
CHAPTER 5

On Complexity, Sampling, and "-Nets and "-Samples

In this chapter we will try to quantify the notion of geometric complexity. It is in-
tuitively clear that a (i.e., disk) is a simpler shape than an (i.e., ellipse), which is in
turn simpler than a - (i.e., smiley). This becomes even more important when we con-
sider several such shapes and how they interact with each other. As these examples might
demonstrate, this notion of complexity is somewhat elusive.

To this end, we show that one can capture the structure of a distribution/point set by a
small subset. The size here would depend on the complexity of the shapes/ranges we care
about, but surprisingly it would be independent of the size of the point set.

5.1. VC dimension

Definition 5.1. A range space S is a pair (X,R), where X is a ground set (finite or
infinite) and R is a (finite or infinite) family of subsets of X. The elements of X are points
and the elements of R are ranges.

Our interest is in the size/weight of the ranges in the range space. For technical rea-
sons, it will be easier to consider a finite subset x as the underlining ground set.

Definition 5.2. Let S = (X,R) be a range space, and let x be a finite (fixed) subset of
X. For a range r 2 R, its measure is the quantity

m(r) =
|r \ x|
|x| .

While x is finite, it might be very large. As such, we are interested in getting a good
estimate to m(r) by using a more compact set to represent the range space.

Definition 5.3. Let S = (X,R) be a range space. For a subset N (which might be a
multi-set) of x, its estimate of the measure of m(r), for r 2 R, is the quantity

s(r) =
|r \ N|
|N | .

The main purpose of this chapter is to come up with methods to generate a sample N,
such that m(r) ⇡ s(r), for all the ranges r 2 R.

It is easy to see that in the worst case, no sample can capture the measure of all ranges.
Indeed, given a sample N, consider the range x \ N that is being completely missed by N.
As such, we need to concentrate on range spaces that are “low dimensional”, where not
all subsets are allowable ranges. The notion of VC dimension (named after Vapnik and
Chervonenkis [VC71]) is one way to limit the complexity of a range space.
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Definition 5.4. Let S = (X,R) be a range space. For Y ✓ X, let

(5.1) R|Y =
⇢

r \ Y
�

�

�

�

r 2 R
�

denote the projection of R on Y . The range space S projected to Y is S|Y =
�

Y,R|Y �.
If R|Y contains all subsets of Y (i.e., if Y is finite, we have

�

�

�R|Y
�

�

� = 2|Y |), then Y is
shattered by R (or equivalently Y is shattered by S).

The Vapnik-Chervonenkis dimension (or VC dimension) of S, denoted by dimVC(S ),
is the maximum cardinality of a shattered subset of X. If there are arbitrarily large shattered
subsets, then dimVC(S ) = 1.

5.1.1. Examples.
1 2Intervals. Consider the set X to be the real line, and consider R to be the

set of all intervals on the real line. Consider the set Y = {1, 2}. Clearly,
one can find four intervals that contain all possible subsets of Y . Formally, the projection
R|Y =

n

{ } , {1} , {2} , {1, 2}
o

. The intervals realizing each of these subsets are depicted on the
right.

p q sHowever, this is false for a set of three points B = {p, q, s}, since there
is no interval that can contain the two extreme points p and s without also
containing q. Namely, the subset {p, s} is not realizable for intervals, implying that the
largest shattered set by the range space (real line, intervals) is of size two. We conclude
that the VC dimension of this space is two.

{p.q}

p

q

t

Disks. Let X = IR2, and let R be the set of disks in the
plane. Clearly, for any three points in the plane (in general
position), denoted by p, q, and s, one can find eight disks
that realize all possible 23 di↵erent subsets. See the figure
on the right.

But can disks shatter a set with four points? Consider
such a set P of four points. If the convex hull of P has only
three points on its boundary, then the subset X having only
those three vertices (i.e., it does not include the middle point) is impossible, by convexity.
Namely, there is no disk that contains only the points of X without the middle point.

d

a
c

b

Alternatively, if all four points are vertices of the convex
hull and they are a, b, c, d along the boundary of the convex hull,
either the set {a, c} or the set {b, d} is not realizable. Indeed, if
both options are realizable, then consider the two disks D1 and
D2 that realize those assignments. Clearly, @D1 and @D2 must
intersect in four points, but this is not possible, since two circles
have at most two intersection points. See the figure on the left.
Hence the VC dimension of this range space is 3.

CH(V)

Convex sets. Consider the range space S = (IR2,R), where R
is the set of all (closed) convex sets in the plane. We claim that
dimVC(S) = 1. Indeed, consider a set U of n points p1, . . . , pn
all lying on the boundary of the unit circle in the plane. Let V be
any subset of U, and consider the convex hull CH(V). Clearly,
CH(V) 2 R, and furthermore, CH(V) \ U = V . Namely, any
subset of U is realizable by S. Thus, S can shatter sets of arbi-
trary size, and its VC dimension is unbounded.
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Complement. Consider the range space S = (X,R) with � = dimVC(S). Next, consider the
complement space, S =

⇣

X,R
⌘

, where

R =
⇢

X \ r
�

�

�

�

r 2 R
�

;

namely, the ranges of S are the complement of the ranges in S. What is the VC dimension
of S? Well, a set B ✓ X is shattered by S if and only if it is shattered by S. Indeed,
if S shatters B, then for any Z ✓ B, we have that (B \ Z) 2 R|B, which implies that
Z = B \ (B \ Z) 2 R|B. Namely, R|B contains all the subsets of B, and S shatters B. Thus,
dimVC

⇣

S
⌘

= dimVC(S).

Lemma 5.5. For a range space S = (X,R) we have that dimVC(S) = dimVC

⇣

S
⌘

, where
S is the complement range space.

5.1.1.1. Halfspaces. Let S = (X,R), where X = IRd and R is the set of all (closed)
halfspaces in IRd. We need the following technical claim.

