
03/16/11 15-494 Cognitive Robotics 1

Motion Commands and
Real-Time Programming

15-494 Cognitive Robotics
David S. Touretzky &
Ethan Tira-Thompson

Carnegie Mellon
Spring 2011

03/16/11 15-494 Cognitive Robotics 2

Motion Commands
Live in Shared Memory

03/16/11 15-494 Cognitive Robotics 3

Motion Commands Are Objects

A MotionCommand is an object with 2 kinds of methods:

1) Command methods for telling it what you want it to do.

– Called by user code running in Main.

2) An updateOutputs() method for computing new
effector values (joint angles, LED brightness, etc.)

– Called every few ms by the motion manager, running in Motion.

03/16/11 15-494 Cognitive Robotics 4

Types of Motion Commands

Red outline
means this class
has subclasses.

03/16/11 15-494 Cognitive Robotics 5

Programming with
Motion Commands

● Don't usually manipulate MC's directly.

● Most of the time we use state nodes with motion
commands embedded inside them.

● The state nodes handle all the bookeeping for us.

● But what if:

– You want to write your own motion command nodes

– You need to do something unusual with motion commands

● Then you need to understand:

– Motion commands, motion manager, and MC_ID

– SharedObject, MMAccessor, MotionPtr

03/16/11 15-494 Cognitive Robotics 6

Creating a Motion Command

● You can create a motion command this way:

 SharedObject<LedMC> leds_mc;

● The actual LedMC object is created in shared memory.

● The SharedObject named leds_mc lives in Main's address
space, and holds a pointer to the shared memory region.

03/16/11 15-494 Cognitive Robotics 7

LedMC
● Defined in Motion/LedMC.h

● LedMC inherits from two
parent classes.

● MotionCommand:

– updateOutputs()

– isAlive() : is this command active?

– isDirty() : have outputs changed?

● LedEngine:

– cycle(...) : cycle these LEDs (sine wave pattern)

– flash(...) : flash these LEDs for n msecs, then end

– invert(...) : invert the status of these LEDs

– etc.

03/16/11 15-494 Cognitive Robotics 8

LedEngine

● cycle(LEDBitmask_t bitmask,
unsigned int period,
float amplitude,
float offset=0,
int phase=0)

period = 5000 ms
amplitude = 1

period = 5000 ms
amplitude = 5
offset = -1

period = 2000 ms
amplitude = 200

03/16/11 15-494 Cognitive Robotics 9

Sample LedMC Program
#include "Behaviors/StateMachine.h"

$nodeclass ButtonFlash : StateNode :
 leds_id(invalid_MC_ID) {

 MC_ID leds_id; // id of MotionCommand

 virtual void doStart() {
 SharedObject<LedMC> leds_mc;
 leds_mc->cycle(RobotInfo::GreenLEDMask, 1000, 100.0);
 leds_id = motman->addPersistentMotion(leds_mc);
 }
...
● Shared objects are reference counted.

● What happens to leds_mc when doStart returns?

● What happens to the motion command?

03/16/11 15-494 Cognitive Robotics 10

Operator Overloading

● leds_mc is of type SharedObject

● cycle(...) is a method of LedEngine, not SharedObject.

● So why does this work?

leds_mc -> cycle(RobotInfo::GreenLEDMask, 1000, 100.0);

● The arrow operator is overloaded by SharedObject. It will
dereference the pointer to the actual LedMC in shared
memory, and call its cycle(...) method.

03/16/11 15-494 Cognitive Robotics 11

Sample LedMC Program (cont.)

virtual void doStop() {
 motman->removeMotion(leds_id);
}

● We needed to keep leds_id around so we could reference
the motion command in doStop().

● You should always remove motion commands when
you're done with them, unless autopruned.

● cycle() can't be autopruned. Why not?

03/16/11 15-494 Cognitive Robotics 12

Mutual Exclusion: MMAccessor
● Suppose we want to change the parameters of a motion

command while it's active.

● Example: change the cycle period of a LedMC.

