change the period of the walk cycle the way a person
would do.

● Chiara walks are statically stable, and period does vary
with speed.

From Sonia Chernova's lecture notes

02/16/11 15-494 Cognitive Robotics 9

New CMPack Parameter:
Front & Back Leg Height Limits

● Height of the air path of the front and back legs.

● Upper bound: may not be reached, depending on other
leg motion parameters.

 Air path height

From Sonia Chernova's lecture notes

02/16/11 15-494 Cognitive Robotics 10

Walk Parameter Optimization

● Many RoboCup groups use machine learning techniques
to optimize walk parameters.

● CMPack uses a genetic algorithm.

● Candidates are evaluated by having the robot walk and
measuring the results.

● CMPack got 20% speedup over previous hand-tuned
gaits.

02/16/11 15-494 Cognitive Robotics 11

Tekkotsu Walk Editor

● Root Control > File Access > XWalk Edit

● Values are stored in a walk parameter file

– Default parameter file is walk.plist

02/16/11 15-494 Cognitive Robotics 12

Chiara Gaits

● One leg at a time (default). walk.plist

– Requires the least power.

– Slow: 6 beats/cycle.

● Two legs at a time. walk2.plist

– Intermediate speed and power.

– 3 beats/cycle.

● Three legs at a time: tripod gait. walk3.plist

– Fastest gait that is still statically stable.

– Requires lots of power.

– 2 beats/cycle.

02/16/11 15-494 Cognitive Robotics 13

A Five-Legged Gait

● Sherene Campbell of Florida A&M University got the
Chiara to walk on five legs so it could use its right front
leg as a pincer. (See video on YouTube.)

02/16/11 15-494 Cognitive Robotics 14

XWalkMC

● XWalkMC is a motion command that uses the Chiara
walk engine to calculate leg trajectories.

● Walking is controlled by three parameters:

– x velocity (forward motion)

– y velocity (lateral motion: strafing)

– angular velocity (rotation)

02/16/11 15-494 Cognitive Robotics 15

WalkNode

● Subclass of StateNode

● Activates a WalkMC on start()

● Deactivates it on stop()

● Provides functions to set (x,y,a) velocities

● WalkNode($, xdisp, ydisp, adisp, time, WalkNode::DISP)

– Displacements in mm and radians; time in sec.

– Use a time of 0 to request maximum velocity.

● WalkNode($, xvel, yvel, avel, time, WalkNode::VEL)

– Velocities xvel, yvel in mm/sec; avel in rad/sec; time in sec

02/16/11 15-494 Cognitive Robotics 16

Waypoint Engine

● Takes the robot through a path defined by a series of
waypoints.

● Each waypoint specifies a position (x,y) and orientation.

● Three waypoint types:

Egocentric

“Three steps
forward”

Offset

“Three steps
north”

Absolute

“To (30,12)”

02/16/11 15-494 Cognitive Robotics 17

Controlling Body Orientation

angleIsRelative == true

The angle is relative to the
path, so an angle of 0
means the robot's body
will follow the direction of
travel.

angleIsRelative == false

The angle is relative to the
world coordinate system,
so the body will hold a
constant heading while
walking.

02/16/11 15-494 Cognitive Robotics 18

Arcing Trajectories

● Paths can be either straight lines or arcs.

● Arc parameter (in radians, not degrees) corresponds to
the angle of the circle which is swept.

● Don't use values > 180o.

02/16/11 15-494 Cognitive Robotics 19

Track Path (Error Correction)

● setCurPos() function can be used to correct position if
you have a localization module.

● When trackPath flag is true, the robot will attempt to
return to its planned path after a perturbation.

● When false, it just goes straight to the destination.

02/16/11 15-494 Cognitive Robotics 20

Waypoint Walk Editor

● Root Control > File Access > WaypointWalk Control

● Allows interactive creation, execution of waypoint file.

02/16/11 15-494 Cognitive Robotics 21

Sample Waypoint File

#WyP
#add_{point|arc} {ego|off|abs} x_val y_val {hold|follow} angle_val
speed_val arc_val
max_turn_speed 0.65
track_path 0
add_point EGO 0.3 0 FOLLOW 0 0.1 0
add_point EGO 0.5 0 FOLLOW 0 0.1 1
#END

Waypoint
type

x,y or
dx,dy

(meters)

angleIsRelative
mode

orientation

speed (m/sec.)

arc value (radians)

02/16/11 15-494 Cognitive Robotics 22

WaypointWalk

● WaypointWalk is a motion command.

● Can load waypoints from a waypoint file, or construct
them dynamically with function calls.

● Uses a XWalkMC to do the actual walking.

● XWalkMC will post status events indicating the progress
of the walk.

02/16/11 15-494 Cognitive Robotics 23

Manipulation by Walking

http://ethan.tira-thompson.com/stuff/16-741/project.html

● Course project by Ethan Tira-Thompson

● Inspired by Matt Mason's “mobipulator” project.

02/16/11 15-494 Cognitive Robotics 24

The Pilot

● Higher level approach to locomotion.

● Specify effect to achieve, rather than mechanism:

– Walk a certain distance.

– Go to an object.

● Specify policies to use:

– Cliff detection (IR sensor)

– Obstacle avoidance (turn off to knock down soda cans)

– Localization procedure

● Experimental code; changing rapidly.

02/16/11 15-494 Cognitive Robotics 25

Pilot Request Types

● walk – essentially a WalkMC request

● waypointWalk – provides Waypoint walk functionality

● setVelocity – set speed and go forever

● localize – look for landmarks and invoke the particle filter

● goToShape – path plan and travel to the location of a
shape on the world map

● More functions are planned...

02/16/11 15-494 Cognitive Robotics 26

Trivial Pilot Example

$nodeclass MyPilotDemo : VisualRoutinesStateNode {

 $nodeclass Goer : PilotNode($, PilotTypes::walk) : doStart {
 pilotreq.dx = 500; // forward half a meter

 }

 $setupmachine{
 Goer =PILOT=> SpeechNode($,”I have arrived”)
 }

}

REGISTER_BEHAVIOR(MyPilotDemo);

02/16/11 15-494 Cognitive Robotics 27

Collision Detection
$nodeclass PilotLab3 : VisualRoutinesStateNode {

 $nodeclass Forward500 : PilotNode($, PilotTypes::walk) : doStart {
 pilotreq.dx = 500;
 pilotreq.forwardSpeed = 100; // speed 100 millimeters/second
 }

 $nodeclass Backup : PilotNode($, PilotTypes::walk) : doStart {
 pilotreq.dx = -100; // negative displacement means back up
 pilotreq.forwardSpeed = 30; // speeds are always non-negative
 }

 $setupmachine {
 forward: Forward500
 forward =PILOT=> SpeechNode($,"done")
 forward =PILOT(collisionDetected)=>
 SpeechNode($,"Ouch! I hit something.") =C=> Backup
 }

}

02/16/11 15-494 Cognitive Robotics 28

Path Planning
$nodeclass DoIt : PilotNode($, PilotTypes::goToShape) : doStart {

 NEW_SHAPE(avoidMe, EllipseData,
 new EllipseData(worldShS, Point(250, 500, 0, allocentric),
 80, 50, 0.5));
 avoidMe->setColor(rgb(255,0,0));

 NEW_SHAPE(destination, PointData,
 new PointData(worldShS, Point(700, 700, 0, allocentric)));
 destination->setObstacle(false);

 pilotreq.targetShape = destination;
}

