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Abstract. Consider a planar linkage, consisting of disjoint polygonal arcs and cycles of
rigid bars joined at incident endpoints (polygonal chains), with the property that no cy-
cle surrounds another arc or cycle. We prove that the linkage can be continuously moved
so that the arcs become straight, the cycles become convex, and no bars cross while pre-
serving the bar lengths. Furthermore, our motion is piecewise-differentiable, does not de-
crease the distance between any pair of vertices, and preserves any symmetry present in
the initial configuration. In particular, this result settles the well-studied carpenter’s rule
conjecture.

1. Introduction

A planar polygonal arc or open polygonal chain is a sequence of finitely many line
segments in the plane connected in a path without self-intersections. It has been an
outstanding question as to whether it is possible to move a polygonal arc continuously in
such a way that each edge remains a fixed length, there are no self-intersections during
the motion, and at the end of the motion the arc lies on a straight line. This has come to
be known as the carpenter’s rule problem. A related question is whether it is possible to
move a polygonal simple closed curve continuously in the plane, often called a closed
polygonal chain or polygon, again without creating self-intersections or changing the
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Fig. 1. Two views of convexifying a polygon that comes from doubling each edge in a locked tree. The top
snapshots are all scaled the same, and the bottom snapshots are scaled differently to improve visibility. More
aminations can be seen at the world-wide-web pages of the first author.1

lengths of the edges, so that it ends up a convex closed curve (see Fig. 1). We solve both
problems here by showing that in both cases there is such a motion.

Physically, we think of a polygonal arc as a linkage or framework with hinges at its
vertices, and rigid bars at its edges. The hinges can be folded as desired, but the bars must
maintain their length and cannot cross. Motions of such linkages have been studied in
discrete and computational geometry [BDD+1], [Erd], [Grü],[LW3], [Nag], [O’R], [Sal],
[Tou], [Weg1], [Weg2], [Whi7], in knot theory [CJ], [Mil], and in molecular biology
and polymer physics [FK], [MOS], [McM], [Mil], [SW], [SG], [Whi8]. Applications
of this field include robotics, wire bending, hydraulic tube folding, and the study of
macromolecule folding [O’R], [Tou].

We say an arc is straightened by a motion if at the end of the motion it lies on a straight
line. We say a polygonal simple closed curve (or cycle) is convexified by a motion if at
the end of the motion it is a convex closed curve. All motions must be proper in the sense
that no self-intersections are created, and each edge length is kept fixed. It is easy to see
that if any cycle can be convexified by a motion, then any arc can be straightened by a
motion: simply extend the arc to a cycle and convexify it. It is then easy to straighten the
portion of the cycle that is the original arc.

It seems intuitively easy to straighten an entangled chain: just grab the ends and pull
them apart. Similarly, a cycle might be opened by blowing air into it until it expands.
However, these methods have the difficulty that they might introduce singularities, where
the arc or cycle intersects itself. Our approach is to use an expansive motion in which
all distances between two vertices increase. We also show that the area of a polygon
increases in such an expansive motion.

We consider the more general situation, which we call an arc-and-cycle set A, con-
sisting of a finite number of polygonal arcs and polygonal cycles in the plane, with none
of the arcs or cycles intersecting each other or having self-intersections. We say that A
is in an outer-convex configuration if each component of A that is not contained in any

1 Currently, http://theory.lcs.mit.edu/∼edemaine/linkage/.
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Fig. 2. (a) The nested arc cannot be straightened because there is insufficient space in the containing cycle.
(b) Once the containing cycle becomes convex, any expansive motion must move the arc and the cycle rigidly
in unison.

cycle of A is either straight (when it is an arc) or convex (when it is a cycle). The best we
can hope for, in general, is to bring an arc-and-cycle set to an outer-convex configuration,
because components nested within cycles cannot always be straightened or convexified;
see Fig 2(a).

We say that a motion of an arc-and-cycle set A is expansive if for every pair of vertices
of A the distance is monotonically nondecreasing over time, at all times either increasing
or staying the same. In any expansive motion, once a cycle becomes convex, the cycle
and any components it contains become a single rigid object; see Fig. 2(b). (This fact is a
consequence of Cauchy’s Arm Lemma [Cau], [Cro, Chapter 6, pp. 219–247], [SZ].) Also,
once two incident bars become collinear, they will remain so throughout any expansive
motion, effectively acting as a single bar. We say that a motion is strictly expansive if the
distance is constant between two vertices connected by a bar or straight chain of bars, and
between two vertices on the boundary of or interior to a common convex cycle, but the
distance between all other pairs of vertices monotonically strictly increases over time.

We say that the arc-and-cycle set A has separated if there is a line L in the plane such
that L is disjoint from A and at least one component of A lies on each side of L . Our
main result is the following:

Theorem 1. Every arc-and-cycle set has a piecewise-differentiable proper motion to
an outer-convex configuration. Moreover, the motion is strictly expansive until the arc-
and-cycle set becomes separated.

We can also extend this result to insist that the motion be strictly expansive throughout
the entire motion:

Theorem 2. Every arc-and-cycle set has a strictly expansive piecewise-differentiable
proper motion to an outer-convex configuration.

For Theorem 2, the definition of the motion is actually even simpler than the one we
use for Theorem 1, but unfortunately the proof is a great deal more complex. Thus we
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Table 1. Summary of what types of linkages can be locked.

Dimension Arcs and cycles Trees

Two Not lockable [Theorem 1] Lockable [BDD+2]
Three Lockable [BDD+1], [CJ] Lockable [BDD+1], [CJ]
Four and higher Not lockable [CO1], [CO2] Not lockable [CO2]

focus on the proof of Theorem 1. Theorem 2 has a similar proof outline, but it relies on a
Boundedness Lemma (Lemma 10) whose proof is complicated. We refer the interested
reader to the technical report [CDR2] for a proof of the Boundedness Lemma, and here
describe only how it is used to obtain Theorem 2. Note that Theorems 1 and 2 only
differ when there is more than one component in the arc-and-cycle set; the Boundedness
Lemma is straightforward for a single arc or cycle.

In contrast to our results, in dimension three there are arcs that cannot be straightened
and polygons that cannot be convexified [BDD+1], [CJ], see Table 1. In four and higher
dimensions, no arcs, cycles, or trees can be locked, i.e., all arcs, cycles, or trees can be
straightened or convexified, respectively. This is true because there are enough degrees of
freedom and one can easily avoid any impending self-intersection by “moving around”
it. An explicit unlocking algorithm for arcs and cycles in four dimensions was given
in [CO1].

In the plane there are examples of trees embedded in the plane that are locked in
the sense that they cannot be properly moved so that the vertices lie nearly on a line
[BDD+2]. In other words, there are two embeddings of the tree such that there is no
proper motion from one configuration to the other. The important difference between
trees and arc-and-cycle sets is that arc-and-cycle sets have maximum degree two. We
have recently strengthened the example of [BDD+2] by constructing a locked tree with
just one vertex of degree three and all other vertices of degree one or two [CDR3]. This
shows that the restriction to arc-and-cycle sets in Theorem 1 is best possible.

Whether every arc in the plane can be straightened, and whether every polygon in the
plane can be convexified, have been outstanding open questions until now. The problems
are natural, so they have arisen independently in a variety of fields, including topology,
pattern recognition, and discrete geometry. We are probably not aware of all contexts
in which the problem has appeared. To our knowledge, the first person to pose the
problem of convexifying cycles was Stephen Schanuel. George Bergman learned of the
problem from Schanuel during Bergman’s visit to the State University of New York at
Buffalo in the early 1970s, and suggested the simpler question of straightening arcs. As
a consequence of this line of interest, the problems are included in Kirby’s Problems in
Low-Dimensional Topology [Kir, Problem 5.18].

During the period 1986–1989, Ulf Grenander and the members of the Pattern The-
ory Group at Brown University explored various problems involving the probabilistic
structure when generators (e.g., points and line segments) were transformed by diffeo-
morphisms (e.g., Euclidean transformations) subject to global constraints (e.g., avoiding
intersections). For the purposes of Bayesian image understanding, they were interested
in whether the process was ergodic, i.e., every configuration could be reached from any
other. In particular, they proved this for polygonal cycles in which the roles of angles
and lengths are reversed: angles are fixed but lengths may vary [GCK, Appendix D,
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pp. 108–128]. Grenander posed the problems considered here in a seminar talk with the
title “Can one understand shapes in nature?” at Indiana University, on March 27, 1987,
and probably also on earlier occasions (according to personal communication with Allan
Edmonds).

In the discrete and computational geometry community, the problems were inde-
pendently posed by William Lenhart and Sue Whitesides in March 1991 and by Joseph
Mitchell in December 1992 (according to personal communications with Sue Whitesides
and Joseph Mitchell). Sue Whitesides first posed this problem in a talk in 1991 [LW1].
In this community the problems were first published in a technical report in 1993 [LW2]
and in a journal in 1995 [LW3].

