Planar Graphs in 21/2 Dimensions

Don Sheehy

$2^{1} / 2$ Dimensions

Cast of Characters

James Clerk Maxwell

Luigi Cremona

W. T. Tutte

Planar Graphs

Planar Graphs

Duality

Polar Polytopes

$$
A^{\circ}=\left\{x \in \mathbb{R}^{d} \mid a \cdot x \leq 1, \forall a \in A\right\}
$$

The Maxwell-Cremona Correspondence

Equilibrium Stresses

The Maxwell-Cremona Correspondence

There is a 1-1 correspondence between "proper" liftings and equilibrium stresses of a planar straight line graph.

The Maxwell-Cremona Correspondence

Reciprocal Diagrams from Equilibrium Stresses

Reciprocal Diagrams from Liftings

The Maxwell-Cremona Corresondence

Equilibrium Stresses

Reciprocal Diagrams

Liftings

Other Famous Reciprocal Diagrams

Weighted Delaunay Triangulation
$21 / 2$ dimensional polarity

Weighted Voronoi Diagram

How to Draw a Graph

Tutte's Algorithm

1. Fix one face of a simple, planar, 3-connected graph in convex position.
2. Place each other vertex at the barycenter (centroid) of its neighbors.
The result is a non-crossing, convex drawing.

Spring Interpretation

Computing Forces

$$
\begin{aligned}
F_{v} & =\sum_{u \sim v}(v-u) \\
& =d_{v} v-\sum_{u \sim v} u
\end{aligned}
$$

$$
F=L V
$$

$$
L=D-A
$$

degrees
adjacency
The Laplacian!

Computing Forces

$$
\begin{aligned}
L V=F=0 ? & \begin{array}{l}
V_{1}: \text { boundary } \\
V_{2}: \text { interior }
\end{array} \\
{\left[\begin{array}{cc}
L_{1} & B^{T} \\
B & L_{2}
\end{array}\right]\left[\begin{array}{c}
V_{1} \\
V_{2}
\end{array}\right] } & =\left[\begin{array}{c}
F^{\prime} \\
0
\end{array}\right] \\
B V_{1}+L_{2} V_{2} & =0 \\
V_{2} & =\left(-L_{2}^{-1} B\right) V_{1}
\end{aligned}
$$

Pick a direction and a vertex. There is a monotone path in that direction from the vertex to the boundary.

Planar, 3-Connected Graphs
\Rightarrow No K_{5} or $\mathrm{K}_{3,3}$ minors

- Removing a face does not disconnect the graph.

- No face has a diagonal.

Double Crossing a Face

Lemma: No two disjoint paths have interleaved endpoints on a face.

Tutte's Algorithm
No ZigZags

Tutte's Algorithm

No Crossings

Tutte's Algorithm No Overlaps

Tutte and Maxwell-Cremona

- Weirdness on the outer face.
- Lifting still works, except outer face.
- Lifting is convex.

Steinitz's Theorem

Steinitz's Theorem

A graph G is the 1-skeleton of a 3 -polytope if and only if it is simple, planar, and 3-connected.

Steinitz's Theorem

Claim: If the graph has a triangle, then the Tutte embedding followed by the MaxwellCremona lifting gives the desired polytope.

Fix the triangle as the outer face.
After the lifting, the triangle must lie on a plane.

Steinitz's Theorem

Question: What if there is no triangle?
 Answer: Dualize (the dual has a triangle)

Steinitz's Theorem

$$
|V|-|E|+|F|=2
$$

Lemma: Every 3-connected, planar graph has a triangle or a vertex of degree 3 .

$$
|E|=\frac{1}{2} \sum_{v \in V} \delta(v)
$$

$$
\forall v \quad \delta(v) \geq 4 \Rightarrow|E| \geq 2|V|
$$

(No degree 3)

$$
\forall f \quad|f| \geq 4 \Rightarrow|E| \geq 2|F| \quad \text { (No triangles) }
$$

$$
\frac{|E|}{2}-|E|+\frac{|E|}{2} \geq 2
$$

$$
0 \geq 2
$$

Steinitz's Theorem

So, with the Tutte embedding and the MaxwellCremona Correspondence, we can construct a polytope with 1 -skeleton isomorphic to either the graph or its dual.

If we have the dual, polarize.

[Eades, Garvan 1995]

A Tour of Other Stuff

Rigidity and Unfolding

[Connelly, Demaine, Rote, 2000]

Greedy Routing

[Morin, 2001]

[Papadimitriou, Ratajczak, 2004]

Robust Geometric Computing

[Hopcroft and Kahn 1992]

Spectral Embedding

Correspondence between Colin de Verdiere matrices and Steinitz representations

The construction will start with the polar polytope. Let $G^{*}=\left(V^{*}, E^{*}\right)$ denote the dual graph of G.

Lemma 4 We can assign a vector w_{f} to each $f \in V^{*}$ so that whenever $i j \in E$ and $f g$ is corresponding edge of G^{*}, then

$$
\begin{equation*}
w_{f}-w_{g}=M_{i j}\left(u_{i} \times u_{j}\right) \tag{2}
\end{equation*}
$$

It's Maxwell-Cremona

Proof. Let $v_{f g}=M_{i j}\left(u_{i} \times u_{j}\right)$. It suffices to show that the vectors $v_{f g}$ sum to 0 over the edges of any cycle in G^{*}. Since G^{*} is a planar graph, it suffices to verify this for the facets of G^{*}. Expressing this in terms of the edges of G, it suffices to show that

$$
\sum_{j \in N(i)} M_{i j}\left(u_{i} \times u_{j}\right)=0
$$

(where, as usual, $N(i)$ denotes the set of neighbors of i). But this follows from (1) upon multiplying by u_{i}, taking into account that $u_{i} \times u_{i}=0$ and $M_{i j}=0$ for $j \notin N(i) \cup\{i\}$.

Thank you.

Questions?

