03/16/11

Motion Commands and
Real-Time Programming

15-494 Cognitive Robotics
David S. Touretzky &
Ethan Tira-Thompson

Carnegie Mellon
Spring 2011

Motion Commands
Live in Shared Memory

Behaviors request lock on MotionCommands
to make direct function calls on them

Main Process
WurIdState\MutiunManager

System
requests
- = Requests jeint
System o joint positions
sends state x§9' positions [~32ms)
information &
{via Maotion, B Sends new
~32ms) ; s = joint
e ooy positions
Vision based on current to system
Systemn] _ Pipeline MotionCommands
sends camera
frames System
Registered with
(~30Fps) . eg i Requests requests
Can access state anytime for i S sound
Ly anager r
s Fleated by reactive/open loop control buffer b:;fer
:I;‘;wg: ifn currently active) =A2m3)
sounds g
anytime Badprs N & HELI:TFZ - ”L Returns
\\ MotionCommands s 2T
KE (d [i | L}: P I” d) ‘:,Q, MIXING CLrren of sound
y lynamically create, sounds to system
Pre-emptive Process & o Ti
inyFTPD
. Can play sounds at any time SﬂundMﬂ“ager
@I Shared Memory Region Cllig—

Albo-only, allows you to

FTP files during run time.

Other platforms use their
own FTP server,

[] Unshared Global Variable

03/16/11 15-494 Cognitive Robotics

Motion Commands Are Objects

A MotionCommand is an object with 2 kinds of methods:

1) Command methods for telling it what you want it to do.

- Called by user code running in Main.

2) An updat eQut put s() method for computing new
effector values (joint angles, LED brightness, etc.)

- Called every few ms by the motion manager, running in Motion.

03/16/11 15-494 Cognitive Robotics

Types of Motion Commands

DynamicMotionSequence

'| HeadPointerC

LedMC

MotionSequenceMC< MAXMOVE =

OldHeadPointerfAC

MotionManagerMsg MotionCommand PIDMC

Red outline
PostureMC means this class
has subclasses.

FRemoteControllerfC

TailWaghMC

LPennWalkhMC

| WalkMC

03/16/11 15-494 Cognitive Robotics

Programming with
Motion Commands

 Don't usually manipulate MC's directly.

Most of the time we use state nodes with motion
commands embedded inside them.

The state nodes handle all the bookeeping for us.
But what if:

- You want to write your own motion command nodes

- You need to do something unusual with motion commands

Then you need to understand:

- Motion commands, motion manager, and MC_ID
- SharedObject, MMAccessor, MotionPtr

03/16/11 15-494 Cognitive Robotics

Creating a Motion Command

 You can create a motion command this way:
SharedObject<LedMC> leds mc;

 The actual LedMC object is created in shared memory.

« The SharedObject named leds _mc lives in Main's address
space, and holds a pointer to the shared memory region.

03/16/11 15-494 Cognitive Robotics

LedMC

« Defined in Motion/LedMC.h

e LedMC inherits from two
parent classes.

e MotionCommand:
- updateOutputs()

MotionManageriMsg

MotionCommand

- IsAlive() : is this command active?

- isDirty() : have outputs changed?

 LedEngine:

LedMC

- cycle(...) :cycle these LEDs (sine wave pattern)

- flash(...) : flash these LEDs for n msecs, then end

- invert(...) : invert the status of these LEDs

- etc.

03/16/11 15-494 Cognitive Robotics

LedEngine

LedEngine

» cycle(LEDBitmask t bitmask,
unsigned int period,
float amplitude,
float offset=0,
int phase=0)

1 L T T]

a5l | period = 5000 ms
' amplitude =1
0

0 5000 10000 15000

il | | 1 period = 5000 ms
0.5 1 amplitude =5
0 offset = -1

0 2000 10000 15000

I R

0 000 10000 15000

03/16/11 15-494 Cognitive Robotics

Sample LedMC Program

#include "Behaviors/StateMachine.h"

$nodeclass ButtonFlash : StateNode :
leds id(invalid MC ID) {

MC ID leds id; // id of MotionCommand

virtual void doStart() {
SharedObject<LedMC> leds mc;
leds mc->cycle(RobotInfo::GreenLEDMask, 1000, 100.0);
leds id = motman->addPersistentMotion(leds mc);

}

 Shared objects are reference counted.

