
02/06/11 15-494 Cognitive Robotics 1

Architectures for Robot Control

15-494 Cognitive Robotics
David S. Touretzky &
Ethan Tira-Thompson

Carnegie Mellon
Spring 2011

02/06/11 15-494 Cognitive Robotics 2

Why Is Robot Control Hard?

Coste-Maniere and Simmons (ICRA 2000):

● High-level, complex goals

– Assemble this water pump

– Cook my breakfast

● Dynamic (changing) environment

● Robot has dynamic constraints of its own
(don't fall over)

● Sensor noise and uncertainty

● Unexpected events (collisions, dropped objects, etc.)

02/06/11 15-494 Cognitive Robotics 3

Approaches To Control

1.Hierarchical: classic sense-plan-act
● “Top-down” approach

● Start with high level goals, decompose into subtasks

● Not very flexible

2.Behavioral
● “Bottom-up” approach

● Start with lots of independent modules executing concurrently,
monitoring sensor values and triggering actions.

● Hard to organize into complex behaviors; gets messy quickly.

3.Hybrid
● Deliberative at high level; reactive at low level

02/06/11 15-494 Cognitive Robotics 4

Levels of Control Problem

Robots pose multiple control problems, at different levels.

● Low-level control:

– Example: where to place a leg as robot takes its next step

– Generally, continuous-valued problems

– Short time scale (under a second); high frequency loop

● Intermediate level control:

– Navigating to a destination, or picking up an object.

– Continuous or discrete valued problems

– Time scale of a few seconds

● High level control:

– What is the plan for moving these boxes out of the room?

– Discrete problems, long time scale (minutes)

02/06/11 15-494 Cognitive Robotics 5

Low-Level Control Issues

● Real-time performance requirement

– Code to issue motor commands or process sensor readings
must run every so many milliseconds.

● Safety: avoid states with disastrous consequences

– Never turn on the rocket engine if the telescope is uncovered.

– Never fail to turn off the rocket engine after at most n seconds.

– Therac-25 accident (see IEEE Computer, July 1993)

– Safety properties sometimes provable using temporal logic.

● Liveness: every request must eventually be satisfied

● Deadlock-free

02/06/11 15-494 Cognitive Robotics 6

“Reactive” Architectures

● Sensors directly determine actions.

● In its most extreme form, stateless control.

● “Let the world be its own model.”

● Example: light-chasing robot:

light detectors

motors,
wheels

light source

(behavior chase-light
 :period (1 ms)
 :actions
 ((set left-motor (right-sensor-value))
 (set right-motor (left-sensor-value))))

02/06/11 15-494 Cognitive Robotics 7

Overriding a Behavior

● If robot loses sight of the light, turn clockwise until the
light comes back into view.

light source

light detectors

motors,
wheels

0?

(behavior chase-light
 :period (1 ms)
 :actions
 ((set left-motor (right-sensor-value))
 (set right-motor (left-sensor-value))))

(behavior find-light
 :overrides (chase-light)
 :test (0? (+ (left-sensor-value)
 (right-sensor-value)))
 :actions
 ((set left-motor 0.5)))

02/06/11 15-494 Cognitive Robotics 8

Light Chasing in a
State Machine Formalism

● States treated as equal alternatives.

● State is discrete, but control signal is continuous.

● “Find Light” has to know which state to return control to
when the light is found.

● Usually not parallel (but can be).

Chase
Light

Find
Light

Lost light

Found light

02/06/11 15-494 Cognitive Robotics 9

Rod Brooks' Subsumption Idea

● In 1986 Rod Brooks proposed the “subsumption”
architecture, a kind of reactive controller.

● Robot control program is a collection of little autonomous
modules (state machines).

● Hierarchy of layers of control.

● Some modules override (subsume)
 inputs or outputs of lower layer
 modules.

02/06/11 15-494 Cognitive Robotics 10

Genghis: Six-Legged Walker

02/06/11 15-494 Cognitive Robotics 11

Hannibal (Breazeal)

Three Distinct Insect Gaits:
(1) slow wave, (2) ripple,
(3) tripod

02/06/11 15-494 Cognitive Robotics 12

Coping With a Noisy World

● URBI (Baillie, 2005) provides a ~ operator to test if a
condition has held true for a certain duration.

● Onleave test is true when condition ceases to hold.

● You can build a
state machine
from these
primitives.