Solutions were already known for the special cases of monotone cycles [BDL+] and
star-shaped cycles [ELR+], and for certain types of “externally visible” arcs [BDST].

A fairly large group of people, mentioned in the Acknowledgments, was involved in
trying to construct and prove or disprove locked arcs and cycles at various times over
the past few years. Typically, someone in the group would distribute an example that
they constructed or was given by a colleague. We would try various motions that did not
work, and we would often try proving that the example was locked because it appeared
so! For some examples, it took several months before we found an unlocking motion.
The main difficulty was that “simple” motions that change a few vertex angles at once,
while easiest to visualize, seemed to be insufficient for unlocking complex examples.
Amazingly, it also seemed that nevertheless there was always a global unlocking motion,
and furthermore it was felt that there was a driving principle permitting “blowing up” of
the linkage. This notion was formalized by the third author with the idea that perhaps an
arc could be straightened via an expansive motion.

The tools that are applied here for the first time come from the theory of mechanisms
and rigid frameworks. Arcs and cycles can be regarded as frameworks. See [AR1],
[AR2], [Con1]–[Con3], [CW1]–[CW4], [GSS], [RW], and [Whi2]–[Whi6] for relevant
information about this theory.

Our approach is to prove that for any configuration there is an infinitesimal motion that
increases all distances. Because of the nature of the arc-and-cycle set, this implies that
there is a motion that works at least for a small expansive perturbation. We then combine
these local motions into one complete motion. These notions are described in the rest of
this paper. Section 3 proves the existence of infinitesimal motions using the nonexistence
of certain stresses, a notion dual to infinitesimal motions for the underlying framework.
The analysis of these stresses uses a lifting theorem from the theory of rigidity that
was known to James Clerk Maxwell and Luigi Cremona [CW2], [CW3], [Whi1] in the
nineteenth century. Section 4 shows how to maneuver through the space of local motions
to find a global motion with the desired properties.

A short version of this paper was presented at the 41st Annual Symposium on Foun-
dations of Computer Science in November 2000 [CDR1].

2. Basics

A linkage or bar framework G(p) is a finite graph G = (V, E) without loops or multiple
edges, together with a corresponding configuration p = (p1, . . . , pn) of n distinct points
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in the plane, where pi corresponds to vertex i ∈ V . (For convenience we assume V =
{1, . . . , n}.) The edges of G constitute the set E and correspond to the bars in the
framework, i.e., the links of a linkage. Arc-and-cycle sets are a particular kind of bar
framework in which the graph G is a disjoint union of paths and cycles.

A flex or motion of G(p) is a set of continuous functions p(t) = (p1(t), . . . , pn(t)),
defined for 0 ≤ t ≤ 1, such that p(0) = p and the Euclidean distance ‖pi (t) − pj (t)‖ is
constant for each {i, j} ∈ E . We are interested in finding a motion of the arc-and-cycle
set with the additional property that it is strictly expansive.

2.1. Expansiveness

We begin with some basic properties of expansive motions. Namely, we will show that if
a motion expands the distance between all pairs of vertices, it also expands the distance
between all pairs of points on the arc-and-cycle framework. One consequence of this
property is a key reason why we use expansive motions: they automatically avoid self-
intersection. To prove the property, we need the following known basic geometric tool,
which will also be useful later:

Lemma 1. In the plane suppose that a point c is contained in the closed triangle
p1p2p3, and p1 and p2 are farther from another point q3 than from p3, i.e.,

‖q3 − p2‖ ≥ ‖p3 − p2‖ and ‖q3 − p1‖ ≥ ‖p3 − p1‖. (1)

Then c is also farther from q3 than from p3, i.e., ‖q3 − c‖ ≥ ‖p3 − c‖, with equality only
if both inequalities of (1) are equalities.

Proof. Refer to Fig. 3. The circular disk C0 centered at c with radius ‖p3 − c‖ is
contained in the union of the circular disks C1 with center p1 and radius ‖p3 − p1‖, and

Fig. 3. Illustration of Lemma 1.
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Fig. 4. Illustration of the three cases of Corollary 1: (left) two vertices p1, p2; (middle) one vertex p3 and
one point c on a bar p1p2; (right) one point c on a bar p1p2 and another point d on a bar p4p5. Bold edges
denote bars, and arrows denote expansion; dashed arrows are derived from solid arrows.

C2 with center p2 and radius ‖p3 − p2‖. This implies the result, because q3 must be
outside C1 and C2. See also [Con2] for a proof in terms of tensegrities.

Corollary 1. Any expansive motion of an arc-and-cycle set only increases the distance
between two points on the arc-and-cycle set (each either a vertex or on a bar). In
particular, there can be no self-intersections.

Proof. Refer to Fig. 4. First, the result is obvious if the two points are both vertices
of the arc-and-cycle set, by definition of expansiveness. Second, consider the distance
between a vertex p3 of the arc-and-cycle set and a point c on a bar p1p2 of the arc-
and-cycle set. Expansiveness implies that p3 only gets farther from p1 and p2, so, by
Lemma 1, p3 only gets farther from c. Third, consider the distance between c (again on
the bar p1p2) and another point d on a bar p4p5 of the arc-and-cycle set. Substituting
p4 and p5 as options for p3 in the previous argument, we know that p4 and p5 only get
farther from c. Applying Lemma 1 with c playing the role of p3, we obtain that c can
only get farther from d.

2.2. The Framework G A(p)

Given an arc-and-cycle set A that we would like to move to an outer-convex configuration,
we make four modifications to A. The first three modifications simplify the problem by
removing a few special cases that are easy to deal with; see Fig. 5. The fourth modification
brings the problem of finding a strictly expansive motion into the area of tensegrity theory.
In the end we will have defined a new framework, G A(p), which we will use throughout
the rest of the proof.

Modification 1: Remove straight vertices. First we show that our arc-and-cycle set
can be assumed to have no straight vertices, i.e., vertices with angle π . Furthermore,
if during an expansive motion of the arc-and-cycle set we find that a vertex becomes
straight, we can proceed by induction. For once the arc-and-cycle set has a straight subarc
of more than one bar, we can coalesce this subarc into a single bar, thereby preserving the
straightness of the subarc throughout the motion once it becomes straight. This reduces
the number of bars and the number of vertices in the framework. By induction, this
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Fig. 5. (a) Original arc-and-cycle framework. (b) With straight vertices removed. (c) With convex cycles
rigidified. (d) With components nested within convex cycles removed.

reduced framework has a motion according to Theorem 1, and such a motion extends
directly to the original framework. The resulting motion is also strictly expansive by
Corollary 1.

Modification 2: Rigidify convex polygons. Once a cycle becomes convex, we no
longer have to expand it, indeed it is impossible to expand, so we hold it rigid from
that point on. Of course, we allow a convex cycle to translate or rotate in the plane,
but its vertex angles are not allowed to change. This can be directly modeled in the bar
framework by introducing bars in addition to the arc-and-set cycle. Specifically, we add
the edges of a triangulation of a cycle once that cycle becomes convex. We deal with the
contents of the cycle in the next modification.

Modification 3: Remove components nested within convex cycles. The previous
modification did not address the fact that components can be nested within cycles. Once
a cycle becomes convex, not only can we rigidify it, but we can also rigidify any nested
components, and treat them as moving in synchrony with the convex cycle. We do this by
removing from the framework any components nested within a convex cycle. Assuming
there were some nested components to deal with, this results in a framework with fewer
vertices and fewer bars. By induction, this reduced framework has a motion according to
Theorem 1. This motion can be extended to apply to the original framework by defining
nested components to follow the rigid motion of the containing convex cycle (rigid by
Modification 2). By the following consequence of Lemma 1, the resulting motion is also
strictly expansive.
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Lemma 2. Extending a motion to apply to components nested within convex cycles
preserves strict expansiveness.

Proof. Consider some vertex c on a component inside some convex cycle, and a vertex
p3 outside the cycle. We first consider the case that p3 does not lie inside another convex
cycle. Extend the ray from p3c beyond c, and let p1p2 be the edge through which this ray
exits the cycle. Thus, c is in the triangle p1, p2, p3, so Lemma 1 applies, and the distance
p3c increases.

For two points c1 and c2 in two different cycles C1 and C2, we extend the ray c1c2 to
identify the edge p1p2 on C2 where the ray leaves C2. From the first part of the proof we
conclude that c1p1 and c1p2 increase, and, by Lemma 1, the distance c1c2 increases.