Claim 5.6. Let P = {p1, . . . , pd+2} be a set of d+2 points in IRd. There are real numbers
�1, . . . , �d+2, not all of them zero, such that

P

i �ipi = 0 and
P

i �i = 0.

Proof. Indeed, set qi = (pi, 1), for i = 1, . . . , d+2. Now, the points q1, . . . , qd+2 2 IRd+1

are linearly dependent, and there are coe�cients �1, . . . , �d+2, not all of them zero, such
that

Pd+2
i=1 �iqi = 0. Considering only the first d coordinates of these points implies that

Pd+2
i=1 �ipi = 0. Similarly, by considering only the (d + 1)st coordinate of these points, we

have that
Pd+2

i=1 �i = 0. ⌅

To see what the VC dimension of halfspaces in IRd is, we need the following result of
Radon. (For a reminder of the formal definition of convex hulls, see Definition 28.1p347.)

Theorem 5.7 (Radon’s theorem). Let P = {p1, . . . , pd+2} be a set of d+ 2 points in IRd.
Then, there exist two disjoint subsets C and D of P, such that CH(C) \ CH(D) , ; and
C [ D = P.

Proof. By Claim 5.6 there are real numbers �1, . . . , �d+2, not all of them zero, such
that

P

i �ipi = 0 and
P

i �i = 0.
Assume, for the sake of simplicity of exposition, that �1, . . . , �k � 0 and �k+1, . . .,

�d+2 < 0. Furthermore, let µ =
Pk

i=1 �i = �Pd+2
i=k+1 �i. We have that

k
X

i=1

�ipi = �
d+2
X

i=k+1

�ipi.

In particular, v =
Pk

i=1(�i/µ)pi is a point in CH({p1, . . . , pk}). Furthermore, for the same
point v we have v =

Pd+2
i=k+1 �(�i/µ)pi 2 CH({pk+1, . . . , pd+2}). We conclude that v is in the

intersection of the two convex hulls, as required. ⌅

The following is a trivial observation, and yet we provide a proof to demonstrate it is
true.

Lemma 5.8. Let P ✓ IRd be a finite set, let s be any point in CH(P), and let h+ be a
halfspace of IRd containing s. Then there exists a point of P contained inside h+.
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Proof. The halfspace h+ can be written as h+ =
⇢

t 2 IRd
�

�

�

�

ht, vi  c
�

. Now s 2
CH(P) \ h+, and as such there are numbers ↵1, . . . ,↵m � 0 and points p1, . . . , pm 2 P,
such that

P

i ↵i = 1 and
P

i ↵ipi = s. By the linearity of the dot product, we have that

s 2 h+ =) hs, vi  c =)
* m
X

i=1

↵ipi, v
+

 c =) � =
m

X

i=1

↵i hpi, vi  c.

Setting �i = hpi, vi, for i = 1, . . . ,m, the above implies that � is a weighted average of
�1, . . . , �m. In particular, there must be a �i that is no larger than the average. That is
�i  c. This implies that hpi, vi  c. Namely, pi 2 h+ as claimed. ⌅

Let S be the range space having IRd as the ground set and all the close halfspaces as
ranges. Radon’s theorem implies that if a set Q of d+2 points is being shattered by S, then
we can partition this set Q into two disjoint sets Y and Z such that CH(Y)\CH(Z) , ;. In
particular, let s be a point in CH(Y) \ CH(Z). If a halfspace h+ contains all the points of
Y , then CH(Y) ✓ h+, since a halfspace is a convex set. Thus, any halfspace h+ containing
all the points of Y will contain the point s 2 CH(Y). But s 2 CH(Z)\ h+, and this implies
that a point of Z must lie in h+, by Lemma 5.8. Namely, the subset Y ✓ Q cannot be
realized by a halfspace, which implies that Q cannot be shattered. Thus dimVC(S ) < d + 2.
It is also easy to verify that the regular simplex with d+ 1 vertices is shattered by S. Thus,
dimVC(S ) = d + 1.

5.2. Shattering dimension and the dual shattering dimension

The main property of a range space with bounded VC dimension is that the number of
ranges for a set of n elements grows polynomially in n (with the power being the dimen-
sion) instead of exponentially. Formally, let the growth function be

(5.2) G�(n) =
�

X

i=0

 

n
i

!


�

X

i=0

ni

i!
 n�,

for � > 1 (the cases where � = 0 or � = 1 are not interesting and we will just ignore them).
Note that for all n, � � 1, we have G�(n) = G�(n � 1) + G��1(n � 1)¨.

Lemma 5.9 (Sauer’s lemma). If (X,R) is a range space of VC dimension � with |X| = n,
then |R|  G�(n).

Proof. The claim trivially holds for � = 0 or n = 0.
Let x be any element of X, and consider the sets

Rx =
⇢

r \ {x}
�

�

�

�

r [ {x} 2 R and r \ {x} 2 R
�

and R \ x =
⇢

r \ {x}
�

�

�

�

r 2 R
�

.

Observe that |R| = |Rx|+|R \ x|. Indeed, we charge the elements of R to their corresponding
element in R \ x. The only bad case is when there is a range r such that both r [ {x} 2 R
and r \ {x} 2 R, because then these two distinct ranges get mapped to the same range in
R \ x. But such ranges contribute exactly one element to Rx. Similarly, every element of
Rx corresponds to two such “twin” ranges in R.

¨Here is a cute (and standard) counting argument: G�(n) is just the number of di↵erent subsets of size at most
� out of n elements. Now, we either decide to not include the first element in these subsets (i.e., G�(n � 1)) or,
alternatively, we include the first element in these subsets, but then there are only � � 1 elements left to pick (i.e.,
G��1(n � 1)).
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Observe that (X\{x} ,Rx) has VC dimension ��1, as the largest set that can be shattered
is of size �� 1. Indeed, any set B ⇢ X \ {x} shattered by Rx implies that B[ {x} is shattered
in R.