02/06/11 15-494 Cognitive Robotics 13

Guarded Commands vs.
Finite State Machines

whenever (foo_test) foo_action;

at (bar_test) bar_action; onleave baz_action;

foo
guard

foo
action

foo test

NullTrans

bar
guard

bar
action

bar test baz
action

! bar test

NullTrans

02/06/11 15-494 Cognitive Robotics 14

Why Is Complex State Bad?

● Can be expensive to compute (vision)

● Error-prone: what if you make a map, and it's wrong?

● Goes stale quickly: the world constantly changes

● But...

– Non-trivial intelligent behavior can't be achieved without
complex world state.

– You really do need a map of the environment.

– Can't use a subsumption architecture to play chess.

– Or even chase a ball well...

02/06/11 15-494 Cognitive Robotics 15

Chase Ball 1

● Cooperation between two simple processes:

– Point the camera at the ball

– Walk in the direction the camera is pointing

● Each process can execute independently.

● Purely reactive control.

02/06/11 15-494 Cognitive Robotics 16

Chase Ball 2

● If we lose sight of the ball, must look for it.

● Now we introduce some internal state:

Track
Ball

Follow
Head

Pan
Head

Lost sight Rotate
Body

Timeout

Timeout

 Found ball

02/06/11 15-494 Cognitive Robotics 17

Chase Ball 3

● More intelligent search: direction of turn should depend
on where the ball was last seen.

● Now we need to maintain world state (ball location).

02/06/11 15-494 Cognitive Robotics 18

Chase Ball 4
● Must avoid obstacles while chasing the ball.

– May need to move the head to look for obstacles.

– Attention divided between ball tracking and obstacle checking.

● May need to detour around obstacles.

– Subgoal “detouring” temporarily overrides “chasing”.

● Where will the ball be when the
detour is completed?

– Mapping, trajectory extrapolation...

Say “goodbye” to
reactive control!

02/06/11 15-494 Cognitive Robotics 19

Mid-Level Control:
Task Control Languages

● Takes the robot through a sequence of actions to
achieve some simple task.

● Must be able to deal with failures, unexpected events.

● There are many architectures for mid-level control.
Various design tradeoffs:

– Specialized language vs. extensions to Lisp or C

– Client/server vs. publish/subscribe communication model

– Provide special exception states, or treat all states the same?

– How to provide for and manage concurrency.

● Lots of languages/tools: RAPs, TCA, PRS, Propice, ESL,
MaestRo, TDL, Orccad, ControlShell, 3T, Circa.

02/06/11 15-494 Cognitive Robotics 20

Gat's ESL
● ESL: Execution Support Language (Gat, AAAI 1992; AAAI

Fall Symposium, 1996) provides special primitives for
handling failures and limiting retries.

(defun move-object-to-table ()
 (with-recovery-procedures
 ((:dropped-object :retries 2)
 (locate-dropped-object)
 (retry))
 (pick-up-object)
 (move-to-table)
 (put-down-object)))

(defun pick-up-object ()
 (open-gripper)
 (move-gripper-to-object)
 (close-gripper)
 (raise-arm)
 (if (gripper-empty)
 (fail :dropped-object)))

02/06/11 15-494 Cognitive Robotics 21

ESL (Continued)

● Cleanup procedures are necessary to ensure safe state
after failure.

● Deadlock prevention: ESL includes “resource locking”
primitives for mutual exclusion and deadlock prevention.

● Synchronization: “checkpoints” allow one process to wait
until another has caught up.

(with-cleanup-procedure
 ((shut-down-motors)
 (close-camera-port))
 (do-some-thing-that-might-fail))

02/06/11 15-494 Cognitive Robotics 22

High Level Control: Planning
“Deliberative” architectures may run slowly, infrequently.

– Path planning for navigation.

– Planning as problem solving: achieve (on A B) & (on B C) by
moving only one block at a time (gripper can't hold two blocks).

C

A

B C B

A

CA B CA

B

C

B

A

Greedy
algorithm

X
Start
State

Goal
State

02/06/11 15-494 Cognitive Robotics 23

Shakey the Robot (1968)
And The STRIPS Planner

02/06/11 15-494 Cognitive Robotics 24

Really High Level Control
● Can use cognitive modeling architectures such as SOAR

(Newell) or ACT-R (Anderson) to control robots.

● RoboSoar (Laird and Rosenbloom, 1990):
plan-then-compile architecture.