Modification 4: Add struts. In order to model the expansive property we need, we
apply the theory of tensegrity frameworks, in which frameworks can consist of both
bars and “struts.” In contrast to a bar, which must stay the same length throughout a
motion, a strut is permitted to increase in length, or stay the same length, but cannot
shorten. The last modification adds a strut between nearly every pair of vertices in the
framework. The exceptions are those vertices already connected by a bar, and vertices on
a common convex cycle, because in both cases we cannot hope to increase the distance
strictly.

Final framework: G A(p). The above modifications define a tensegrity (bar-and-strut)
framework G A(p) in terms of the arc-and-cycle set A. Specifically, assume that A has
no straight vertices (Modification 1) and no components nested within convex cycles
(Modification 3). We call such an arc-and-cycle set reduced. We define the set of bars,
B, to consist of the bars from the arc-and-cycle set together with the bars forming
the rigidifying triangulation of each convex cycle (Modification 2). The set S of struts
consists of all vertex pairs that are not connected by a bar in B and which do not belong
to a common convex cycle (Modification 4). See Fig. 6 for an example of A and the
resulting bar-and-strut framework G A(p). (The rightmost framework G ′

A(p′) will be
defined later.)

Our goal in the proof of Theorem 1 is to find a motion such that all bars maintain their
length, while all struts strictly increase in length, in other words, a motion of G A(p) that
is strict on all struts.

Fig. 6. Construction of the frameworks G A(p) and G ′
A(p′). Solid lines denote bars and dashed lines denote

struts.
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Fig. 7. The dot product (vj (t) − vi (t)) · (pj (t) − pi (t)) is zero if the distance between pi and pj stays the
same to the first order, positive if the distance increases to the first order, and negative if the distance decreases
to the first order.

Thus, we want to find a motion p(t) for 0 ≤ t ≤ 1 such that p(0) = p and

d
dt

‖pj (t) − pi (t)‖ = 0 for {i, j} ∈ B,

d
dt

‖pj (t) − pi (t)‖ > 0 for {i, j} ∈ S.

Differentiating the squared distances ‖pj (t)−pi (t)‖2 = (pj (t)−pi (t)) · (pj (t)−pi (t))
and denoting the velocity vectors by vi (t) := (d/dt)pi (t), we obtain the following
equivalent conditions:

(vj (t) − vi (t)) · (pj (t) − pi (t)) = 0 for {i, j} ∈ B,

(vj (t) − vi (t)) · (pj (t) − pi (t)) > 0 for {i, j} ∈ S.

Intuitively, the first-order change in the distance between vertex i and j is modeled by
projecting the velocity vectors onto the line segment between the two vertices; see Fig. 7.

2.3. Infinitesimal Motions

A strict infinitesimal motion or strict infinitesimal flex v = (v1, . . . , vn) specifies the
first derivative of a strictly expansive motion at time zero. In other words, it assigns a
velocity vector vi to each vertex i so that it preserves the length of the bars to the first
order, and strictly increases the length of struts to the first order. More precisely, a strict
infinitesimal motion must satisfy

(vj − vi ) · (pj − pi ) = 0 for {i, j} ∈ B,

(vj − vi ) · (pj − pi ) > 0 for {i, j} ∈ S,
(2)

where pi denotes the initial position of vertex i .
In the next section we prove that such a strict infinitesimal motion always exists. In

Section 4 we show how this leads to motions for small amounts of time. These motions



Straightening Polygonal Arcs and Convexifying Polygonal Cycles 215

are then shown to continue globally until the configuration reaches an outer-convex
configuration.

3. Local Motion

Recall that an arc-and-cycle set is called reduced if adjacent collinear bars have been
coalesced, and components nested within convex cycles have been removed. In this
section we prove the following:

Theorem 3. For any reduced arc-and-cycle set A there is an infinitesimal motion v of
the corresponding bar-and-strut framework G A(p) satisfying (2).

The proof will go through a sequence of transformations from motions to stresses,
and from there to polyhedral terrains, to which geometric reasoning is finally applied.
A second, independent, but no less indirect proof of Theorem 3 follows from the results
about the structure of the expansion cone in Theorem 4.3 of [RSS].

3.1. Equilibrium Stresses

The equations and inequalities in (2) form a linear feasibility problem that is common
for tensegrity frameworks. In order to solve this problem, it is helpful to apply linear-
programming duality and consider the equivalent dual problem. We discuss the duality
first in terms of equilibrium stresses in tensegrity frameworks, and later reconnect it to
linear-programming duality.

A stress in a framework G(p) is an assignment of a scalar ωij = ωji to each edge {i, j}
of G (a bar or strut). A negative scalar means that the edge is pushing on its two endpoints
by an equal amount, a positive value means that the edge is pulling on its endpoints by
an equal amount, and zero means that the edge induces no force. The whole stress is
denoted by ω = (. . . , ωij, . . .). We say that the stress ω is an equilibrium stress if each
vertex i of G is in equilibrium, i.e., stationary subject to the the forces from the incident
edges:

∑

j : {i, j}∈B∪S

ωij(pj − pi ) = 0. (3)

We say that the stress ω is proper if furthermore, for all struts {i, j}, ωij ≤ 0. That is,
struts can carry only zero or negative stress. There is no sign condition for bars: they
can carry zero, positive, or negative stress. Thus, only bars can carry positive stress.
(Terminology and sign conditions have not always been uniform in the literature. An
equilibrium stress is also called a self-stress or simply a stress. All stresses that we deal
with are equilibrium stresses.)

A trivial example of an equilibrium stress is the zero stress in which every edge is
assigned a scalar of zero. All other stresses are called nonzero. To prove Theorem 3,
we use the following duality principle connecting nonzero equilibrium stresses and
infinitesimal motions:
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Lemma 3. If the only proper equilibrium stress in a bar-and-strut framework is the
zero stress, then the framework has an infinitesimal motion satisfying (2).

This equivalence is a standard technique in the theory of rigidity. See Theorem 2.3.2 of
[CW1] for a similar statement. For completeness, we give a brief proof here based on
linear-programming duality:

Proof. To make it easier to take the dual of the linear feasibility problem defined by (2),
we write a linear program in standard form. First we add an otherwise pointless objective
function of 0 = 0 · v. Then we rescale the velocities v in (2) to obtain the following
equivalent linear program:

minimize 0 · v
subject to (vj − vi ) · (pj − pi ) = 0 for {i, j} ∈ B,

(vj − vi ) · (pj − pi ) ≥ 1 for {i, j} ∈ S,

(4)

We wish to show that the framework has an infinitesimal motion, which is equivalent
to this linear program having a feasible solution, that is, an optimal solution of value
zero. By linear-programming duality (the Farkas lemma), it suffices to show that the dual
linear program

maximize
∑

{i, j}∈S

ω̄ij

subject to
∑

j : {i, j}∈B∪S

ω̄ij(pj − pi ) = 0 for i ∈ V,

ω̄ij = ω̄ji for {i, j} ∈ B ∪ S,

ω̄ij ≥ 0 for {i, j} ∈ S,

(5)

has an optimal solution of value zero. If we express the constraints of this linear program
in terms of negated dual variables ωij = −ω̄ij, they specify precisely a proper equilibrium
stress. Thus, it suffices to show that every proper equilibrium stress has ωij = 0 for all
{i, j} ∈ S. In particular, it suffices to show that every proper equilibrium stress is
identically zero.

The important consequence of this lemma is that, in order to prove the desired The-
orem 3, it suffices to prove the following:

Theorem 4. The framework G A(p) corresponding to a reduced arc-and-cycle set A
has only the zero proper equilibrium stress.

3.2. Planarization

To prove that only the zero equilibrium stress exists (i.e., to prove Theorem 4), we use
another tool in rigidity called the Maxwell–Cremona theorem. Before we can apply
this tool, we need to transform the framework G A(p) into a planar framework G ′

A(p′).
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(Refer to the framework on the right of Fig. 6.) We introduce new vertices at all in-
tersection points between edges of G A(p). We subdivide every bar and strut at every
vertex through which it goes, be it an existing vertex of G A(p) or a newly added inter-
section vertex. Overlapping collinear edges will result in multiple edges; such multiple
edges are merged into one edge. We define the resulting framework G ′

A(p′) to have
bars precisely covering the bars of G A(p). All the other edges of G ′

A(p′) are struts.
G ′

A(p′) is planar in the sense that two edges (bars or struts) intersect only at a common
endpoint.

A natural concern is that the added vertices in this modification introduce additional
freedom in finding infinitesimal motions, so they may not transfer directly to infinitesimal
motions in the original framework. Nonetheless, the planar framework G ′

A(p′) is effec-
tively equivalent to the original framework G A(p) in the sense of equilibrium stresses.
Indeed, the following stronger statement holds. We call a stress outer-zero if the only
edges that carry a nonzero stress are edges of convex cycles and edges interior to convex
cycles. Otherwise, an edge exterior to all convex cycles carries a nonzero stress, and we
call the stress outer-nonzero.