Thus, we have

|R| = |Rx| + |R \ x|  G��1(n � 1) + G�(n � 1) = G�(n),

by induction. ⌅

Interestingly, Lemma 5.9 is tight. See Exercise 5.4.
Next, we show pretty tight bounds on G�(n). The proof is technical and not very

interesting, and it is delegated to Section 5.6.

Lemma 5.10. For n � 2� and � � 1, we have
✓n
�

◆�

 G�(n)  2
✓ne
�

◆�

, where

G�(n) =
�

X

i=0

 

n
i

!

.

Definition 5.11 (Shatter function). Given a range space S = (X,R), its shatter func-
tion ⇡S(m) is the maximum number of sets that might be created by S when restricted to
subsets of size m. Formally,

⇡S(m) = max
B⇢X|B|=m

�

�

�R|B
�

�

� ;

see (5.1).
The shattering dimension of S is the smallest d such that ⇡S(m) = O(md), for all m.

By applying Lemma 5.9 to a finite subset of X, we get:

Corollary 5.12. If S = (X,R) is a range space of VC dimension �, then for every
finite subset B of X, we have

�

�

�R|B
�

�

�  ⇡S(|B|)  G�(|B|). That is, the VC dimension of a range
space always bounds its shattering dimension.

Proof. Let n = |B|, and observe that
�

�

�R|B
�

�

�  G�(n)  n�, by (5.2). As such,
�

�

�R|B
�

�

� 
n�, and, by definition, the shattering dimension of S is at most �; namely, the shattering
dimension is bounded by the VC dimension. ⌅

Our arch-nemesis in the following is the function x/ ln x. The following lemma states
some properties of this function, and its proof is delegated to Exercise 5.2.

Lemma 5.13. For the function f (x) = x/ ln x the following hold.
(A) f (x) is monotonically increasing for x � e.
(B) f (x) � e, for x > 1.
(C) For u � pe, if f (x)  u, then x  2u ln u.
(D) For u � pe, if x > 2u ln u, then f (x) > u.
(E) For u � e, if f (x) � u, then x � u ln u.

The next lemma introduces a standard argument which is useful in bounding the VC
dimension of a range space by its shattering dimension. It is easy to see that the bound is
tight in the worst case.

Lemma 5.14. If S = (X,R) is a range space with shattering dimension d, then its VC
dimension is bounded by O(d log d).
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Proof. Let N ✓ X be the largest set shattered by S, and let � denote its cardinality. We
have that 2� =

�

�

�R|N
�

�

�  ⇡S(|N |)  c� d, where c is a fixed constant. As such, we have that

�  lg c+d lg �, which in turn implies that
� � lg c

lg �
 d.≠ Assuming � � max

�

2, 2 lg c
�

, we

have that
�

2 lg �
 d =) �

ln �
 2d

ln 2
 6d =) �  2(6d) ln(6d),

by Lemma 5.13(C). ⌅

Disks revisited. To see why the shattering dimension is more convenient to work with than
the VC dimension, consider the range space S = (X,R), where X = IR2 and R is the set of
disks in the plane. We know that the VC dimension of S is 3 (see Section 5.1.1).

We next use a standard continuous deformation argument to argue that the shattering
dimension of this range space is also 3.

Lemma 5.15. Consider the range space S = (X,R), where X = IR2 and R is the set of
disks in the plane. The shattering dimension of S is 3.

Proof. Consider any set P of n points in the plane, and consider the set F = R|P. We
claim that |F |  4n3.

The set F contains only n sets with a single point in them and only
⇣

n
2

⌘

sets with two
points in them. So, fix Q 2 F such that |Q| � 3.

D

=)

D0

D

p
=)

q

D0

D00

p

+

q

s

D00

bD

p

There is a disk D that realizes this subset; that is, P\D =
Q. For the sake of simplicity of exposition, assume that P is
in general position. Shrink D till its boundary passes through
a point p of P.

Now, continue shrinking the new disk D0 in such a way
that its boundary passes through the point p (this can be done
by moving the center of D0 towards p). Continue in this con-
tinuous deformation till the new boundary hits another point
q of P. Let D00 denote this disk.

Next, we continuously deform D00 so that it has both p 2
Q and q 2 Q on its boundary. This can be done by moving the center of D00 along the
bisector linear between p and q. Stop as soon as the boundary of the disk hits a third point
s 2 P. (We have freedom in choosing in which direction to move the center. As such, move
in the direction that causes the disk boundary to hit a new point s.) Let bD be the resulting
disk. The boundary of bD is the unique circle passing through p, q, and s. Furthermore,
observe that

D \
⇣

P \ {s}
⌘

= bD \
⇣

P \ {s}
⌘

.

≠We remind the reader that lg = log2.
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That is, we can specify the point set P \ D by specifying the three points p, q, s (and thus
specifying the disk bD) and the status of the three special points; that is, we specify for each
point p, q, s whether or not it is inside the generated subset.

As such, there are at most 8
⇣

n
3

⌘

di↵erent subsets inF containing more than three points,
as each such subset maps to a “canonical” disk, there are at most

⇣

n
3

⌘

di↵erent such disks,
and each such disk defines at most eight di↵erent subsets.

Similar argumentation implies that there are at most 4
⇣

n
2

⌘

subsets that are defined by a
pair of points that realizes the diameter of the resulting disk. Overall, we have that

|F | = 1 + n + 4
 

n
2

!

+ 8
 

n
3

!

 4n3,

since there is one empty set in F , n sets of size 1, and the rest of the sets are counted as
described above. ⌅

The proof of Lemma 5.15 might not seem like a great simplification over the same
bound we got by arguing about the VC dimension. However, the above argumentation
gives us a very powerful tool – the shattering dimension of a range space defined by a
family of shapes is always bounded by the number of points that determine a shape in the
family.

