Planar Graphs in 2¹/₂ Dimensions

Don Sheehy

$2^{1/2}$ Dimensions

Cast of Characters

Ernst Steinitz

James Clerk Maxwell

Luigi Cremona

W. T. Tutte

Planar Graphs

Polar Polytopes

 $A^{\circ} = \{ x \in \mathbb{R}^d \mid a \cdot x \le 1, \forall a \in A \}$

The Maxwell-Cremona Correspondence

Equilibrium Stresses

The Maxwell-Cremona Correspondence

There is a 1-1 correspondence between "proper" liftings and equilibrium stresses of a planar straight line graph.

The Maxwell-Cremona Correspondence

Reciprocal Diagrams from Equilibrium Stresses

Reciprocal Diagrams from Liftings

How to Draw a Graph

Tutte's Algorithm

1. Fix one face of a simple, planar, 3-connected graph in convex position.

2. Place each other vertex at the barycenter (centroid) of its neighbors.

The result is a non-crossing, convex drawing.

Spring Interpretation

Computing Forces

Computing Forces

 $\begin{bmatrix} L_1 & B^T \\ B & L_2 \end{bmatrix} \begin{bmatrix} V_1 \\ V_2 \end{bmatrix} = \begin{bmatrix} F' \\ 0 \end{bmatrix}$

$$BV_1 + L_2 V_2 = 0$$
$$V_2 = (-L_2^{-1}B)V_1$$

Monotone Paths

Pick a direction and a vertex. There is a monotone path in that direction from the vertex to the boundary.

Planar, 3-Connected Graphs

→ No K_5 or $K_{3,3}$ minors

- Removing a face does not disconnect the graph.
- ➡ No face has a diagonal.

Tutte and Maxwell-Cremona

- → Weirdness on the outer face.
- ➡ Lifting still works, except outer face.
- ➡ Lifting is convex.

A graph *G* is the 1-skeleton of a 3-polytope if and only if it is simple, planar, and 3-connected.

Claim: If the graph has a triangle, then the Tutte embedding followed by the Maxwell-Cremona lifting gives the desired polytope.

Fix the triangle as the outer face.

After the lifting, the triangle must lie on a plane.

Question: What if there is no triangle? Answer: Dualize (the dual has a triangle)

$$|V| - |E| + |F| = 2$$

$$|E| = \frac{1}{2} \sum_{v \in V} \delta(v)$$

$$|E| = \frac{1}{2} \sum_{f \in F} |f|$$

Lemma: Every 3-connected, planar graph has a triangle or a vertex of degree 3.

$$orall v \quad \delta(v) \ge 4 \Rightarrow |E| \ge 2|V| \quad ext{(No degree 3)}$$
 $orall f \mid \ge 4 \Rightarrow |E| \ge 2|F| \quad ext{(No triangles)}$

$$\frac{|E|}{2} - |E| + \frac{|E|}{2} \ge 2$$
$$0 \ge 2$$

degree 3)

So, with the Tutte embedding and the Maxwell-Cremona Correspondence, we can construct a polytope with 1-skeleton isomorphic to *either* the graph *or* its dual.

If we have the dual, *polarize*.

[Eades, Garvan 1995]

A Tour of Other Stuff

Rigidity and Unfolding

[Connelly, Demaine, Rote, 2000]

Greedy Routing

[Morin, 2001]

[Papadimitriou, Ratajczak, 2004]

Robust Geometric Computing

[Hopcroft and Kahn 1992]

Spectral Embedding

Correspondence between Colin de Verdiere matrices and Steinitz representations [Lovasz, 2000]

The construction will start with the polar polytope. Let $G^* = (V^*, E^*)$ denote the dual graph of G.

Lemma 4 We can assign a vector w_f to each $f \in V^*$ so that whenever $ij \in E$ and fg is corresponding edge of G^* , then

$$w_f - w_g = M_{ij}(u_i \times u_j). \tag{2}$$

Proof. Let $v_{fg} = M_{ij}(u_i \times u_j)$. It suffices to show that the vectors v_{fg} sum to 0 over the edges of any cycle in G^* . Since G^* is a planar graph, it suffices to verify this for the facets of G^* . Expressing this in terms of the edges of G, it suffices to show that

$$\sum_{j\in N(i)}M_{ij}(u_i\times u_j)=0$$

(where, as usual, N(i) denotes the set of neighbors of i). But this follows from (1) upon multiplying by u_i , taking into account that $u_i \times u_i = 0$ and $M_{ij} = 0$ for $j \notin N(i) \cup \{i\}$.

It's Maxwell-Cremona

Thank you.

Questions?