Lemma 4. If G A(p) has a nonzero proper equilibrium stress ω, then G ′
A(p′) has an

outer-nonzero proper equilibrium stress ω′.

Proof. During the modifications to G A(p) that made G ′
A(p′), we modify ω to make

ω′ as follows. When we subdivide an edge {i, j} with stress ωij, each edge {k, l} of the
subdivision gets the stress ωij‖pi − pj‖/‖pk − pl‖. (The ratio of lengths is necessary
because ωij is a weight, and the actual force comes from scaling by the length of the
edge {i, j}; see (3).) When merging several edges, we add the corresponding stresses.
The resulting stress is in equilibrium because edges meet in opposing pairs at the added
vertices, and because summation preserves force. The stress is also proper because a
strut in G ′

A(p′) is made up only of struts from G A(p), and the sum of nonnegative
numbers is nonnegative. It only remains to check that positive and negative stresses do
not completely cancel during the merging process, and that the stress is furthermore
outer-nonzero.

First we prove that some strut {i, j} of G A(p) carries a negative stress. In other
words, G A(p) cannot be stressed only on its bars; in particular, a framework consist-
ing exclusively of arcs, cycles, and triangulated convex cycles cannot carry a nonzero
stress. This follows because, in any such bar framework, there is a vertex v with de-
gree at most two; in particular, every triangulated convex cycle has a degree-two ver-
tex (an ear). Because the framework is reduced, the two bars incident to v are not
parallel, so these two bars cannot carry stress while satisfying equilibrium at v. Re-
moving them and proceeding inductively with the rest of the framework, we con-
clude that the stress is zero on the whole bar framework. Hence, the bars alone can-
not carry a nonzero stress, so some strut {i, j} ∈ G A(p) must have a nonzero
stress.

The conditions of Theorem 3 enforce that no angles at vertices of the arc-and-cycle set
are π or zero: an angle of π would create a straight subarc of two bars (contradicting the
assumption that the framework is reduced), and an angle of zero would violate simplicity.
Thus, no strut of G A(p) is completely covered by bars. Therefore, for the strut {i, j}
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of G A(p) that carries a negative stress, some portion of it in G ′
A(p′) will also have a

negative stress, because a negative stress can only be canceled by a stress on a bar. In
particular, ω′ must be nonzero.

Furthermore, if the strut {i, j} is exterior to all convex cycles in A, we have that ω′

is outer-nonzero. Now suppose that {i, j} is partially interior to convex cycles in A (by
construction, the strut cannot be entirely within convex cycles of A). Then there is a
portion of {i, j} with the property that it is incident to a convex cycle and exterior to all
convex cycles in A. This portion must be uncovered by bars, because no bar in A has
this property, and the only additional bars in G A(p) are interior to convex cycles. Hence,
the corresponding strut in G ′

A(p) carries a negative stress, so ω′ is outer-nonzero in all
cases.

Thus, to prove that the original framework G A(p) has only the zero proper equilibrium
stress, it suffices to prove that the planar framework G ′

A(p′) has only outer-zero proper
equilibrium stresses.

3.3. Maxwell–Cremona Theorem

To prove that only outer-zero equilibrium stresses exist, we employ the Maxwell–
Cremona correspondence between equilibrium stresses in planar frameworks and three-
dimensional polyhedral graphs that project onto these frameworks. When the vertices
and edges of a planar framework are removed from the plane the resulting connected
regions are called the faces of the framework. A polyhedral graph or polyhedral terrain
# comes from lifting a planar framework into three dimensions—that is, assigning a z
coordinate (positive or negative) to each vertex in the framework—such that the vertices
of each face of the framework (including the exterior face) remain coplanar. Thus, each
face of the framework lifts to a planar polygon in 3-space. The polyhedral surface # is
then the graph of a piecewise-linear continuous function of two variables that is linear
on the faces determined by G ′

A(p′).
Consider an edge {i, j} in a planar framework, separating faces F and F ′. We dis-

tinguish whether this edge lifts in # to a “valley,” “mountain,” or “flat” edge according
to its dihedral angles; see Fig. 8. More formally, let z(p) = a · p + b for p in F and
z(p) = a′ · p + b′ for p in F ′ be the two linear functions specifying the graph # on F
and F ′. Thus, a and a′ are vectors in (the dual space of) R2, and b and b′ are real numbers.
A straightforward calculation reveals that the vector a − a′ in R2 must be perpendicular

Fig. 8. Valleys and mountains in a polyhedral terrain. The thick edges indicate the intersection with a vertical
plane.
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to the edge {i, j}:

a − a′ = ωije⊥
ij , (6)

where e⊥
ij is a vector in R2 of the same length as the vector pj − pi , perpendicular to it,

and pointing from F towards F ′. We call the edge {i, j} a valley if ωij < 0, a mountain
if ωij > 0, and flat if ωij = 0.

These definitions are illustrated in Fig. 8. In particular, if two sides of an edge both
“go up” in z, as in Fig. 8(a), then the edge is a valley; however, the converse does not
hold (so a valley might not carry water), as shown in Fig. 8(b). Similarly, if the two sides
of an edge both “go down” in z (Fig. 8(c)), then the edge must be a mountain, but not
all mountains have this property (Fig. 8(d)).

Theorem 5 (Maxwell–Cremona Theorem).

(i) For every polyhedral graph # that projects to a planar bar framework G(p), the
stress ω defined by (6) forms an equilibrium stress on G(p).

(ii) For every proper equilibrium stress ω in a planar framework G(p), G(p) can be
lifted to a polyhedral graph # such that (6) holds for all edges. In particular, edges
with positive stress lift to valleys, edges with negative stress lift to mountains, and
edges with no stress lift to flat edges. Furthermore, # is unique up to addition of
affine-linear functions.

A proof of this result can be found in [Whi1], [Glu], [HK], and [CW4].

3.4. Main Argument

The zero equilibrium stress corresponds to a trivial polyhedral graph in which all faces
are coplanar (i.e., defined by a single linear function). More generally, an outer-zero
equilibrium stress corresponds to an outer-flat polyhedral graph that is flat on every
edge exterior to all convex cycles. Therefore, to prove that all equilibrium stresses of the
planar framework are outer-zero, and hence prove Theorem 4, it suffices to show that all
polyhedral graphs projecting to the planar framework are outer-flat.

More precisely, consider any polyhedral graph # that projects to the planar framework
G ′

A(p′) with the property that all struts are lifted to valleys or flat edges (because struts can
carry only negative or zero stress), and bars are lifted to valleys, mountains, or flat edges.
We need to show that nonflat edges can only appear within or on the boundary of convex
cycles. Because we may add an arbitrary affine-linear function, we may conveniently
assume that the exterior face of # is on the xy-plane. Thus the problem is to show that
# does not lift off the xy-plane any vertex of G ′

A(p′) except possibly vertices interior to
convex cycles of A.

One simple fact that we will need is the following:

Lemma 5. Any mountain in the polyhedral graph # projects to a bar in the planar
framework G ′

A(p′).
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Proof. A strut can only carry negative or zero stress, so by Theorem 5 it can only lift
to a valley or a flat edge.

We now come to the heart of our proof, the proof of Theorem 6. It is here that
we finally show that the stress must be outer-zero, by looking at the maximum of any
Maxwell–Cremona lift. The following statement immediately implies Theorem 4 and
hence Theorem 3:

Theorem 6. Let M denote the region in the xy-plane where the z value attains its
maximum in the polyhedral graph #. Then M contains every face of the planar frame-
work G ′

A(p′) that is exterior to all convex cycles.

M is a nonempty union of faces, edges, and vertices of the planar framework G ′
A(p′).

Consider the boundary ∂ M , which may be empty if M fills the whole plane. Because
points in M lift to maximum height, all edges of ∂ M must lift to mountains. Thus by
Lemma 5, all edges of ∂ M must be bars in the framework. Hence, ∂ M consists of disjoint
vertices, paths of edges, and complete cycles of the arc-and-cycle set, together with a
subset of the triangulations of the convex components. Figure 9 shows typical cases of
all possibilities. We will show that the only case in Fig. 9 that can actually occur is (%), in
which ∂ M includes a convex cycle and M includes the local exterior of that cycle (and
possibly some of its interior).