« What happens to | eds_nt when doStart returns?

 What happens to the motion command?

03/16/11 15-494 Cognitive Robotics

Operator Overloading

* leds mc is of type SharedObject
« cycle(...) is a method of LedEngine, not SharedObject.

* So why does this work?

leds mc -> cycle(RobotInfo::GreenLEDMask, 1000, 100.0);

 The arrow operator is overloaded by SharedObject. It will
dereference the pointer to the actual LedMC in shared
memory, and call its cycle(...) method.

03/16/11 15-494 Cognitive Robotics 10

Sample LedMC Program (cont.)

virtual void doStop() {
motman->removeMotion(leds id);
}

 We needed to keep leds_id around so we could reference
the motion command in doStop().

* You should always remove motion commands when
you're done with them, unless autopruned.

« cycle() can't be autopruned. Why not?

03/16/11 15-494 Cognitive Robotics 11

Mutual Exclusion: MMAccessor

« Suppose we want to change the parameters of a motion
command while it's active.

 Example: change the cycle period of a LedMC.

* Not safe for Main to change an active MC while Motion is
trying to use it. Need a mutex mechanism:

MMAcessor<LedMC> leds acc(leds id);
leds acc->cycle(RobotInfo::GreenLEDMask, 250, 100.0);

» Constructor handles checkout; destructor handles
checkin. Within scope of leds acc, motman locked out.

 Don't lock it out for too long!

03/16/11 15-494 Cognitive Robotics 12

Changing the Cycle Period
When a Button Is Pressed

virtual void doStart() {
SharedObject<LedMC> leds mc;
leds mc->cycle(RobotInfo::FaceLEDMask, 1000, 100.0);
leds _id = motman->addPersistentMotion(leds mc);

erouter->addListener(this, EventBase: :buttonEGID);

03/16/11 15-494 Cognitive Robotics

13

Changing the Cycle Period
When a Button Is Pressed

virtual void doEvent() {

int const new period =
event->getMagnitude() == 0 7?7 1000 : 250;

MMAccessor<LedMC> leds acc(leds id);
leds acc->cycle(RobotInfo::FaceLEDMask, new period, 100.0);

03/16/11 15-494 Cognitive Robotics 14

Using MMAccessors

« Just call the constructor if you only need to change one
motion command parameter:

MMAccessor<LedMC>(leds id)->
cycle(RobotInfo: :FaceLEDMask,500,1.0);

« Declare a local variable if you need to change multiple
MC parameters:

MMAccessor<LedMC> leds acc(leds id);
leds acc->cycle(RobotInfo::GreenLEDMask,500,1.0);
leds acc->cycle(RobotInfo::RedLEDMask,2000,2.0);

03/16/11 15-494 Cognitive Robotics 15

Prunable Motions

» flash(LEDBitMask t bitmask,
float value,
unsigned int msec)

Sets the specified LEDs to value for so many msec, then
sets them back.

 Once the action is complete, the motion command has
no more work to do.

« Ifit's a persistent motion command, it sits around
waiting for its next assignment. If a prunable motion
command, the motion manager removes (prunes) it.

03/16/11 15-494 Cognitive Robotics 16

Flash the Green LED for 15 secs

virtual void doStart() {

}

SharedObject<LedMC> leds mc;
leds mc->flash(RobotInfo::GreenLEDMask, 15000, 1.0);

leds id = motman->addPrunableMotion(leds mc);

cout << “Created LedMC, id = “ << leds id << endl;
stop();

 No need for doStop to remove the motion command.

« What would happen if you started this behavior three
times within a few seconds?

03/16/11

15-494 Cognitive Robotics 17

MotionPtr

A simpler way to manage persistent motion commands.

« Like SharedObject, but automatically removes the
motion command when the reference count drops.

 Like MMAccessor, locks the motion command when used
as a smart pointer.

« To activate, use BehaviorBase::addMotion() instead of
motman->addPersistentMotion().

- This registers the motion command with a specific behavior.

 BehaviorBase::stop() will remove the motion command
when the behavior halts.

