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What Makes
Object Recognition Hard?

 Translation invariance

« Scale invariance

« Rotation invariance (2D)

« Rotation invariance (3D)

e Occlusion

« Figure/ground segmentation (where is the object?)
« Articulated objects (limbs, scissors)
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Template Matching

« Simplest possible object recognition scheme.

« Compare template pixels against image pixels at each
Image position.

Template Match Score
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Template Matcher

Sketch<uint> templateMatch(const Sketch<uchar> &sketch,
Sketch<uchar> &kernel, int istart, int jstart, int width, int height)
{

Sketch<uint> result("templateMatch("+sketch->getName()+")",6sketch);
result->setColorMap(jetMapScaled);
int const npix = width * height;
int const di - (1int) (width/2);
int const dj - (int) (height/2);
for (int si=0; si<sketch.width; si++)
for (int sj=0; sj<sketch.height; sj++) {
int sum = 0;
for (int ki=0; ki<width; ki++)
for (int kj=0; kj<height; kj++) {
int kK pix = kernel(istart+ki,jstart+kj);
if ( si+di+ki >= 0 && si+di+ki < sketch.width &&
sj+dj+kj >= 0 && sj+dj+kj < sketch.height ) {
int s pix = sketch(si+di+ki,sj+dj+kj);
sum += (s pix - k pix) * (s pix - k pix);
}
else
sum += K pix * k pix;

}
result(si,sj) = uint (65535 - sqrt(sum/float(npix)));
}
result -= result->min();
return result;

}
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Limited Invariance Properties

Original Occluded Rotated

Sideways Diagonal
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Color Histograms (Swain)

i Color Inspector 3D {v2.0) /images/baboon400.jpg
File Options Help
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Object Classes

Test Images

Figure from M. A. Stricker,
http://www.cs.uchicago.edu/files/tr_authentic/TR-92-22.ps
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Blocks World Vision

* One of the earliest computer vision domains.

- Roberts (1965) used line drawings of block scenes: the first
“computer vision” program.

« Simplified problem because shapes were regular.

— Occlusions could be handled.

« Still a hard problem. No standard blocks world vision
package exists.
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AIBO Blocks World

« Matt Carson's senior thesis (CMU CSD, 2006).

« Goal: recover positions, orientations, and sizes of blocks.
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Find the
Block Faces
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Find the Block From the Faces
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SIFT (Lowe, 2004)

e« Scale-Invariant Feature Transform

« Can recognize objects independent of scale, translation,
rotation, or occlusion.

« Can segment cluttered scenes.

* Slow training, but fast recognition.
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How Does SIFT Work?

 Generate large numbers of features that densely cover
each training object at various scales and orientations.

« A500 x 500 pixel image may
generate 2000 stable features.

« Store these features in a library.

« For recognition, find clusters of features present in the
Image that agree on the object position, orientation, and
scale.
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SIFT Feature Generation

1) Scale-space extrema detection

> Use differences of Gaussians to find potential interest points.
2) Keypoint localization

> Fit detailed model to determine location and scale.
3) Orientation assignment

> Assign orientations based on local image gradients.

4) Keypoint descriptor

> Extract description of local gradients at selected scale.
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Gaussian Smoothing
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Difference of Gaussians:
Edge Detection
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Scale Space Extrema
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Figure 2: Maxima and minima of the difference-of-Gaussian images are detected by comparing a
pixel (marked with X) to its 26 neighbors in 3x3 regions at the current and adjacent scales (marked
with circles).
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Filtering the Features
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Figure 5: This 1 gure shows the stages of kKeypoint selection. {a) The 2353x189 pixel original image.
(b) The initial 832 keypoints locations at maxima and minima of the difference-of-Gaussian function.
Kevpoints are displaved as vectors indicating scale, orientation, and location. ¢y After applving
a threshold on minimum contrast, 729 kevpoints remain. (d) The final 336 kevpoints that remain
following an additional threshold on ratio of principal curvatures.
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Keypoint Descriptors
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Image gradients Keypoint descriptor

Figure 7: A kevpoint descriptor is created by first computing the gradient magnitude and orientation
at each image sample point in a region around the keypoint location, as shown on the left. These are
welghted by a Gaussian window, indicated by the overlaid circle. These samples are then accumulated
into orientation histograms summarizing the contents over 4x4 subregions, as shown on the right, with
the length of each arrow corresponding to the sum of the gradient magnitudes near that direction within
the region. This 1 gure shows a 2x2 descriptor array computed rom an 8xX set of samples, whereas
the experiments in this paper use 4x4 descriptors computed from a 16x16 sample array.
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Figure 13: This example shows location recognition within a complex scene. The training images for
locations are shown at the upper left and the 640x3 15 pixel test image taken from a different viewpoint
is on the upper right. The recognized regions are shown on the lower image. with kevpoints shown

as squares and an outer parallelogram showing the boundaries of the training images under the affi ne
transform used for recognition.
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Real-Time SIFT Example

 Fred Birchmore used SIFT to recognize soda cans.

http://eyecanseecan.blogspot.com/

See demo
videos on
his blog.
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SIFT In Tekkotsu

« Lionel Heng did a SIFT implementation as his class
project in 2006.

« Xinghao Pan is implementing a SIFT tool for Tekkotsu:

- Allow users to construct libraries of objects

- Each object has a collection of representative images

- User can control which SIFT features to use for matching
- Java GUI provides for easy management of the library

 How to integrate SIFT with the dual coding system?

- Object scale can be used to estimate distance
- Match in camera space must be converted to local space
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bject Recognition in the Brain
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Object Recognition in the Brain

« Mishkin & Ungerleider: dual visual pathways.

- The dorsal, “where” pathway lies in parietal cortex.
- The ventral, “what” pathway lies in temporal cortex.

- Lesions to these areas yield very specific effects.
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Serre & Poggio (PAMI 2007):
Model Based on Temporal Cortex
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To Learn More About
Computer and Biological Vision

Take Tai Sing Lee's Computer Vision class, 15-385.

 Take Tai Sing Lee's Computational Neuroscience class,
15-490.

 Take Mike Lewicki's Computational Perception and Scene
Analysis class, 15-485.

 There are many books on this subject. One of the
classics is “Vision” by David Marr.
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