Our main technique for arriving at a contradiction in all cases except (%) is that of
slicing the polyhedral graph. Consider a plane & that is parallel to the xy-plane and just
below the maximum z coordinate of #. (By “just below” we mean that & is above all

Fig. 9. Hypothetical connected components of ∂ M and their relation to M . Solid lines are edges of ∂ M ;
white regions are absent from M ; and shaded regions are present in M . (a) An isolated vertex. (b) A straight
subarc. (c) A nonstraight subarc. (d) A nonconvex cycle. (e) A nonconvex cycle and its local interior. (f) A
nonconvex cycle and its local exterior. (g)–(k) Various situations with a convex cycle. (%) The only possible
case: a convex cycle, its local exterior, and possibly some of its interior.
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Fig. 10. Slicing the polyhedral graph # just below the maximum z coordinate, in each case corresponding
to those in Fig. 9. Thick lines denote the slice intersection X , and thick dotted lines denote the corresponding
edges in the polyhedral graph #.

vertices of # not at the maximum z coordinate.) Now take the intersection of & with the
surface #, and project this intersection to the xy-plane. The resulting set X is shown in
Fig. 10 for the various cases.

The set X captures several properties of the polyhedral graph #. First note that because
X is the boundary of a small neighborhood of M in the plane, it is a disjoint union of
cycles. It is also polygonal. Each edge of X corresponds to a face of #, and each vertex
of X corresponds to an edge of #. The angle at a vertex of X (on the side interior to M)
determines the type of edge corresponding to that vertex: the angle is π (straight) if the
edge is flat, less than π (convex) if the edge is a mountain, and more than π (reflex) if
the edge is a valley.

The basic idea is to show that X has “many” convex angles, and apply Lemma 5
to prove that the framework has “too many” bars. The key fact underlying the proof is
that the original arc-and-cycle set has maximum bar-degree two: every vertex is incident
to at most two bars. In the planar framework G ′

A(p′), only vertices v of convex cycles
can have bar-degrees greater than two, and these bars are contained in a convex wedge
from v.

Our proof deals with all cases at once. To illustrate the essence of the proof, we first
describe it for a subcase of case (a) in which one component of ∂ M is a single vertex v that
does not belong to a convex cycle. In this case one component of X is a planar polygonal
cycle P that is star-shaped around v, that is, every point on the boundary of P is visible
from v. In particular, P is a planar polygon with positive area and no self-intersections.
Every such polygon has at least three convex vertices. (To see this, define the turn angle at
a vertex to be π minus the interior angle, so it is positive for convex angles and negative
for reflex angles, and always strictly between −π and π . Because the turn angles of
a planar polygon sum to 2π , and the maximum turn angle of a vertex is < π , every
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Fig. 11. (Left) Illustration of Lemma 6: solid lines are bars, dotted lines are struts, and the shaded pie wedge
P must be contained in M . (Right) Illustration of the proof; the thick lines form the portion of X inside P ,
and the symbols c and r denote convex and reflex vertices, respectively.

polygon has at least three vertices with positive turn angles.) These three convex vertices
correspond to three mountains in #, all incident to a common vertex v. By Lemma 5,
there are three bars incident to v, contradicting the maximum-degree-two property for
vertices not on convex cycles. Therefore, this subcase of case (a) cannot exist.

The general reason that cases (a)–(k) cannot exist is the following:

Lemma 6. Let v be a vertex on the boundary of M , and let b1, . . . , bk be the bars
incident to v in cyclic order. Consider a small disk D around v.

(1) If there is an angle of at least π at v between two consecutive bars, say bi and bi+1,
then the pie wedge P of D bounded by bi and bi+1 belongs to M (see Fig. 11).

(2) If there are no bars or only one bar incident to v, i.e., k ≤ 1, then the entire disk
D belongs to M . (This can be viewed as a special case of (1).)

Proof. (1) Because there are no bars in the pie wedge P , and hence no edges of ∂ M
in P , P must be completely contained in or disjoint from M . Assume to the contrary
that P is disjoint from M . Then the intersection of the slice X with the pie wedge P is
a star-shaped polygonal arc around v starting from a point on bi and ending at a point
on bi+1. By the properties of X , convex vertices on this arc correspond to mountains
emanating from v, and reflex vertices correspond to valleys emanating from v. Because
the angle of the pie wedge P is at least π , the arc must have at least one convex vertex in
P . (The turn angles along the arc must sum to a positive number, so some vertex must
have a positive turn angle.) By Lemma 5, there must be a bar in P , a contradiction.

(2) If k = 1, the bars bi and bi+1 coincide, and the same proof applies. The star-
shaped polygonal arc becomes a star-shaped polygonal cycle, which must have at least
two convex vertices not on bi = bi+1. If k = 0, X also has a star-shaped polygonal
cycle around v, which must have at least three convex vertices, yet v has no incident
bars.

Note that this lemma applies to every vertex in our planar framework G ′
A(p′), because

every vertex either has bar-degree at most two or is a vertex of a convex cycle, and in
either case there is a nonconvex angle between two consecutive bars.
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One can immediately verify that the examples in Fig. 10(a)–(k) contradict Lemma 6.
For example, applying the lemma to any vertex of ∂ M shows that M should contain a
positive two-dimensional area incident to that vertex. This immediately rules out cases
(a)–(d), (g), (j), and (k).

A general proof is also easy with Lemma 6 in hand:

Proof of Theorem 6. Consider first a degree-zero or degree-one vertex v in ∂ M . (Such
a point would appear when M has a component that is an isolated point or an arc of
bars.) Because Lemma 6 applies to every vertex of the framework, we know that some
positive two-dimensional area in the vicinity of v belongs to M , contradicting that v has
degree zero or one in ∂ M . This rules out cases (a)–(c) and (j)–(k).

It follows that ∂ M is a union of cycles. A component of ∂ M can be of two kinds:

(1) If it is formed from the edges of a convex cycle and its triangulation, Lemma 6 ap-
plies to any vertex in it, and we conclude that M contains the face of the framework
immediately exterior to the cycle. This rules out cases (g)–(i).

(2) If it consists of a complete nonconvex cycle, we can apply Lemma 6 to some
convex vertex and to some reflex vertex (they must both exist), and we conclude
that M contains both the face of the framework immediately interior and the face
immediately exterior to the cycle. This rules out cases (d)–(f).

In the end, the only faces of the framework that can be missing from M are those interior
to convex cycles (case (%)). This completes the proof of Theorem 6 and of Theorems 4
and 3.

4. Global Motion

In this section we combine the infinitesimal motions into a global motion, thereby proving
Theorem 1, the main theorem. In overview, Theorem 3 establishes the existence of some
direction of motion v. We select a unique vector v = f (p) for each configuration p as
the solution of a convex optimization problem (7)–(9). We then set up the differential
equation

d
dt

p(t) = f (p(t)).

The solution of this differential equation moves the linkage to a configuration where
an angle between two bars becomes straight. At this point we merge the two bars and
continue with the reduced framework that has one vertex less. This procedure is iterated
until the framework is outer-convex and no further expansive motion is possible.

It is convenient for the proof of Theorem 1 to effectively pin an edge in the configu-
ration. Choose any edge, say {p1, p2}, that is a bar. During the motion we will arrange
matters so that this bar is stationary.

We now go into the details of the proof. We use the following nonlinear minimization
problem to define a unique direction v for every configuration p of a reduced arc-and-
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cycle set:

minimize
∑

i∈V

‖vi‖2 +
∑

{i, j}∈S

1
(vi − vj ) · (pi − pj ) − ‖pj − pi‖

(7)

subject to (vj − vi ) · (pj − pi ) > ‖pj − pi‖, for {i, j} ∈ S, (8)

(vj − vi ) · (pj − pi ) = 0, for {i, j} ∈ B, (9)

v1 = v2 = 0. (10)

The restrictions (8) place a uniform constraint on the growth of the struts S: the derivative
of the length of each strut must be larger than one. Since the system (2) is homogeneous,
the system (8)–(9) is feasible for any choice of right-hand sides in (8). This particular
right-hand side has been chosen for convenience in the proof.

The objective function (7) includes the norm of v as a quadratic term, plus a barrier-
type penalty term that keeps the solution away from the boundary (8) of the feasible
region. This penalty term is necessary to achieve a smooth dependence of the solution
on the data. The objective function is strictly convex because it is a sum of strictly
convex functions, of the form x2 for a variable x , and convex functions, of the form
1/ f (x1, x2, x3, x4) where f is an affine function in four variables that is guaranteed to
be positive. Because the objective function is strictly convex, and it goes to infinity if
v increases to infinity or approaches the boundary of condition (8), there is a unique
solution v for every p; we denote this solution by f (p).

The function f (p) is defined on an open set U ⊂ R2n that is characterized by the
conditions of Theorem 3: no angles are 0◦ or 180◦, no vertex touches a bar, and at least
one cycle is nonconvex or at least one open arc is not straight.

4.1. Smoothness

We will show that f is differentiable in the domain U . This follows from the stabil-
ity theory of convex programming under equality constraints, as applied to parametric
optimization problems of the type

min{g(p, x) : x ∈ '(p) ⊆ R
n, A(p)x = b(p)}, (11)

where A(p) is an m × n matrix and b(p) is an m-vector. The objective function g, the
domain '(p), and the linear constraints (A, b) depend on a parameter p that ranges over
an open region U ⊆ Rk .