● Not safe for Main to change an active MC while Motion is
trying to use it. Need a mutex mechanism:

 MMAcessor<LedMC> leds_acc(leds_id);
 leds_acc->cycle(RobotInfo::GreenLEDMask, 250, 100.0);

● Constructor handles checkout; destructor handles
checkin. Within scope of leds_acc, motman locked out.

● Don't lock it out for too long!

03/16/11 15-494 Cognitive Robotics 13

Changing the Cycle Period
When a Button Is Pressed

virtual void doStart() {

 SharedObject<LedMC> leds_mc;
 leds_mc->cycle(RobotInfo::FaceLEDMask, 1000, 100.0);
 leds_id = motman->addPersistentMotion(leds_mc);

 erouter->addListener(this, EventBase::buttonEGID);

}

03/16/11 15-494 Cognitive Robotics 14

Changing the Cycle Period
When a Button Is Pressed

virtual void doEvent() {

 int const new_period =
 event->getMagnitude() == 0 ? 1000 : 250;

 MMAccessor<LedMC> leds_acc(leds_id);
 leds_acc->cycle(RobotInfo::FaceLEDMask, new_period, 100.0);

}

03/16/11 15-494 Cognitive Robotics 15

Using MMAccessors

● Just call the constructor if you only need to change one
motion command parameter:

 MMAccessor<LedMC>(leds_id)->
 cycle(RobotInfo::FaceLEDMask,500,1.0);

● Declare a local variable if you need to change multiple
MC parameters:

 MMAccessor<LedMC> leds_acc(leds_id);
 leds_acc->cycle(RobotInfo::GreenLEDMask,500,1.0);
 leds_acc->cycle(RobotInfo::RedLEDMask,2000,2.0);

03/16/11 15-494 Cognitive Robotics 16

Prunable Motions

● flash(LEDBitMask_t bitmask,
 float value,
 unsigned int msec)

Sets the specified LEDs to value for so many msec, then
sets them back.

● Once the action is complete, the motion command has
no more work to do.

● If it's a persistent motion command, it sits around
waiting for its next assignment. If a prunable motion
command, the motion manager removes (prunes) it.

03/16/11 15-494 Cognitive Robotics 17

Flash the Green LED for 15 secs
virtual void doStart() {

 SharedObject<LedMC> leds_mc;
 leds_mc->flash(RobotInfo::GreenLEDMask, 15000, 1.0);

 leds_id = motman->addPrunableMotion(leds_mc);

 cout << “Created LedMC, id = “ << leds_id << endl;
 stop();

}

● No need for doStop to remove the motion command.

● What would happen if you started this behavior three
times within a few seconds?

03/16/11 15-494 Cognitive Robotics 18

MotionPtr

● A simpler way to manage persistent motion commands.

● Like SharedObject, but automatically removes the
motion command when the reference count drops.

● Like MMAccessor, locks the motion command when used
as a smart pointer.

● To activate, use BehaviorBase::addMotion() instead of
motman->addPersistentMotion().

– This registers the motion command with a specific behavior.

● BehaviorBase::stop() will remove the motion command
when the behavior halts.

03/16/11 15-494 Cognitive Robotics 19

Moving the Head

The Chiara has two
head joints: pan and tilt

● The AIBO has three:
 tilt, pan, and nod

● Head joints are named
by their offsets into
the joint array:

 TiltOffset
 PanOffset
 NodOffset

03/16/11 15-494 Cognitive Robotics 20

The Camera Defines the “Head”

Qwerkbot: 2DOF “head”
(pan and tilt)

Regis: 4DOF “goose neck”:
base (pan), shoulder/elbow/wrist (tilt)

03/16/11 15-494 Cognitive Robotics 21

HeadPointerMC

Defined in Motion/HeadPointerMC.h

● void setJointValue(unsigned int joint, float value)

– setJointValue(TiltOffset, 0.5)

● float getJointValue(unsigned int joint) const

● void setMaxSpeed(unsigned int joint, float x)

● void setJoints(float tilt, float pan, float nod)

03/16/11 15-494 Cognitive Robotics 22

Detecting Motion Completion

● It takes time to move the head.