Thus, the shattering dimension of, say, arbitrarily oriented rect-
angles in the plane is bounded by (and in this case, equal to) five,
since such a rectangle is uniquely determined by five points. To see
that, observe that if a rectangle has only four points on its bound-
ary, then there is one degree of freedom left, since we can rotate the
rectangle “around” these points; see the figure on the right.

5.2.1. The dual shattering dimension. Given a range space S = (X,R), consider a
point p 2 X. There is a set of ranges of R associated with p, namely, the set of all ranges
of R that contains p which we denote by

Rp =
⇢

r
�

�

�

�

r 2 R, the range r contains p
�

.

This gives rise to a natural dual range space to S.

Definition 5.16. The dual range space to a range space S = (X,R) is the space
S? = (R,X?), where X? =

⇢

Rp

�

�

�

�

p 2 X
�

.

Naturally, the dual range space to S? is the original S, which is thus sometimes re-
ferred to as the primal range space. (In other words, the dual to the dual is the primal.) The
easiest way to see this, is to think about it as an abstract set system realized as an incidence
matrix, where each point is a column and a set is a row in the matrix having 1 in an entry
if and only if it contains the corresponding point; see Figure 5.1. Now, it is easy to verify
that the dual range space is the transposed matrix.

To understand what the dual space is, consider X to be the plane and R to be a set of
m disks. Then, in the dual range space S? = (R,X?), every point p in the plane has a set
associated with it in X?, which is the set of disks of R that contains p. In particular, if we
consider the arrangement formed by the m disks of R, then all the points lying inside a
single face of this arrangement correspond to the same set of X?. The number of ranges in
X? is bounded by the complexity of the arrangement of these disks, which is O(m2); see
Figure 5.1.
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(A) p1
p01

D1 D2

D3

p2

p3

p4

p5

p6

(B)

p1 p01 p2 p3 p4 p5 p6

D1 1 1 1 1 1 0 0
D2 1 1 0 0 1 1 1
D3 1 1 1 0 0 0 1

D1 D2 D3

p1 1 1 1
p01 1 1 1
p2 1 0 1
p3 1 0 0
p4 1 1 0
p5 0 1 0
p6 0 1 1

(C)

Figure 5.1. (A) Rp1 = Rp01 . (B) Writing the set system as an incidence
matrix where a point is a column and a set is a row. For example, D2
contains p4, and as such the column of p4 has a 1 in the row correspond-
ing to D2. (C) The dual set system is represented by a matrix which is
the transpose of the original incidence matrix.

Let the dual shatter function of the range space S be ⇡?S(m) = ⇡S? (m), where S? is
the dual range space to S.

Definition 5.17. The dual shattering dimension of S is the shattering dimension of
the dual range space S?.

Note that the dual shattering dimension might be smaller than the shattering dimension
and hence also smaller than the VC dimension of the range space. Indeed, in the case of
disks in the plane, the dual shattering dimension is just 2, while the VC dimension and
the shattering dimension of this range space is 3. Note, also, that in geometric settings
bounding the dual shattering dimension is relatively easy, as all you have to do is bound
the complexity of the arrangement of m ranges of this space.

The following lemma shows a connection between the VC dimension of a space and
its dual. The interested readerÆ might find the proof amusing.

Lemma 5.18. Consider a range space S = (X,R) with VC dimension �. The dual range
space S? = (R,X?) has VC dimension bounded by 2�+1.

Proof. Assume that S? shatters a set F = {r1, . . . , rk} ✓ R of k ranges. Then, there
is a set P ✓ X of m = 2k points that shatters F . Formally, for every subset V ✓ F , there
exists a point p 2 P, such that Fp = V .

So, consider the matrix M (of dimensions k ⇥ 2k) having the points p1, . . . , p2k of P as
the columns, and every row is a set of F , where the entry in the matrix corresponding to a
point p 2 P and a range r 2 F is 1 if and only if p 2 r and zero otherwise. Since P shatters
F , we know that this matrix has all possible 2k binary vectors as columns.

ÆThe author is quite aware that the interest of the reader in this issue might not be the result of free choice.
Nevertheless, one might draw some comfort from the realization that the existence of the interested reader is as
much an illusion as the existence of free choice. Both are convenient to assume, and both are probably false. Or
maybe not.
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M :

p1 p2 . . . p2k

r1 0 1 0
r2 1 1 1
...

...
...

...
...

rk�2 1 1 . . . 0
rk�1 0 0 . . . 1
rk 1 0 . . . 1

M0 :

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

Next, let 0 = 2blg kc  k, and
consider the matrix M0 of size 0⇥
lg 0, where the ith row is the bi-
nary representation of the number
i�1 (formally, the jth entry in the
ith row is 1 if the jth bit in the bi-
nary representation of i � 1 is 1),
where i = 1, . . . , 0. See the fig-
ure on the right. Clearly, the lg 0
columns of M0 are all di↵erent,
and we can find lg 0 columns of M that are identical to the columns of M0 (in the first
0 entries starting from the top of the columns).

Each such column corresponds to a point p 2 P, and let Q ⇢ P be this set of lg 0
points. Note that for any subset Z ✓ Q, there is a row t in M0 that encodes this subset.
Consider the corresponding row in M; that is, the range rt 2 F . Since M and M0 are iden-
tical (in the relevant lg 0 columns of M) on the first 0, we have that rt \ Q = Z. Namely,
the set of ranges F shatters Q. But since the original range space has VC dimension �, it
follows that |Q|  �. Namely, |Q| = lg 0 =

⌅

lg k
⇧  �, which implies that lg k  � + 1,

which in turn implies that k  2�+1. ⌅

Lemma 5.19. If a range space S = (X,R) has dual shattering dimension �, then its VC
dimension is bounded by �O(�).