For such an optimization problem, the following lemma establishes the smooth de-
pendence of the solution vector on the problem-definition data A(p) and b(p).

Lemma 7. Suppose the following conditions are satisfied in the optimization prob-
lem (11):

(a) The objective function g(p, x) is twice continuously differentiable and strictly
convex as a function of x ∈ '(p), with a positive definite Hessian Hg , for every
p ∈ U .
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(b) The domain '(p) is an open set, for every p ∈ U .
(c) The rows of the constraint matrix A(p) are linearly independent, for every p ∈ U .
(d) The problem-definition data A(p) and b(p) and the gradient ∇g of g with respect

to x are continuously differentiable in p, for p ∈ U .
(e) The optimum point x∗(p) of the problem (11) exists for every p ∈ U (and is

unique, by (a)).

Then x∗(p) is continuously differentiable in U .

Proof. The proof is based on the implicit function theorem and follows the standard
lines of the proofs in this area; see [BS, in particular Section 4] or [Fia, Theorem 2.1]
for more general theorems where inequalities are also allowed. For the benefit of the
reader, we sketch the proof here. From (a) and (e) it follows that x∗ can be found as part
of the unique solution (x∗, λ) of the system of equations h(p, x, λ) = 0 that represents
the first-order necessary optimality conditions. Specifically, λ is a k-element vector of
Lagrange multipliers, and h: U × Rn+k → Rn+k is given by

h =
(

∇g − λT AT

Ax − b

)

.

The implicit function theorem guarantees the local existence of x(p) (and λ(p)) as a
solution of h(p, x(p), λ(p)) = 0 in a neighborhood of x if the Jacobian J = ∂h/∂(x, λ)

is an invertible matrix for every p ∈ U . Moreover, differentiability of x(p) is ensured if
h is continuously differentiable. The Jacobi matrix is given by

J = ∂h(p, x, λ)

∂(x, λ)
=

(

Hg AT

A 0

)

.

Differentiability of h follows from assumption (d); we only have to check that J is
invertible. By assumption (a), Hg is positive definite and hence invertible. Thus

det J = det Hg · det(−AH−1
g AT).

By assumption (c), A has full row rank, and because Hg is positive definite, so is AH−1
g AT.

Therefore det J 1= 0.

Lemma 8. f is differentiable on U .

Proof. The objective function is the sum of the quadratic function
∑

‖vi‖2, which has
a positive definite (constant) Hessian, and additional smooth convex terms, and therefore
assumption (a) of Lemma 7 holds, as well as the part of assumption (d) regarding g.
The feasible domain ' is defined by the inequalities (8), and because the inequalities
are strict, ' is an open set, so assumption (b) holds. The problem-definition data A
and b are defined by the linear constraints (9) and (10). Both are clearly continuously
differentiable, verifying the remaining half of assumption (d). Assumption (e) follows
from the existence of an infinitesimal motion (Theorem 3).
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It only remains to check assumption (c), the linear independence of the defining
equations. Note that (10) implies (9) for the edge {1, 2}, so the latter equation is redundant
and can be omitted without changing the problem. In order to show that the remaining
equations of the system (9)–(10) are linearly independent, we check that they have a
solution for any choice of right-hand sides. We prove this by induction on the number
of vertices. We select a vertex i /∈ {1, 2} that is incident to at most two bars {i, j}, {i, k}.
The existence of such a vertex follows from an extension of an argument in the proof of
Lemma 4: a framework consisting exclusively of arcs, cycles, and triangulated convex
cycles, contains at least two nonadjacent vertices with degree at most two (unless the
framework consists of a single triangle; in that case there are three vertices of degree
two).

If the vertex i is incident to two bars, they cannot be parallel. Thus, the corresponding
unknown vector vi appears in at most two equations in which the scalar products with
two vectors pi − pj and pi − pk are taken; because these vectors are not parallel, there
is always a solution for vi regardless of the values of the other variables. If follows
that any solution of the system without the variable vi can be extended to vi . The
reduced system is of the same form as the original system, and therefore we can apply
induction.

4.2. Solving the Differential Equation and Proving Theorem 1

Differentiability of f on U is sufficient to ensure that the initial-value problem

d
dt

p(t) = f (p(t)), p(0) = p0 (12)

has a (unique) maximal solution p(t), 0 ≤ t < T , that cannot be extended beyond some
positive bound T ≤ ∞; see for example Section II.XXI of [Wal]. This means that one
of three cases occurs:

(a) p(t) exists for all t , i.e., T = ∞.
(b) T is finite, and p(t) becomes unbounded as t → T .
(c) T is finite, and p(t) approaches the boundary of U as t → T .

The last case (c) is the case we want: at the boundary of U , some angle becomes
straight, and we can reduce the linkage. The other two cases must be avoided: In case (a)
the motion of the framework slows down and never reaches the limit of an outer-convex
configuration. Case (b) can arise only with multiple disjoint components: the components
could repel and fly away from each other faster than they straighten or convexify, thus
never reaching an outer-convex configuration.

Case (a) can be excluded very easily. By assumption, the bar-and-strut framework
G A(p) has some strut {i, j} between two points in the same component of the bar
framework; their distance increases at least with rate one, by (8), but it is bounded from
above because i and j are linked by a sequence of bars. It follows that the solution cannot
exist indefinitely and T must be finite.
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To deal with case (b), we apply the following observation.

Lemma 9. If an arc-and-cycle set A is not separated, then its diameter is bounded by
the total length of all edges of A.

This can be proved easily by induction on the number of components of A. Since some
vertices are pinned at the origin, case (b) implies that A must become separated by a
line L . At this point, we stop the motion defined by (12) and treat the two parts into
which L separates the components of A independently and recursively. Unfortunately,
the guarantee for the expansive property between different members of the partition is
lost.

We are left with case (c). We show that p(t) converges as t → T . Observe that all
pairwise distances of vertices p(t) are monotonically increasing, and by condition (10) p1

and p2 are fixed during the motion. Thus, all other vertices are determined up to reflection
(through p1p2), so the whole configuration is determined up to reflection. Thus p(t) → p
for some configuration p as t → T . The configuration p is on the boundary of U and
thus must have some vertex with a straight angle. Then we inductively continue with a
simpler linkage. This completes the proof of Theorem 1.

In this proof the easy exclusion of possibility (b), that the motion becomes unbounded,
depends crucially on the fact that the diameter of A is bounded, and the motion is stopped
as soon as there is a separating line. Boundedness is valid even without this precaution,
as stated in the following lemma.

Lemma 10 (Boundedness Lemma). Let p(t) be the motion given by the differential
equation (12), where v = f (p) is given as the solution of the optimization problem (7)–
(9). Then the motion of every vertex i is bounded:

‖pi (t) − pi (0)‖ ≤
∫ t

0
‖vi (t)‖ dt ≤ K B,S,p0(t),

where K B,S,p0(t) is an explicit function of t that depends only on the combinatorial
structure of the arc-and-cycle set (B and S) and on the initial configuration p0.

Note that the definition of v does not involve the pinning constraints (10). The lemma
implies that it is not necessary to treat separated components separately. The proof of
the lemma is complicated, and the interested reader is referred to [CDR2].

4.3. Alternative Approaches

There are many ways to select a local motion v among the feasible local motions whose
existence is guaranteed by Theorem 3. We have chosen one possibility in (7)–(10) that
is most convenient for the proof.

As a possible alternative approach, we might consider a linear programming problem,
with some arbitrary artificial linear objective function c, and some linear normalization



228 R. Connelly, E. D. Demaine, and G. Rote

condition to ensure boundedness, pinning down some bar (i1, i2) ∈ B:

minimize
∑

i∈V ci · vi

subject to (vj − vi ) · (pj − pi ) = 0 for {i, j} ∈ B, (13)

(vj − vi ) · (pj − pi ) ≥ 0 for {i, j} ∈ S, (14)
∑

i∈V di · vi = 1, (15)

vi1 = vi2 = 0. (16)

We have given up strict expansiveness in (14). The set of vectors given by (13), (14), and
(16) forms a polyhedral cone C . Theorem 3 guarantees that there are nonzero solutions.
One can check that the pinning constraints (16) ensure that the cone is pointed. The idea
is now to use an extreme ray of the cone C for the motion. A vector d can be found which
ensures that the feasible set (13)–(16) is a bounded set. Any basic feasible solution of
the linear program will correspond to an extreme ray of the cone C . It will have a few
inequalities of (14) fulfilled with equality. The resulting framework obtained by inserting
“artificial” bars corresponding to the nonbasic inequalities of (14), will have a unique
vector of velocities v subject to the normalization constraint (15). This means that the
framework is a mechanism, allowing one degree of freedom; as the mechanism follows
this forced motion, all nonfixed distances will increase, at least for some time.