● Behaviors can't wait around: must relinquish control!
(If they don't, sensor values can't be updated, since this
happens in the same process, Main, where the behaviors
run.)

● HeadPointerMC posts a status event when motion
completes or times out. The generator is motmanEGID.

● To smoothly chain actions together, listen for status
events. (Or use Tekkotsu's state machine formalism.)

● Example: when a button is pressed, move the head and
then blink afterwards.

03/16/11 15-494 Cognitive Robotics 23

Move Head Then Blink

#include "Behaviors/StateMachine.h"
#include "Motion/MotionPtr.h"
#include “Shared/WorldState.h”

$nodeclass MoveBlink : StateNode : led_ptr(), head_ptr() {

 MotionPtr<LedMC> led_ptr;
 MotionPtr<HeadPointerMC> head_ptr;

...

03/16/11 15-494 Cognitive Robotics 24

Move Head Then Blink
virtual void doStart() {

 addMotion(led_ptr);

 head_ptr->setMaxSpeed(RobotInfo::TiltOffset,0.5);
 addMotion(head_ptr);

 erouter->addListener(this,EventBase::buttonEGID);

 erouter->addListener(this,
 EventBase::motmanEGID,
 head_ptr.getID(),
 EventBase::statusETID);

}

03/16/11 15-494 Cognitive Robotics 25

Move Head Then Blink

virtual void doEvent() {

 switch (event.getGeneratorID()) {

 case EventBase::buttonEGID:
 if (event.getTypeID() == EventBase::activateETID)
 head_ptr->
 setJointValue(TiltOffset, calcNewHeadTarget());
 break;

 case EventBase::motmanEGID:
 led_ptr->flash(RobotInfo::GreenLEDMask, 1000);

break;

 }

}

To be defined
shortly

03/16/11 15-494 Cognitive Robotics 26

Describing Effectors

● Tekkotsu maintains several arrays describing effectors:

– the current value for each effector (i.e., each joint, LED, etc.)

– min and max permissible value for each effector

– PID settings for each joint-type effector

● Effectors are named by their offsets into these arrays,
e.g., ArmOffset is the name of the first arm joint.

● See the file ChiaraInfo.h or CreateInfo.h for definitions.

03/16/11 15-494 Cognitive Robotics 27

AIBO Effector Offsets

LFrLegOffset+KneeOffset
LFrLegOffset+ElevatorOffset

LFrLegOffset LegOffset

RFrLegOffset

LBkLegOffset

RBkLegOffset

HeadOffset+TiltOffset
HeadOffset+PanOffset
HeadOffset+NodOffset

HeadOffset

TailOffset+TiltOffset TailOffset
TailOffset+PanOffset

HeadColorLEDOffset

FaceLEDPanelOffset

(more head LEDs)

LEDOffset

(more face LEDs)

MouthOffset

HeadWhiteLEDOffset

LFrLegOffset+RotatorOffset

03/16/11 15-494 Cognitive Robotics 28

Move Head Then Blink

float calcNewHeadTarget() {
 const float lowpos =
 RobotInfo::outputRanges[HeadOffset+TiltOffset]
 [MinRange];
 const float highpos =
 RobotInfo::outputRanges[HeadOffset+TiltOffset]
 [MaxRange];
 const float midpos = (lowpos + highpos) / 2;

 const float curpos = state->outputs[HeadOffset+TiltOffset];

 if (curpos < midpos)
 return highpos;
 else
 return lowpos;
}

03/16/11 15-494 Cognitive Robotics 29

Thought Questions

1) Suppose you push a button, the head starts to move,
and you push the button again. What happens?

2) Suppose you activate the behavior, then turn on Head
Remote Control and try to move the head around while
the behavior is still running. The result is jerky and the
motion is attenuated. Why?