– Generate high level plan.

– Then compile into reactive rules for execution.

● ACT-R has been used in simulated worlds (Unreal
Tournament).

● Grubb and Proctor (2006): Tekkotsu interface for ACT-R.
Patton & Brudzinski (2009): ACT-R solving Towers of
Hanoi with the Tekkotsu planar hand/eye system.

02/06/11 15-494 Cognitive Robotics 25

Gat's Three-Level Architecture
● Gat (Artificial Intelligence and Mobile Robots, ch. 8, 1998)

proposed a different three-level architecture:

● The Controller:

– collection of reactive “behaviors”

– each behavior is fast and has minimal internal state

● The Sequencer

– decides which primitive behavior to run next

– doesn't do anything that takes a long time to compute, because
the next behavior must be specified soon

● The Deliberator

– slow but smart

– can either produce plans for the sequencer, or respond to
queries from it

02/06/11 15-494 Cognitive Robotics 26

What Does Tekkotsu Provide?

● Low-level control implemented by motion commands,
e.g., for walking.

● Mid-level control via state machine formalism can be
reactive or use a more hybrid approach.

● Behaviors can execute in parallel; event-based
communication follows a publish/subscribe model.

● Main/Motion dichotomy – but Motion is only for ultra-low-
level control.

● Specialized path planners for navigation and
manipulation, but no general high level control layer.

● Future plans: add a high level task planner to Tekkotsu.

02/06/11 15-494 Cognitive Robotics 27

The Tekkotsu “Crew”
● The Lookout controls the head:

– visual search

– target tracking

– obstacle detection

● The MapBuilder does vision

● The Pilot controls the body:

– walking, rotating in place

– path planning

– trajectory following

● The Grasper controls the arm

– grasping, pushing, toppling, flipping, etc.

02/06/11 15-494 Cognitive Robotics 28

Potential for Lookout/Pilot
Interactions

● The Lookout may need to turn the body in order to
conduct a visual search, when head motion alone isn't
enough.

– Lookout makes a request to the Pilot for a turn.

● The Pilot may need to ask the Lookout to locate some
landmarks so it can self-localize.

– Pilot makes a request to the Lookout for a search.

● Interactions must be managed to prevent deadlock,
infinite loops.

● But the user shouldn't have to worry about this.

02/06/11 15-494 Cognitive Robotics 29

Robot Cooperation
● An even higher level of control is cooperation among

multiple robots working as a team.

● Tekkotsu allows robots to communicate by subscribing to
each other's events.

● Can also subscribe to state updates using

 requestRemoteStateUpdates(ip, type, interval)

● This is only a low-level form of coordination, but
cooperation could be built on top of this.

doStart:
 int ip = EventRouter::stringToIntIP("172.16.0.4");
 erouter->addRemoteListener(this, ip, EventBase::motmanEGID);

doEvent:
 if (event.getHostID() == ip)
 cout << “Got remote event “ << event.getDescription() << endl;

02/06/11 15-494 Cognitive Robotics 30

Part II

State Machine Signalling
In Tekkotsu

02/06/11 15-494 Cognitive Robotics 31

Three Mechanisms for
Communication Among States

1) Sketch and shape spaces are shared across all states, so
sketches/shapes created by one state can be accessed
by another using GET_SKETCH and GET_SHAPE.

2) SignalTrans allows one state to send a message to
another as part of a transition, e.g., to send an int:

state1 =S<int>=> state2

3) Variables defined in a parent state can be accessed by
children using $provide and $reference.

02/06/11 15-494 Cognitive Robotics 32

1) Accessing Sketches, Shapes

$nodeclass state1 : VisualRoutinesStateNode : doStart {
 NEW_SKETCH(camFrame, uchar, sketchFromSeg());
 NEW_SKETCH(pinkx, bool, visops::colormask(camFrame,”pink”));
 NEW_SKETCH(pblobs, uint, visops::labelcc(pinkx));
}

$nodeclass state2 : VisualRoutinesStateNode : doStart {
 GET_SKETCH(pblobs, uint, camSkS);
 cout << “I found “ << pblobs->max() << “ blobs” << endl;
}

Variable pblobs goes out of scope upon exiting
state1::doStart, but the sketch it points to persists in
camSkS.

GET_SKETCH retrieves the sketch from camSKS and binds
a new local variable with that name so we can access it.