So one follows the paradigm of parametric linear programming: The optimal basic fea-
sible solution will continue to remain feasible as the coefficients pi in the constraints (14)

change smoothly. At some point, one of these constraints will threaten to become vio-
lated: this is the time to make a pivot, exchanging one of the artificial bars for a new one
which allows the motion to be continued.

The above discussion has ignored several issues, such as possible degeneracy of the
linear program. However, this approach might be more attractive from a conceptual, as
well as practical, point of view.

Streinu [Str] has found a class of such mechanisms, so-called pseudo-triangulations.
These structures have several nice properties; for example, they form a planar framework
of bars. Streinu [Str] has proved that a polygonal arc can be opened by a sequence of at
most O(n2) motions, where each motion is given by the mechanism of a single pseudo-
triangulation.

The polyhedral cone C mentioned above has been more thoroughly investigated in
[RSS]. In particular, the so-called expansion cone, which is simply defined by (14) for
all pairs of points i and j , was studied. The extreme rays of this cone are closely related
to the set of all pseudo-triangulations of a point set.

4.4. Comparison of Approaches

The approach based on mechanisms might avoid some of the numerical difficulties
associated with solving the optimization problem (7)–(9). For example, consider a spiral
n-bar arc winding around a unit square in layers of thickness ε (Fig. 12). Basically, a strut
deep inside the spiral cannot increase in length quickly before an outer strut increases
significantly. However, in the solution of (8)–(9), the inner strut lengths must increase
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Fig. 12. An arc that is numerically difficult to unfold.

at unit speed; a rough estimate shows that this causes the outermost vertex to move with
an exponential speed of at least (1/ε)n/4, as ε → 0. On the other hand, the “natural”
solution of unwinding the spiral one bar at a time fits nicely into the setup of mechanisms
and the parametric linear-program approach.

Our proof has certain nonconstructive aspects: the direction v of movement is spec-
ified implicitly as the solution of an optimization problem, and the global motion
arises as the solution of a differential equation. Both of these items are numerically
well understood, and our approach lends itself to a practical implementation. Indeed,
we implemented our approach to produce animations such as Fig. 1. However, this
does not necessarily lead to a finite algorithm in the strict sense. The optimization
problem (7)–(9), having an objective function which is rational, can in principle be
solved exactly by solving the system h(p, x, λ) = 0 of algebraic equations as in
Lemma 7. The differential equation cannot be solved explicitly, but it may be possi-
ble to bound the convergence and solve the differential equation up to a given error
bound.

Because the motions of a mechanism are described by algebraic equations, Streinu’s
algorithm leads to a finite algorithm for a digital computer, at least in principle. It remains
to be seen how a practical implementation competes with our approach; in any case, as
an algorithm for a direct realization of the motion by a mechanical device, Streinu’s
algorithm appears attractive.

On the other hand, our nonlinear-programming approach might be preferable because
it produces a “canonical” movement. As a consequence of this, any symmetry of the
starting configuration is preserved (see Corollary 2 in the next section).

5. Additional Properties and Related Problems

5.1. Symmetry

We show that the deformation that we have defined in Section 4 preserves any symmetries
that the original configuration might have. We say that the arc-and-cycle set A has some
group H of congruences of the plane as a symmetry group if each element of H permutes
the vertices and edges of A.
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Corollary 2. If an arc-and-cycle set has a symmetry group H , then there is a piecewise-
differentiable proper motion to an outer-convex configuration; the motion is expansive
until the linkage becomes separated, and the symmetry group H is preserved during the
motion.

Proof. Because A has finitely many vertices and edges, H must be finite, so the Affine
Fixed Point Theorem implies that there must be a point fixed by all elements of H .
Let this point be the origin, and let p1 be any vertex of the configuration distinct from
the origin. Consider the infinitesimal motion defined by the conditions (7)–(9) but not
(10). There is a unique solution v to this minimization problem. This solution must be
symmetric with respect to the symmetry group H . If not, then the action of some ele-
ment of H takes v to a distinct solution, contradicting the uniqueness of the solution.
There is now a unique infinitesimal rotation that we can add to v so that p1 and v1 are
parallel. This still maintains the symmetry of the infinitesimal motion v. Now it is clear
that the limit exists as before in the proof of Theorem 1, and the symmetry of H is
preserved.

5.2. Increasing Area

A natural question is whether every expansive motion increases the area bounded by
each polygonal cycle. The answer turns out to be yes, but the proof is difficult from
elementary methods. A simple example that helps motivate why this problem is nontriv-
ial is an obtuse triangle: if the base edge increases in length (as a strut) and the others
remain the same length (as bars), then the area decreases. The cycle of bars in a polygo-
nal cycle is therefore crucial but difficult to exploit except with our theory of expansive
motions.

First we show how to extend any given expansive infinitesimal motion to any point
in the plane, which is of interest in its own right.

Lemma 11. Consider an infinitesimal motion v on points p1, . . . , pn in Rd , and sup-
pose that the motion is expansive, i.e., (pi − pj ) · (vi − vj ) ≥ 0 for all i, j . Then the
infinitesimal motion v can be extended to another point p0 in Rd and remain expansive.
Furthermore, the new expansiveness inequalities are all strict unless p0 is in the con-
vex hull of a subset of points on which the original infinitesimal motion is trivial, i.e.,
describes a rigid motion.

Proof. We have two proofs of this statement: the first proof is a calculation and the
second proof uses Helly’s theorem.

We first consider the case where we want to prove strict expansiveness. By the Farkas
lemma, the desired inequalities (v0−vi )·(p0−pi ) > 0 can be fulfilled by some unknown
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vector v0 if and only if the dual system

n
∑

i=1

λi (p0 − pi ) = 0, (17)

n
∑

i=1

λi vi · (p0 − pi ) ≥ 0, (18)

λi ≥ 0,

has no solution except the trivial solution λ ≡ 0. In order to find a contradiction, suppose
that a nontrivial solution λ exists. Without loss of generality, we may assume

n
∑

i=1

λi = 1.

Then we get from (17) a representation of p0 as a convex combination

p0 =
n

∑

i=1

λi pi . (19)

Substituting this into (18) yields

n
∑

i=1

n
∑

j=1

λiλj (vi · pj ) −
n

∑

i=1

λi (vi · pi ) ≥ 0. (20)

On the other hand, multiplying the given inequalities

vi · pi − vi · pj − vj · pi + vj · pj ≥ 0 (21)

by −λjλj/2 and summing them over i, j = 1, . . . , n (including the trivial cases for
i = j) yields

n
∑

i=1

n
∑

j=1

λiλj (vi · pj ) −
n

∑

i=1

λi (vi · pi ) ≤ 0. (22)

By the assumption of the lemma, we have λi > 0 in (19) for at least two points pi and
pj whose distance expands strictly. This means that the corresponding strict inequality
in (21) will hold in (22) too, a contradiction to (20). This finishes the case when p0 does
not lie in the convex hull of some points which move rigidly.

In the other case, nonstrict expansiveness can be shown by a variation of the above
argument. Alternatively, we can appeal to Lemma 2 (or its higher-dimensional extension)
and let the point p0 move rigidly with the rigid point set in whose convex hull it lies. The
resulting motion is expansive; the distance from p0 to the other points will expand strictly,
with the obvious exception of the points with which it moves rigidly. This concludes the
first proof of the lemma.

The other proof establishes a connection to tensegrity frameworks and is more intu-
itive. However, we have to deal with a few extra cases to reduce the statement of the
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lemma to the basic case that the points p1, . . . , pn form the vertices of a simplex that
contains the point p0 in its interior.

We proceed by induction on the dimension d . There is nothing to prove in the case
d = 0. So we assume the statement for 0, . . . , d − 1 and d ≥ 1. The desired inequalities
(v0 − vi ) · (p0 − pi ) > 0 define open half-spaces

Hi = {v0 | v0 · (p0 − pi ) > vi · (p0 − pi )}.

This finite collection of half-spaces is nonempty precisely if every set of at most d +1 of
them is nonempty by Helly’s theorem [DGK]. So we consider any subset of k ≤ d + 1
points p1, p2, . . . , pk of p. If p0 is outside the convex hull σ of these points, then simply
choose v0 in a direction along a normal to a hyperplane separating p0 and σ , pointing
away from σ . If the magnitude of v0 is large enough, then the desired inequalities will
be satisfied.