03/16/11 15-494 Cognitive Robotics 18

Moving the Head

The Chiara has two
head joints: pan and tilt

 The AIBO has three:
tilt, pan, and nod

 Head joints are named
by their offsets into
the joint array:

TiltOffset
PanOffset
NodOffset

03/16/11 15-494 Cognitive Robotics

19

The Camera Defines the “Head”

Qwerkbot: 2DOF “head” Regis: 4DOF “goose neck”:
(pan and tilt) base (pan), shoulder/elbow/wrist (tilt)

03/16/11 15-494 Cognitive Robotics 20

HeadPointerMC

Defined in Motion/HeadPointerMC.h

void setjointValue(unsigned int joint, float value)
- setjointValue(TiltOffset, 0.5)

float getjointValue(unsigned int joint) const
void setMaxSpeed(unsigned int joint, float x)

void setjoints(float tilt, float pan, float nod)

03/16/11 15-494 Cognitive Robotics

21

Detecting Motion Completion

e |t takes time to move the head.

 Behaviors can't wait around: must relinquish control!
(If they don't, sensor values can't be updated, since this
happens in the same process, Main, where the behaviors
run.)

« HeadPointerMC posts a status event when motion
completes or times out. The generator is motmanEGID.

 To smoothly chain actions together, listen for status
events. (Or use Tekkotsu's state machine formalism.)

« Example: when a button is pressed, move the head and
then blink afterwards.

03/16/11 15-494 Cognitive Robotics 22

Move Head Then Blink

#include "Behaviors/StateMachine.h"

#include "Motion/MotionPtr.h"

#include “Shared/WorldState.h”

$nodeclass MoveBlink : StateNode : led ptr(), head ptr() {

MotionPtr<LedM(C> led ptr;
MotionPtr<HeadPointerMC> head ptr;

03/16/11 15-494 Cognitive Robotics 23

Move Head Then Blink

virtual void doStart() {

03/16/11

addMotion(led ptr);

head ptr->setMaxSpeed(RobotInfo::Tilt0Offset,0.5);
addMotion(head ptr);

erouter->addListener(this,EventBase: :buttonEGID)
erouter->addListener(this,
EventBase: :motmanEGID,

head ptr.getID(),
EventBase: :statuskETID);

15-494 Cognitive Robotics

24

Move Head Then Blink

virtual void doEvent() {
switch (event.getGeneratorID()) {

case EventBase: :buttonEGID:
if (event.getTypelID() == EventBase::activateETID)

head ptr->
setJointValue(TiltOffset, calcNewHeadTarget());
break; ‘\\
~To be defined
shortly

case EventBase: :motmanEGID:
led ptr->flash(RobotInfo::GreenLEDMask, 1000);
break;

03/16/11 15-494 Cognitive Robotics

Describing Effectors

« Tekkotsu maintains several arrays describing effectors:

- the current value for each effector (i.e., each joint, LED, etc.)
- min and max permissible value for each effector

- PID settings for each joint-type effector

« Effectors are named by their offsets into these arrays,
e.g., ArnO f set Is the name of the first arm joint.

« See the file Chiaralnfo.h or Createlnfo.h for definitions.

03/16/11 15-494 Cognitive Robotics

26

03/16/11

AIBO Effector Offsets

< | FrLegOffset+RotatorOffset < LFrLegOffset <& LegOffset
< LFrLegOffset+ElevatorOffset
<4 |FrLegOffset+KneeOffset

- RFrLegOffset
- LBkLegOffset
- RBkLegOffset

<€ HeadOffset+TiltOffset €4 HeadOffset
<4 HeadOffset+PanOffset

<€ HeadOffset+NodOffset

< TailOffset+TiltOffset < TailOffset
<4 TaijlOffset+PanOffset

<€ MouthOffset

<4 HeadColorLEDOffset < LEDOffset
<€ HeadWhiteLEDOffset

(more head LEDs)

-« FaceLEDPanelOffset

(more face LEDS)

15-494 Cognitive Robotics

27

Move Head Then Blink

float calcNewHeadTarget() {
const float lowpos =
RobotInfo: :outputRanges[HeadOffset+TiltOffset]
[MinRange] ;
const float highpos =
RobotInfo::outputRanges[HeadOffset+TiltOffset]
[MaxRange];
const float midpos = (lowpos + highpos) / 2;

const float curpos = state->outputs[HeadOffset+TiltOffset];
if (curpos < midpos)
return highpos;

else
return lowpos;

03/16/11 15-494 Cognitive Robotics 28

Thought Questions

1) Suppose you push a button, the head starts to move,
and you push the button again. What happens?