02/06/11 15-494 Cognitive Robotics 33

Using sketch->retain()

● NEW_SKETCH the makes sketch visible in the sketchGUI,
which protects from garbage collection.

● If you use NEW_SKETCH_N instead, must call retain() to
preserve the sketch when variable goes out of scope.

 $nodeclass state1 : VisualRoutinesStateNode: doStart {
 NEW_SKETCH_N(secret, uchar, ~sketchFromRawY());
 secret->retain();
 }

● To drop a retained sketch:

 secret->retain(false);

02/06/11 15-494 Cognitive Robotics 34

MapBuilder and retain()

● The MapBuilder automatically clears camSkS and
camShS at the start of each request.

● If you need to keep a sketch around across MapBuilder
calls, use retain().

● To clear sketches manually, including retained sketches,
call camSkS.clear() directly.

02/06/11 15-494 Cognitive Robotics 35

2) State Signaling

Two principal uses:

● Transmit an arbitrary value, e.g., a float or struct

● Implement an n-way branch. In this case the signal is an
enumerated type.

Both are implemented by posting a DataEvent<T> and
using a SignalTrans<T> to test for the event.

02/06/11 15-494 Cognitive Robotics 36

The variable event is automatically defined for you
and bound to the event that caused the transition
into this state. The extractSignal call will return a
default float value (0.0f) if event is not an instance
of DataEvent<float>.

Transmit an Arbitrary Signal

$nodeclass TransmitDemo : StateNode {

 $nodeclass Pitcher : StateNode : doStart {
 float x = ...; // some arbitrary computation
 postStateSignal<float>(x);
 }

 $nodeclass Catcher : StateNode : doStart {
 float val = extractSignal<float>(event);
 cout << “Message received: “ << val << endl;
 }

 $setupmachine{
 startnode: Pitcher =S<float>=> Catcher
 }

}

02/06/11 15-494 Cognitive Robotics 37

N-Way Branch

$nodeclass ChooseDemo : StateNode {
 enum choice {goLeft, goRight, goStraight};

 $nodeclass Chooser : StateNode : doStart {
 float x = rand()/(1.0f + RAND_MAX);
 if (x < 0.1) postStateSignale<choice>(goLeft);
 else if (x < 0.2) postStateSignal<choice>(goRight);
 else postStateSignal<choice>(goStraight);

 $setupmachine{
 startnode: Chooser
 startnode =S<choice>(goLeft)=>
 WalkNode($, 0, 0, 1, 0, WalkNode::DISP)
 startnode =S<choice>(goRight)=>
 WalkNode($, 0, 0, -1, 0. WalkNode::DISP)
 startnode =S<choice>(goStraight)=>
 WalkNode($, 100, 0, 0, 0, WalkNode::DISP)
 }

}

02/06/11 15-494 Cognitive Robotics 38

3) Parent-Defined Variables
$nodeclass SharedVarDemo : StateNode {
 $provide int counter;

 $nodeclass BumpIt : StateNode : doStart {
 $reference SharedVarDemo::counter;
 ++counter;
 }

 $nodeclass Report : StateNode : doStart {
 $reference SharedVarDemo::counter;
 cout << “Counter = “ << counter << endl;
 }

 virtual void doStart {
 counter = 0; // can't rely on constructor if called twice
 }

 $setupmachine{
 startnode: BumpIt =N=> BumpIt =N=> BumpIt =N=> Report
 }

}

02/06/11 15-494 Cognitive Robotics 39

More State Signaling

● postStateCompletion()

– Use the =C=> transition

– Indicates normal completion of the state's action.

● postStateFailure(), postStateSuccess()

– Use =F=> for abnormal completion, e.g., search failed.

– Use =S=> for a third outcome if =C=> already used

● postParentCompletion(), postParentFailure()

– Can be used to trigger a transition out of the parent node.

– This is how nested state machines can “return” to the
parent state machine.

02/06/11 15-494 Cognitive Robotics 40

When You Must Use =C=>

straight: HeadPointerNode[getMC()->setJoints(0,0,0)]
 =RND=> {left, right}

left: HeadPointerNode[getMC()->setJoints(0,0.5,0)]
 =T(5000)=> straight

right: HeadPointerNode[getMC()->setJoints(0,-0.5,0)]
 =T(5000)=> straight

What's the problem? The =RND=> transition won't wait for the
head motion to complete. Same for =N=> transition. Can only
use =C=> here.