Proof. The shattering dimension of the dual range space S? is bounded by �, and as
such, by Lemma 5.14, its VC dimension is bounded by �0 = O

�

� log �
�

. Since the dual
range space to S? is S, we have by Lemma 5.18 that the VC dimension of S is bounded by
2�0+1 = �O(�). ⌅

The bound of Lemma 5.19 might not be pretty, but it is su�cient in a lot of cases to
bound the VC dimension when the shapes involved are simple.

Example 5.20. Consider the range space S =
⇣

IR2,R
⌘

, where R is a set of shapes in
the plane, so that the boundary of any pair of them intersects at most s times. Then, the
VC dimension of S is O(1). Indeed, the dual shattering dimension of S is O(1), since the
complexity of the arrangement of n such shapes is O(sn2). As such, by Lemma 5.19, the
VC dimension of S is O(1).

5.2.1.1. Mixing range spaces.

Lemma 5.21. Let S = (X,R) and T = (X,R0) be two range spaces of VC dimension �
and �0, respectively, where �, �0 > 1. Let bR =

⇢

r [ r0
�

�

�

�

r 2 R, r0 2 R0
�

. Then, for the range

space bS =
⇣

X,bR
⌘

, we have that dimVC

⇣

bS
⌘

= O(� + �0).

Proof. As a warm-up exercise, we prove a somewhat weaker bound here of O((� +
�0) log(� + �0)). The stronger bound follows from Theorem 5.22 below. Let B be a set
of n points in X that are shattered by bS. There are at most G�(n) and G�0 (n) di↵erent
ranges of B in the range sets R|B and R0|B, respectively, by Lemma 5.9. Every subset C
of B realized by br 2 bR is a union of two subsets B \ r and B \ r0, where r 2 R and
r0 2 R0, respectively. Thus, the number of di↵erent subsets of B realized by bS is bounded
by G�(n)G�0 (n). Thus, 2n  n�n�0 , for �, �0 > 1. We conclude that n  (� + �0) lg n, which
implies that n = O

�

(� + �0) log(� + �0)
�

, by Lemma 5.13(C). ⌅



70 5. ON COMPLEXITY, SAMPLING, AND "-NETS AND "-SAMPLES

Interestingly, one can prove a considerably more general result with tighter bounds.
The required computations are somewhat more painful.

Theorem 5.22. Let S1 =
⇣

X,R1
⌘

, . . . ,Sk =
⇣

X,Rk
⌘

be range spaces with VC dimension
�1, . . . , �k, respectively. Next, let f (r1, . . . , rk) be a function that maps any k-tuple of sets
r1 2 R1, . . . , rk 2 Rk into a subset of X. Consider the range set

R0 =
⇢

f (r1, . . . , rk)
�

�

�

�

r1 2 R1, . . . , rk 2 Rk

�

and the associated range space T = (X,R0). Then, the VC dimension of T is bounded by
O
�

k� lg k
�

, where � = maxi �i.

Proof. Assume a set Y ✓ X of size t is being shattered by R0, and observe that

�

�

�R0|Y
�

�

� 
�

�

�

�

�

�

�

(

(r1, . . . , rk)
�

�

�

�

r1 2 R1
|Y , . . . , rk 2 Rk

|Y

)

�

�

�

�

�

�

�

 �

�

�R1
|Y
�

�

� · · · ���Rk
|Y
�

�

�  G�1 (t) · G�2 (t) · · ·G�k (t)


⇣

G�(t)
⌘k 

 

2
✓ te
�

◆�
!k

,

by Lemma 5.9 and Lemma 5.10. On the other hand, since Y is being shattered by R0,
this implies that

�

�

�

�

R0|Y
�

�

�

�

= 2t. Thus, we have the inequality 2t 
⇣

2(te/�)�
⌘k

, which implies
t  k

�

1 + � lg(te/�)
�

. Assume that t � e and � lg(te/�) � 1 since otherwise the claim is
trivial, and observe that t  k

�

1 + � lg(te/�)
�  3k� lg(t/�). Setting x = t/�, we have

t
�
 3k

ln(t/�)
ln 2

 6k ln
t
�
=) x

ln x
 6k =) x  2 · 6k ln(6k) =) x  12k ln(6k),

by Lemma 5.13(C). We conclude that t  12�k ln(6k), as claimed. ⌅

Corollary 5.23. Let S = (X,R) and T = (X,R0) be two range spaces of VC dimension
� and �0, respectively, where �, �0 > 1. Let bR =

⇢

r \ r0
�

�

�

�

r 2 R, r0 2 R0
�

. Then, for the range

space bS = (X,bR), we have that dimVC(bS) = O(� + �0).

Corollary 5.24. Any finite sequence of combining range spaces with finite VC dimen-
sion (by intersecting, complementing, or taking their union) results in a range space with
a finite VC dimension.

5.3. On "-nets and "-sampling

5.3.1. "-nets and "-samples.

Definition 5.25 ("-sample). Let S = (X,R) be a range space, and let x be a finite
subset of X. For 0  "  1, a subset C ✓ x is an "-sample for x if for any range r 2 R, we
have

�

�

�

�

m(r) � s(r)
�

�

�

�

 ",
where m(r) = |x \ r| / |x| is the measure of r (see Definition 5.2) and s(r) = |C \ r| / |C| is
the estimate of r (see Definition 5.3). (Here C might be a multi-set, and as such |C \ r| is
counted with multiplicity.)

As such, an "-sample is a subset of the ground set x that “captures” the range space up
to an error of ". Specifically, to estimate the fraction of the ground set covered by a range
r, it is su�cient to count the points of C that fall inside r.

If X is a finite set, we will abuse notation slightly and refer to C as an "-sample for S.
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To see the usage of such a sample, consider x = X to be, say, the population of a
country (i.e., an element of X is a citizen). A range in R is the set of all people in the
country that answer yes to a question (i.e., would you vote for party Y?, would you buy
a bridge from me?, questions like that). An "-sample of this range space enables us to
estimate reliably (up to an error of ") the answers for all these questions, by just asking the
people in the sample.