2) Suppose you activate the behavior, then turn on Head
Remote Control and try to move the head around while
the behavior is still running. The result is jerky and the
motion is attenuated. Why?

3) Suppose you don't want your active HeadPointerMC to
start affecting the head until the user presses a button?
What are some ways you could prevent this?

03/16/11 15-494 Cognitive Robotics 29

Motion Command Priority Level

klgnoredPriority = -1.0 won't be expressed

kBackgroundPriority = 0.0 use if nothing else running

kLowPriority = 5.0

Default: kStdPriority = 10.0 what you get by default

kHighPriority = 50.0

kEmergencyPriority = 100.0 used by Emergency Stop

03/16/11 15-494 Cognitive Robotics 30

Move and Then Blink

 In doStart(), we write:

addMotion(head ptr,PERSISTENT, kIgnoredPriority);

 In doEvent(), before moving the head:
head ptr->setPriority(kHighPriority);

« In doEvent(), after head motion completes:
head ptr->setPriority(kIgnoredPriority);

« Note: setPriority() is inherited from MotionCommand, so
it does not show up in the method list in the
documentation for HeadPointerMC.

03/16/11 15-494 Cognitive Robotics 31

Motion Command Weight

 For each joint, the Motion Manager orders commands by
priority and computes a weighted average as a function
of both the priorities and the weights.

« Starting with the highest priority, if weights of active
motion commands sum to < 1, the remaining weight is
allocated to the next highest priority, and so on.

« Weights are adjustable. To set tilt/pan/nod weights:

head ptr->setWeight(0.5)

 Need to set individual joint weights? Use a PostureMC.

03/16/11 15-494 Cognitive Robotics 32

TallWagMC

« Wags tail back and forth (sine wave).
« User-specified period, magnitude.

« User can also adjust the tilt (but
this doesn't change during wagqging.)

« Stop/start with setActive(bool)

e Can “unset” the tilt to allow some
other motion command to control it
while this one handles the wag.

« “Unset” = set tall tilt weight to zero.

03/16/11 15-494 Cognitive Robotics

33

How MCs Really Work

 LEDs, head joints, leg joints, etc. are all effectors.

* OutputCmd specifies a value and weight for one effector.

« We want new effector values every 8 msec. But buffer
them 4 frames at a time.

 So LedMC, HeadPointerMC, and TailWagMC's
updateOutput() methods are called every 32 msec and
need to return 4 frames' worth of output.

« On the AIBO:
HeadPointerMC uses 3 OutputCmds, one per joint.
LedMC uses 4*27 OutputCmds (there are 27 LEDs).
TailWagMC uses 5 (1 for tilt and 4*1 for pan).

03/16/11 15-494 Cognitive Robotics 34

PostureMC

MotionManageriMsg LoadSave

OutputCmds.

« Can load/save
postures from a file.

A “posture” specifies the \ /
states of all the effectors.

 Offers direct access to all

Kinematics

I

MotionCommand PostureEngine

EmergencyStopMC

e |nterface to kinematics

engine.

03/16/11

15-494 Cognitive Robotics

35

MCNode<T>

« Parent class of motion command nodes:
- LedNode, HeadPointerNode, ArmNode, etc.

e Starts the motion command when the node is activated;
stops the motion command when deactivated.

« getMC() method returns an MMAccessor for the motion
command so you can set its parameters.

« Use getMC() in initializers in shorthand notation:

LedNode[getMC()->cycle(GreenLEDMask,1000,100)]

« getMC ID() returns the MC _ID of the motion if active

« setMC(mc _id) allows you to share a motion command
across nodes; useful for complex behaviors like walking

03/16/11 15-494 Cognitive Robotics 36

Completion Events

HeadPointerNode listens for a status event posted by
HeadPointerMC to indicate that the head has arrived at its
target position:

- generatorID = motmanEGID

- sourcelD = the motion command's mc_id

- typelD = statusETID

HeadPointerNode then posts a “completion” event
Indicating that the node has completed its action:

- generatorlD = statemachineEGID
- sourcelD = the address of the node
- typelD = statusETID

A CompletionTrans listening for this event will fire.

Similarly for ArmNode, PostureNode, etc. WalkNode looks
for locomotionEGID events with Xx,y,a velocities ==

03/16/11 15-494 Cognitive Robotics 37