3) Suppose you don't want your active HeadPointerMC to
start affecting the head until the user presses a button?
What are some ways you could prevent this?

03/16/11 15-494 Cognitive Robotics 30

Motion Command Priority Level

● kIgnoredPriority = -1.0 won't be expressed

● kBackgroundPriority = 0.0 use if nothing else running

● kLowPriority = 5.0

● Default: kStdPriority = 10.0 what you get by default

● kHighPriority = 50.0

● kEmergencyPriority = 100.0 used by Emergency Stop

03/16/11 15-494 Cognitive Robotics 31

Move and Then Blink

● In doStart(), we write:

addMotion(head_ptr,PERSISTENT,kIgnoredPriority);

● In doEvent(), before moving the head:
head_ptr->setPriority(kHighPriority);

● In doEvent(), after head motion completes:
head_ptr->setPriority(kIgnoredPriority);

● Note: setPriority() is inherited from MotionCommand, so
it does not show up in the method list in the
documentation for HeadPointerMC.

03/16/11 15-494 Cognitive Robotics 32

Motion Command Weight

● For each joint, the Motion Manager orders commands by
priority and computes a weighted average as a function
of both the priorities and the weights.

● Starting with the highest priority, if weights of active
motion commands sum to < 1, the remaining weight is
allocated to the next highest priority, and so on.

● Weights are adjustable. To set tilt/pan/nod weights:

 head_ptr->setWeight(0.5)

● Need to set individual joint weights? Use a PostureMC.

03/16/11 15-494 Cognitive Robotics 33

TailWagMC

● Wags tail back and forth (sine wave).

● User-specified period, magnitude.

● User can also adjust the tilt (but
this doesn't change during wagging.)

● Stop/start with setActive(bool)

● Can “unset” the tilt to allow some
other motion command to control it
while this one handles the wag.

● “Unset” = set tail tilt weight to zero.

03/16/11 15-494 Cognitive Robotics 34

How MCs Really Work

● LEDs, head joints, leg joints, etc. are all effectors.

● OutputCmd specifies a value and weight for one effector.

● We want new effector values every 8 msec. But buffer
them 4 frames at a time.

● So LedMC, HeadPointerMC, and TailWagMC's
updateOutput() methods are called every 32 msec and
need to return 4 frames' worth of output.

● On the AIBO:
 HeadPointerMC uses 3 OutputCmds, one per joint.
 LedMC uses 4*27 OutputCmds (there are 27 LEDs).
 TailWagMC uses 5 (1 for tilt and 4*1 for pan).

03/16/11 15-494 Cognitive Robotics 35

PostureMC

● A “posture” specifies the
states of all the effectors.

● Offers direct access to all
OutputCmds.

● Can load/save
postures from a file.

● Interface to kinematics
engine.

03/16/11 15-494 Cognitive Robotics 36

MCNode<T>
● Parent class of motion command nodes:

– LedNode, HeadPointerNode, ArmNode, etc.

● Starts the motion command when the node is activated;
stops the motion command when deactivated.

● getMC() method returns an MMAccessor for the motion
command so you can set its parameters.

● Use getMC() in initializers in shorthand notation:

 LedNode[getMC()->cycle(GreenLEDMask,1000,100)]

● getMC_ID() returns the MC_ID of the motion if active

● setMC(mc_id) allows you to share a motion command
across nodes; useful for complex behaviors like walking

03/16/11 15-494 Cognitive Robotics 37

Completion Events
● HeadPointerNode listens for a status event posted by

HeadPointerMC to indicate that the head has arrived at its
target position:

– generatorID = motmanEGID

– sourceID = the motion command's mc_id

– typeID = statusETID

● HeadPointerNode then posts a “completion” event
indicating that the node has completed its action:

– generatorID = statemachineEGID

– sourceID = the address of the node

– typeID = statusETID

● A CompletionTrans listening for this event will fire.

● Similarly for ArmNode, PostureNode, etc. WalkNode looks
for locomotionEGID events with x,y,a velocities == 0.