The natural question of course is how to find such a subset of small (or minimal) size.

Theorem 5.26 ("-sample theorem, [VC71]). There is a positive constant c such that
if (X,R) is any range space with VC dimension at most �, x ✓ X is a finite subset and
",' > 0, then a random subset C ✓ x of cardinality

s =
c
"2

 

� log
�

"
+ log

1
'

!

is an "-sample for x with probability at least 1 � '.

(In the above theorem, if s > |x|, then we can just take all of x to be the "-sample.)
For a strengthened version of the above theorem with slightly better bounds, see The-

orem 7.13p107.

Sometimes it is su�cient to have (hopefully smaller) samples with a weaker property
– if a range is “heavy”, then there is an element in our sample that is in this range.

Definition 5.27 ("-net). A set N ✓ x is an "-net for x if for any range r 2 R, if m(r) � "
(i.e., |r \ x| � " |x|), then r contains at least one point of N (i.e., r \ N , ;).

Theorem 5.28 ("-net theorem, [HW87]). Let (X,R) be a range space of VC dimension
�, let x be a finite subset of X, and suppose that 0 < "  1 and ' < 1. Let N be a set obtained
by m random independent draws from x, where

(5.3) m � max
 

4
"

lg
4
'
,

8�
"

lg
16
"

!

.

Then N is an "-net for x with probability at least 1 � '.

(We remind the reader that lg = log2.)
The proofs of the above theorems are somewhat involved and we first turn our attention

to some applications before presenting the proofs.

Remark 5.29. The above two theorems also hold for spaces with shattering dimension
at most �, in which case the sample size is slightly larger. Specifically, for Theorem 5.28,

the sample size needed is O
 

1
"

lg
1
'
+
�

"
lg
�

"

!

.

5.3.2. Some applications. We mention two (easy) applications of these theorems,
which (hopefully) demonstrate their power.

5.3.2.1. Range searching. So, consider a (very large) set of points P in the plane.
We would like to be able to quickly decide how many points are included inside a query
rectangle. Let us assume that we allow ourselves 1% error. What Theorem 5.26 tells us is
that there is a subset of constant size (that depends only on ") that can be used to perform
this estimation, and it works for all query rectangles (we used here the fact that rectangles
in the plane have finite VC dimension). In fact, a random sample of this size works with
constant probability.
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Dunknown
5.3.2.2. Learning a concept. Assume that we have

a function f defined in the plane that returns ‘1’ inside
an (unknown) disk Dunknown and ‘0’ outside it. There
is some distribution D defined over the plane, and we
pick points from this distribution. Furthermore, we can
compute the function for these labels (i.e., we can com-
pute f for certain values, but it is expensive). For a
mystery value " > 0, to be explained shortly, Theo-
rem 5.28 tells us to pick (roughly) O((1/") log(1/"))
random points in a sample R from this distribution and to compute the labels for the sam-
ples. This is demonstrated in the figure on the right, where black dots are the sample points
for which f (·) returned 1.

D

So, now we have positive examples and negative ex-
amples. We would like to find a hypothesis that agrees
with all the samples we have and that hopefully is close to
the true unknown disk underlying the function f . To this
end, compute the smallest disk D that contains the sample
labeled by ‘1’ and does not contain any of the ‘0’ points,
and let g : IR2 ! {0, 1} be the function g that returns ‘1’
inside the disk and ‘0’ otherwise. We claim that g clas-
sifies correctly all but an "-fraction of the points (i.e., the
probability of misclassifying a point picked according to the given distribution is smaller
than "); that is, Prp2D

⇥

f (p) , g(p)
⇤  ".

D � Dunknown

D

DunknownGeometrically, the region where g and f disagree is
all the points in the symmetric di↵erence between the two
disks. That is, E = D�Dunknown; see the figure on the right.

Thus, consider the range space S having the plane as
the ground set and the symmetric di↵erence between any
two disks as its ranges. By Corollary 5.24, this range space
has finite VC dimension. Now, consider the (unknown)
disk D0 that induces f and the region r = Dunknown � D.
Clearly, the learned classifier g returns incorrect answers
only for points picked inside r.

Thus, the probability of a mistake in the classification is the measure of r under the
distribution D. So, if PrD



r
�

> " (i.e., the probability that a sample point falls inside
r), then by the "-net theorem (i.e., Theorem 5.28) the set R is an "-net for S (ignore for
the time being the possibility that the random sample fails to be an "-net) and as such, R
contains a point q inside r. But, it is not possible for g (which classifies correctly all the
sampled points of R) to make a mistake on q, a contradiction, because by construction, the
range r is where g misclassifies points. We conclude that PrD



r
�

 ", as desired.

Little lies. The careful reader might be tearing his or her hair out because of the above
description. First, Theorem 5.28 might fail, and the above conclusion might not hold. This
is of course true, and in real applications one might use a much larger sample to guarantee
that the probability of failure is so small that it can be practically ignored. A more serious
issue is that Theorem 5.28 is defined only for finite sets. Nowhere does it speak about a
continuous distribution. Intuitively, one can approximate a continuous distribution to an
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arbitrary precision using a huge sample and apply the theorem to this sample as our ground
set. A formal proof is more tedious and requires extending the proof of Theorem 5.28 to
continuous distributions. This is straightforward and we will ignore this topic altogether.

5.3.2.3. A naive proof of the "-sample theorem. To demonstrate why the "-sample/net
theorems are interesting, let us try to prove the "-sample theorem in the natural naive way.
Thus, consider a finite range space S = (x,R) with shattering dimension �. Also, consider
a range r that contains, say, a p fraction of the points of x, where p � ". Consider a random
sample R of r points from x, picked with replacement.

