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21/2 Dimensions
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Cast of Characters

James Clerk Maxwell

Luigi Cremona

Ernst Steinitz

W. T. Tutte
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Planar Graphs
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Planar Graphs
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Duality
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Polar Polytopes

A◦
= {x ∈ R

d | a · x ≤ 1,∀a ∈ A}
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The Maxwell-Cremona 
Correspondence
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Equilibrium Stresses
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The Maxwell-Cremona Correspondence

There is a 1-1 correspondence between 
“proper” liftings and equilibrium stresses 

of a planar straight line graph.
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The Maxwell-Cremona Correspondence
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Reciprocal Diagrams from Equilibrium Stresses
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Reciprocal Diagrams from Liftings
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The Maxwell-Cremona Corresondence

Equilibrium Stresses

Reciprocal Diagrams

Liftings
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Other Famous Reciprocal Diagrams

Delaunay Triangulation

Voronoi Diagram

2½ dimensional polarity

Weighted

Weighted
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How to Draw a Graph
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Tutte’s Algorithm

1. Fix one face of a simple, planar, 3-connected 
graph in convex position.

2. Place each other vertex at the barycenter 
(centroid) of its neighbors.

The result is a non-crossing, convex drawing.

17



Spring Interpretation
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Computing Forces

v ∈ R
2

Fv =
∑

u∼v

(v − u)

L = D − A

= dvv −

∑

u∼v

u

F = LV

degrees adjacency

The Laplacian!

v
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Computing Forces

LV = F = 0?

[

L1 BT

B L2

] [

V1

V2

]

=

[

F ′

0

]

BV1 + L2V2 = 0

V2 = −L
−1

2
B V1(          )

V1: boundary
V2: interior
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Monotone Paths
Pick a direction and a vertex.  
There is a monotone path in 
that direction from the vertex 
to the boundary.
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Planar, 3-Connected Graphs

➡ No K5 or K3,3 minors

➡ Removing a face does not 

disconnect the graph.

➡ No face has a diagonal.
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Double Crossing a Face
Lemma: No two disjoint 

paths have interleaved 

endpoints on a face.
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Tutte’s Algorithm

No ZigZags
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Tutte’s Algorithm

No Crossings
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Tutte’s Algorithm

No Overlaps
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Tutte and Maxwell-Cremona

➡ Weirdness on the outer face.

➡ Lifting still works, except outer face.

➡ Lifting is convex.
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Steinitz’s Theorem
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Steinitz’s Theorem

A graph G is the 1-skeleton of a
3-polytope if and only if it is 

simple, planar, and 3-connected.
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Steinitz’s Theorem

Claim: If the graph has a triangle, then the 
Tutte embedding followed by the Maxwell-
Cremona lifting gives the desired polytope.

Fix the triangle as the outer face.

After the lifting, the triangle must lie on a plane.
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Steinitz’s Theorem

Question: What if there is no triangle?

Answer: Dualize (the dual has a triangle)
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Steinitz’s Theorem
Lemma: Every 3-connected, 
planar graph has a triangle 
or a vertex of degree 3.|V |− |E| + |F | = 2

|E| =
1

2

∑

v∈V

δ(v)

|E| =
1

2

∑

f∈F

|f |

∀v δ(v) ≥ 4 ⇒ |E| ≥ 2|V |

∀f |f | ≥ 4 ⇒ |E| ≥ 2|F |

(No degree 3)

(No triangles)

|E|

2
− |E| +

|E|

2
≥ 2

0 ≥ 2

32



Steinitz’s Theorem

So, with the Tutte embedding and the Maxwell-

Cremona Correspondence, we can construct a 

polytope with 1-skeleton isomorphic to either 

the graph or its dual.

If we have the dual, polarize.

[Eades, Garvan 1995]
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A Tour of Other Stuff
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Rigidity and Unfolding

[Connelly, Demaine, Rote, 2000]
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Greedy Routing

[Papadimitriou, Ratajczak, 2004]

[Morin, 2001]
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Robust Geometric Computing

[Hopcroft and Kahn 1992]
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Spectral Embedding

[Lovasz, 2000]

Correspondence between Colin de Verdiere 
matrices and Steinitz representations

It’s Maxwell-Cremona
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...
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Thank you.
Questions?
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