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Frames of Reference

● Camera frame:  what the robot sees.

● projectToGround() = kinematics + planar world 
assumption.

● Local map assembled from camera frames each 
projected to ground; robot moves head but not body.

● World map assembled from local maps built at different 
spots in the environment.

camera

ground

world

local
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Four Shape Spaces

● camShS = camera space

● groundShS = camera shapes projected to ground plane

● localShS = body-centered (egocentric space);
constructed by matching and importing shapes
from groundShS

● worldShS = world space (allocentric space);
constructed by matching and importing shapes
from localShS

● The robot is explicitly represented in worldShS
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Deriving the Local Map

1) MapBuilder extracts shapes from the camera frame

– Use a request of type MapBuilderRequest::cameraMap if you 
want to stop here and just get camera-space shapes.

2) MapBuilder does projectToGround()

– Use MapBuilderRequest::groundMap if you want to stop here and 
just get ground shapes from the current camera frame.

3) MapBuilder matches ground shapes against local shapes.

– Request type should be MapBuilderRequest::localMap

4) MapBuilder moves to the next gaze point and repeats.

– The world is assumed not to change during this process.
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Deriving the World Map
● The local map covers only what the robot can see from a 

single viewing position.

● The world map can cover much larger territory.

– Use MapBuilderRequest::worldMap

● The world map persists over a long time period.

– The world will change.  Updates must be possible.

● We update the world map by:

– Constructing a local map.

– Aligning it with the world map

– Importing shapes from the local map.

– Noting additions and deletions since the last local map match.
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Localization

● How do we align the local map with the world map?

● This turns out to be equivalent to determining our 
position and orientation on the world map.

● Tricky, because:

– The local map is noisy

– The environment can be ambiguous (multiple pink landmarks)

● Sensor model: describes the uncertainty in our sensor 
measurements.

– Can mix sensor types (vision, IR), info types (bearing, distance)
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Particle Filtering

● A technique for searching large, complex spaces.

● What is the hypothesis space we need to search?

– Robot's position (x,y)

– Robot's orientation 

● Each particle encodes a point in the hypothesis space.

● How can we evaluate hypotheses? 

– Use sensor model to update particle weights
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Ranking a Particle: 1-D Case

Local map

World map

Hypothesis:   dx = 18

Match hypothesis

Poor
match
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Ranking a Particle: 1-D Case

Local map

World map

Hypothesis:   dx = 56

Match hypothesis

Good
match
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Matching a Landmark

Gaussian probability 
distribution: a sensor 
modelWorld

Local
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Pick the Best Candidate

Local map

World map

Hypothesis:   dx = 56

Local map

Good
match

Match each local landmark 
against the closest world 
landmark of the same type 
and color.  Score with a 
gaussian.
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Matching a Set of Landmarks

Gx , x0 = exp[−x−x0
2

2 ]
P s∈L, t∈W∣h = G L.sh,W.t 

P s∈L∣W ,h =max t∈W P s∈L, t∈W∣h

Ph = ∏
s∈L

P s∣W ,h

● Take the product of the match probabilities of the 
individual landmarks:

● Allow penalty terms for addition, deletion.

L.s = coordinate of 
shape s in Local map

W.t = coordinate of 
shape t in World map

h = location hypothesis
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Use Log Probabilities

● Multiplying lots of small numbers can lead to floating 
point underflow.

● Mathematical trick: we can replace a product of 
probabilities by a sum of log probabilities.

● The result will be a negative number. The more negative 
the sum, the smaller the product. So the “best” 
hypothesis is still the one with the maximum score, 
whether we're using products or sums of logs.

P h = ∑
s∈L

log P s∣h ,W 
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VeeTags Demo

● Root Control > Framework Demos > Navigation Demos 
> VeeTags
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Initial Location Unknown
● 2000 random particles (100 shown)

All weights initially 0.0
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Localize Using AprilTags

● Displays the 100 best scoring particles

Best score -4.49
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Importance Sampling

● For each particle h, calculate the probability P(h)

● Create a new generation of particles by resampling from 
the previous population:

– Particles with high probability should be more likely to be 
sampled, and will therefore multiply.

– Particles with low probability likely won't be sampled, and will 
therefore probably die out.

● The new particles' parameters are “jiggled” a little bit.  
This is how we search the space.

● Repeat this resampling process for several generations.
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Move To New Position
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Resample and Localize Again

Particle cloud collapses to a tightly packed cluster.
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Odometry
● Use odometry to update the robot's position between 

localization steps.

● Drag the particles along as the robot moves, but add 
noise to reflect uncertainty in the motion model.
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Uncertainty Grows With Motion

● Particle cloud expands as noise accumulates.
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SLAM

● Simultaneous Localization and Mapping

● When is this necessary?

– When we don't know the map in advance.

– When the world is changing (landmarks can appear or 
disappear, or change location.)

– When we're moving through the world.

● How do we localize on a map that we are still in the 
process of building?

● Motion model: estimates (by odometry) our motion 
through the environment.
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Addition Penalty

● A shape in the local map that isn't in the world map must 
be accounted for as an addition.

● Assess a penalty on P(h) for each addition, but remove 
that shape from the product term for P(h) so the product 
doesn't go to zero.

World map

Local map
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Deletion Penalty

● A shape in the world map that should be visible in the 
local map but isn't must be accounted for as a deletion.

● Assess a penalty on P(h) for each deletion, but remove 
that shape from the product term for P(h) so the product 
doesn't go to zero.

World map

Local map



02/16/11 15-494 Cognitive Robotics 25

What Shapes Should be Visible?

● Take bounding box of shapes in local space.

● All shapes within that box should be visible in world 
space.

Local map

World map
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When Objects Move

● If an object moves only a little bit, it will still match, and 
the position will be updated.

● If an object moves by a larger amount, we'll get:

– An object deletion at the old location

– An object addition at the new location

● Could watch for this and combine both changes into a 
single “move” penalty.

● If h is a poor hypothesis, then every object will appear to 
have “moved”.
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So What's In A SLAM Particle?
float dx, dy;

AngTwoPi orientation;

vector<bool> additions(numLocalShapes, false);

vector<bool> deletions(numWorldShapes, false);

Parameters to adjust:

– Number of particles (2000)

– Amount of noise to add to dx, dy, 

– Probability of flipping an add or delete bit
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Local and
World Maps
on the Robot

Local
Map

World
Map
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Localization
After 
Movement

Local
Map

World
Map
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Construct World Map

Three pieces on the board.  Let's delete one.
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Delete a Game Piece

Actual change: dx = 0 mm, dy =   0 mm,  = 0o, delete shape 30005
Particle filter:   dx = 9 mm, dy = 13 mm,  = -0.2o, delete shape 30005
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Construct World Map

Three pieces on the board.  Let's add one.
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Add a Game Piece

Actual change: dx = 0 mm, dy =   0 mm,  = 0o, add shape 20006
Particle filter:   dx = 2 mm, dy = -.5 mm,  = -0.6o, add shape 20006
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Construct World Map

Four pieces on the board.  Let's move, add, and delete.
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Change Position and Add/Delete

Actual change: dx = 670 mm, dy = -260 mm,  = 45o, add 20011, del. 30010
Particle filter:   dx = 678 mm, dy = -306 mm,  = 42o, add 20011, del. 30010
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How To Do Localization

● The Pilot handles odometry and localization for you.

● It looks in the world shape space to find landmarks.

● To localize:

       PilotNode($, PilotTypes::localize)

● The Pilot will localize automatically when it is navigating 
to a destination you specify.