Let pi be the ith sample point, and let Xi be an indicator variable which is one if and
only if pi 2 r. Clearly, (

P

i Xi)/r is an estimate for p = |r \ x| / |x|. We would like this
estimate to be within ±" of p and with confidence � 1 � '.

As such, the sample failed if
�

�

�

Pr
i=1 Xi � pr

�

�

� � "r = ("/p)pr. Set � = "/p and µ =
E
⇥P

i Xi
⇤

= pr. Using Cherno↵’s inequality (Theorem 27.17p340 and Theorem 27.18p341),
we have

Pr
2

6

6

6

6

6

4

�

�

�

�

�

�

�

r
X

i=1

Xi � pr

�

�

�

�

�

�

�

� ("/p)pr

3

7

7

7

7

7

5

= Pr
2

6

6

6

6

6

4

�

�

�

�

�

�

�

r
X

i=1

Xi � µ
�

�

�

�

�

�

�

� �µ
3

7

7

7

7

7

5

 exp
⇣

�µ�2/2
⌘

+ exp
⇣

�µ�2/4
⌘

 2 exp
⇣

�µ�2/4
⌘

= 2 exp
 

� "
2

4p
r
!

 ',

for r �
&

4
"2 ln

2
'

'

�
&

4p
"2 ln

2
'

'

.

Viola! We proved the "-sample theorem. Well, not quite. We proved that the sample
works correctly for a single range. Namely, we proved that for a specific range r 2 R,
we have that Pr



�

�

�

�

m(r) � s(r)
�

�

�

�

> "
�

 '. However, we need to prove that 8r 2 R,

Pr


�

�

�

�

m(r) � s(r)
�

�

�

�

> "
�

 '.
Now, naively, we can overcome this by using a union bound on the bad probability.

Indeed, if there are k di↵erent ranges under consideration, then we can use a sample that
is large enough such that the probability of it to fail for each range is at most '/k. In
particular, let Ei be the bad event that the sample fails for the ith range. We have that
Pr[Ei]  '/k, which implies that

Pr
h

sample fails for any range
i

 Pr
2

6

6

6

6

6

6

4

k
[

i=1

Ei

3

7

7

7

7

7

7

5


k

X

i=1

Pr
h

Ei
i

 k('/k)  ',

by the union bound; that is, the sample works for all ranges with good probability.
However, the number of ranges that we need to prove the theorem for is ⇡S(|x|) (see

Definition 5.11). In particular, if we plug in confidence '/⇡S(|x|) to the above analysis and
use the union bound, we get that for

r �
&

4
"2 ln

⇡S(|x|)
'

'

the sample estimates correctly (up to ±") the size of all ranges with confidence � 1 � '.
Bounding ⇡S(|x|) by O

⇣

|x|�
⌘

(using (5.2)p64 for a space with VC dimension �), we can bound
the required size of r by O

⇣

�"�2 log(|x| /')
⌘

. We summarize the result.

Lemma 5.30. Let (x,R) be a finite range space with VC dimension at most �, and let
",' > 0 be parameters. Then a random subset C ✓ x of cardinality O

⇣

�"�2 log(|x| /')
⌘

is
an "-sample for x with probability at least 1 � '.
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Namely, the “naive” argumentation gives us a sample bound which depends on the
underlying size of the ground set. However, the sample size in the "-sample theorem
(Theorem 5.26) is independent of the size of the ground set. This is the magical property
of the "-sample theoremØ.

Interestingly, using a chaining argument on Lemma 5.30, one can prove the "-sample
theorem for the finite case; see Exercise 5.3. We provide a similar proof when using
discrepancy, in Section 5.4. However, the original proof uses a clever double sampling
idea that is both interesting and insightful that makes the proof work for the infinite case
also.

5.3.3. A quicky proof of the "-net theorem (Theorem 5.28). Here we provide a
sketchy proof of Theorem 5.28, which conveys the main ideas. The full proof in all its
glory and details is provided in Section 5.5.

Let N = (x1, . . . , xm) be the sample obtained by m independent samples from x (ob-
serve that N might contain the same element several times, and as such it is a multi-set).
Let E1 be the probability that N fails to be an "-net. Namely, for n = |x|, let

E1 =
⇢

9r 2 R
�

�

�

�

|r \ x| � "n and r \ N = ;
�

.

To complete the proof, we must show that Pr[E1]  '.
Let T = (y1, . . . , ym) be another random sample generated in a similar fashion to N.

It might be that N fails for a certain range r, but then since T is an independent sample,
we still expect that |r \ T | = "m. In particular, the probability that Pr

h

|r \ T | � "m2
i

is a
large constant close to 1, regardless of how N performs. Indeed, if m is su�ciently large,
we expect the random variable |r \ T | to concentrate around "m, and one can argue this
formally using Cherno↵’s inequality. Namely, intuitively, for a heavy range r we have that

Pr[r \ N = ;] ⇡ Pr


r \ N = ; and
✓

|r \ T | � "m
2

◆�

.

Inspired by this, let E2 be the event that N fails for some range r but T “works” for r;
formally

E2 =
⇢

9r 2 R
�

�

�

�

�

|r \ x| � "n, r \ N = ; and |r \ T | � "m
2

�

.

Intuitively, since E[|r \ T |] � "m, then for the range r that N fails for, we have with “good”
probability that |r \ T | � "m/2. Namely, Pr[E1] ⇡ Pr[E2].

Next, let

E02 =
⇢

9r 2 R
�

�

�

�

�

r \ N = ; and |r \ T | � "m
2

�

.