If p0 lies in the convex hull of the given points, we first consider the “general” case that
there are k = d +1 affine-independent points, forming the vertices of the d-dimensional
simplex σ in Rd , and p0 is interior to σ . Suppose that the inequalities defined above do
not have a solution. Then if we look at the complementary half-spaces defined by

H−
i = {v0 | v0 · (p0 − pi ) ≤ vi · (p0 − pi )},

they do have a solution. Let v = (v0, v1, v2, . . . , vd+1) be a solution to those new
inequalities. Now v is an infinitesimal motion of the tensegrity that is obtained by having
cables from p0 (whose lengths can only shrink) and the rest all struts as before. However,
it is easy to show that this tensegrity has no infinitesimal motion in Rd . (For example,
apply Theorem 5.2(c) of [RW] observing that the underlying bar framework has no
nontrivial infinitesimal motion, and there must be a proper stress that is nonzero on
all struts and cables. An explicit calculation of the proper stress is given in [BC]. The
calculation is similar to the calculations (19)–(22) in the first part of the proof, with
λiλj being interpreted as stress.) So v0, v1, v2, . . . , vd+1 must be a trivial infinitesimal
motion, which can only happen if the motion is trivial on all of σ .

There are two remaining cases:

(a) The points p1, p2, . . . , pk lie in a hyperplane S. This includes the cases when
k < d + 1 and when the points are affine-dependent.

(b) There are k = d + 1 points p1, p2, . . . , pd+1 forming a d-dimensional simplex σ

in Rd , and p0 lies on the boundary of σ .

In case (a) we know that p0 ∈ S, because otherwise it would lie outside the convex
hull σ . We decompose each vi into a component v‖

i parallel to S and a component v⊥
i

perpendicular to S. By the induction hypothesis, there is a vector v‖
0 parallel to S such

that it together with the other vertices is infinitesimally expansive with respect to the
projected v‖

i and hence the vi themselves. It is strict unless p0 is in the convex hull of a
subset of the points where the infinitesimal motion is trivial.

In case (b) there is a hyperplane S containing p0 and all of the points p1, p2, . . . , pd+1

except one, say pd+1. We apply the construction of case (a) to the points p1, p2, . . . , pd ,
yielding a vector v‖

0 which is infinitesimally expansive with respect to these vertices. To
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get expansiveness also for pd+1, we add to v‖
0 a sufficiently large vector v⊥

0 perpendicular
to S, pointing into the half-space of S which does not contain pd+1. Since the added vector
v⊥

0 is perpendicular to S, this does not affect expansiveness with respect to the points
p1, p2, . . . , pd in S.

Thus in any case we see that there is a strict solution to the inequalities for p0, p1,

p2, . . . , pd+1, or p0 is in the convex hull of points where the infinitesimal motion acts as
bars for all surrounding points. This concludes the second proof of the lemma.

Now we apply this lemma to prove that the area of a polygonal cycle increases
by any expansive motion. Using the lemma inductively, we can extend an expansive
motion to any finite set of points. Specifically, we apply Lemma 11 to the vertices of
an appropriately chosen triangulation of the region bounded by a polygonal cycle. (The
triangulation introduces new vertices in addition to the vertices of the polygonal cycle.)
The following result can be found in [BGR]. (See also [BMR] and [Epp] for faster
algorithms.)

Lemma 12. Any simple closed polygonal curve in the plane can be triangulated, in-
troducing extra vertices, such that all the triangles are nonobtuse, i.e., every angle is at
most π/2.

There has been some interest in providing acute triangulations and subdivisions (in
contrast to nonobtuse triangulations) of various planar polygonal objects. For example,
the column of Gardner [Gar1] (see also [Gar2] and [Man]) asks for a dissection of a right
triangle into acute triangles, in which every angle is strictly less than π/2, but we do not
know of a result guaranteeing an acute triangulation for a general polygon. Fortunately,
the following is sufficient for the area-expanding property that we need:

Lemma 13. Let v = (v1, v2, v3) be an infinitesimal motion of a nonobtuse triangle
p = (p1, p2, p3) such that for i 1= j ,

(vi − vj ) · (pi − pj ) ≥ 0. (23)

Then the infinitesimal change in the area of triangle p is always nonnegative. Further-
more, the infinitesimal change in the area is positive except in the following two cases:

(a) The infinitesimal flex v is trivial, i.e., no inequality in (23) is strict.
(b) p is a right triangle and only the hypotenuse has a strict inequality in (23).

Proof. Let the lengths of the sides of the triangle be denoted by a, b, c, and let the area
of the triangle be denoted by A. If we differentiate Heron’s formula

16A2 = 2(a2b2 + a2c2 + b2c2) − (a4 + b4 + c4)

and rearrange terms, denoting derivatives by a′, b′, c′, A′, we get

8AA′ = (b2 + c2 − a2)aa′ + (a2 + c2 − b2)bb′ + (a2 + b2 − c2)cc′. (24)
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We can regard aa′, bb′, cc′ as the left-hand side of (23). Each of the terms in parentheses
in (24) is nonnegative because p is nonobtuse. Thus A′ ≥ 0.

If p is an acute triangle and at least one of a′ > 0 or b′ > 0 or c′ > 0, then (24) is
positive, and thus A′ > 0. Suppose p is a right triangle and c represents the length of the
hypotenuse. If at least one of a′ > 0 or b′ > 0, then (24) is positive, so A′ > 0.

Note that with a right triangle it is possible for the first derivative of the length of the
hypotenuse to be positive while the first derivative of the length of the two legs is zero,
and in this case the first derivative of the area will still be zero. This is the reason for the
condition on the legs of the triangle.

Theorem 7. Any smooth expansive noncongruent motion of a simple closed polygonal
curve C in the plane, fixing the lengths of its edges, must increase the area of the interior
of C during the motion.

Proof. Consider the vector field vt , 0 ≤ t ≤ 1, defined as the derivative at each vertex
of C at time t . Apply Lemma 12 to find a triangulation T of the area bounded by C with
all triangles nonobtuse. Apply Lemma 11 to extend the vector field to the vertices of T .

To get a strictly increasing area, we have to show that the triangulation T has an acute
triangle with an edge interior to C , or a right triangle with a leg interior to C . Otherwise,
T would be a single triangle, or it would exclusively consist of right triangles with both
legs on C , hence it would be a convex quadrilateral with two opposite corners having
right angles. These cases are excluded because a triangle or a convex quadrilateral (or
any convex polygon) does not have an expansive noncongruent motion.

So we have established that T must have an acute triangle with an edge interior to
C or a right triangle with a leg interior to C . Because the motion is expansive and the
derivative of at least one of those lengths must be positive for all but a finite number of
times, the derivative of the area of at least one of those triangles must be strictly positive,
and they are all nonnegative by Lemma 13. So the derivative of the area bounded by
C must be positive for all but a finite number of times 0 ≤ t ≤ 1. Thus the area must
strictly increase.

5.3. Topology of Configuration Spaces

It is natural to ask more about the structure of the configuration space of an arc-and-
cycle set. Let X (G, L) denote the space of all configurations of embeddings in the
plane of a bar graph G consisting of a finite number arcs and cycles, without self-
intersections, where the edge lengths are determined by L = (. . . , %ij, . . .). This inherits
a natural topology from considering all the coordinates of all the vertices as part of a
large dimensional Euclidean space. Let X0(G, L) ⊂ X (G, L) denote the subspace of
outer-convex configurations. We assume that L is chosen so that there is at least one
realization in the plane. We mention some results without proof.

Theorem 8. The space of outer-convex realizations X0(G) is a strong deformation
retract of X (G).
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The main point to remember is that the limit in Theorem 1 depends continuously on
the initial starting configuration. The following is a natural consequence of Theorem 8.

Corollary 3. If the underlying graph G is a single arc or a single cycle, then X (G, L)

modulo congruences (including orientation reversing ones) is contractible.

Here the main task is to show that the space of convex realizations is contractible.
It is interesting to compare X (G, L), as we have defined it, to the space of realizations

of an arc or cycle in the plane with fixed edge lengths, but where crossings are allowed.
See, e.g., [LW3], [KM1]– [KM4] for results about this space.

5.4. Open Problems

Another direction is to explore what happens when the arc-and-cycle set is allowed to
touch but not cross:

Conjecture 1. If G is a single arc or a single cycle, then the closure of X (G, L) modulo
congruences is contractible.

We conjecture that motions can be realized by a sequence of relatively simple motions:

Conjecture 2. If A is an arc-and-cycle set in the plane, then there is a motion that
takes it to an outer-convex configuration, by a finite sequence of motions, where each
motion changes at most four vertex angles.

It also remains open precisely how many such moves are needed.
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[Wal] Wolfgang Walter. Gewöhnliche Differentialgleichungen, 6th edition. Springer-Verlag, Berlin, 1996.
English translation: Ordinary Differential Equations, Springer-Verlag, New York, 1998.

[Weg1] Bernd Wegner. Partial inflation of closed polygons in the plane. Beiträge zur Algebra und Geometrie,
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