Clearly, E2 ✓ E02 and as such Pr[E2]  Pr
h

E02
i

. Now, fix Z = N [ T , and observe that
|Z| = 2m. Next, fix a range r, and observe that the bad probability of E02 is maximized if
|r \ Z| = "m/2. Now, the probability that all the elements of r\Z fall only into the second
half of the sample is at most 2�"m/2 as a careful calculation shows. Now, there are at most
�

�

�Z|R
�

�

�  Gd(2m) di↵erent ranges that one has to consider. As such, Pr[E1] ⇡ Pr[E2] 
Pr

h

E02
i

 Gd(2m)2�"m/2 and this is smaller than ', as a careful calculation shows by just
plugging the value of m into the right-hand side; see (5.3)p71. ⌅

ØThe notion of magic is used here in the sense of Arthur C. Clarke’s statement that “any su�ciently advanced
technology is indistinguishable from magic.”
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5.4. Discrepancy

The proof of the "-sample/net theorem is somewhat complicated. It turns out that
one can get a somewhat similar result by attacking the problem from the other direction;
namely, let us assume that we would like to take a truly large sample of a finite range space
S = (X,R) defined over n elements with m ranges. We would like this sample to be as
representative as possible as far as S is concerned. In fact, let us decide that we would like
to pick exactly half of the points of X in our sample (assume that n = |X| is even).

To this end, let us color half of the points of X by �1 (i.e., black) and the other half
by 1 (i.e., white). If for every range, r 2 R, the number of black points inside it is equal
to the number of white points, then doubling the number of black points inside a range
gives us the exact number of points inside the range. Of course, such a perfect coloring is
unachievable in almost all situations. To see this, consider the complete graph K3 – clearly,
in any coloring (by two colors) of its vertices, there must be an edge with two endpoints
having the same color (i.e., the edges are the ranges).

Formally, let � : X! {�1, 1} be a coloring. The discrepancy of � over a range r is the
amount of imbalance in the coloring inside �. Namely,

|�(r)| =
�

�

�

�

�

�

�

X

p2r
�(p)

�

�

�

�

�

�

�

.

The overall discrepancy of � is disc(�) = maxr2R |�(r)|. The discrepancy of a (finite) range
space S = (X,R) is the discrepancy of the best possible coloring; namely,

disc(S) = min
�:X!{�1,+1}

disc(�).

The natural question is, of course, how to compute the coloring � of minimum dis-
crepancy. This seems like a very challenging question, but when you do not know what to
do, you might as well do something random. So, let us pick a random coloring � of X. To
this end, let ⇧ be an arbitrary partition of X into pairs (i.e., a perfect matching). For a pair
{p, q} 2 ⇧, we will either color �(p) = �1 and �(q) = 1 or the other way around; namely,
�(p) = 1 and �(q) = �1. We will decide how to color this pair using a single coin flip.
Thus, our coloring would be induced by making such a decision for every pair of ⇧, and
let � be the resulting coloring. We will refer to � as compatible with the partition ⇧ if, for
all {p, q} 2 ⇧, we have that �({p, q}) = 0; namely,

r

crossing

pair

8 {p, q} 2 ⇧
⇣

�(p) = +1 and �(q) = �1
⌘

or
⇣

�(p) = �1 and �(q) = +1
⌘

.

.
Consider a range r and a coloring � compatible with ⇧.

If a pair {p, q} 2 ⇧ falls completely inside r or completely
outside r, then it does not contribute anything to the discrepancy of r. Thus, the only pairs
that contribute to the discrepancy of r are the ones that cross it. Namely, {p, q}\ r , ; and
{p, q} \ (X \ r) , ;.

As such, let #r denote the crossing number of r, that is, the number of pairs that
cross r. Next, let Xi 2 {�1,+1} be the indicator variable which is the contribution of the
ith crossing pair to the discrepancy of r. For �r =

p
2#r ln(4m), we have by Cherno↵’s
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inequality (Theorem 27.13p338), that

Pr
h

|�(r)| � �r
i

= Pr
h

�(r) � �r
i

+ Pr
h

�(r)  ��r
i

= 2 Pr
2

6

6

6

6

6

4

X

i

Xi � �r

3

7

7

7

7

7

5

 2 exp
 

� �
2
r

2#r

!

=
1

2m
.

Since there are m ranges in R, it follows that with good probability (i.e., at least half) for
all r 2 R the discrepancy of r is at most �r.

Theorem 5.31. Let S = (X,R) be a range space defined over n = |X| elements with
m = |R| ranges. Consider any partition ⇧ of the elements of X into pairs. Then, with
probability � 1/2, for any range r 2 R, a random coloring � : X ! {�1,+1} that is
compatible with the partition ⇧ has discrepancy at most

|�(r)| < �r =
p

2#r ln(4m),

where #r denotes the number of pairs of ⇧ that cross r. In particular, since #r  |r|, we
have |�(r)|  p2 |r| ln(4m).

Observe that for every range r we have that #r  n/2, since 2#r  |X|. As such, we
have:

Corollary 5.32. Let S = (X,R) be a range space defined over n elements with m
ranges. Let ⇧ be an arbitrary partition of X into pairs. Then a random coloring which is
compatible with ⇧ has disc(�) <

p
n ln(4m), with probability � 1/2.

One can easily amplify the probability of success of the coloring by increasing the
threshold. In particular, for any constant c � 1, one has that

8r 2 R |�(r)|  p

2c #r ln(4m),

with probability � 1 � 2
(4m)c .

5.4.1. Building "-sample via discrepancy. Let S = (X,R) be a range space with
shattering dimension �. Let P ✓ X be a set of n points, and consider the induced range
space S|P =

�

P,R|P�; see Definition 5.4p62. Here, by the definition of shattering dimension,
we have that m =

�

�

�R|P
�

�

� = O
⇣

n�
⌘

. Without loss of generality, we assume that n is a power of
2. Consider a coloring � of P with discrepancy bounded by Corollary 5.32. In particular,
let Q be the points of P colored by, say, �1. We know that |Q| = n/2, and for any range
r 2 R, we have that

�(r) =
�

�

�

�

|(P \ Q) \ r| � |Q \ r|
�

�

�

�

<
p

n ln(4m) =
q

n ln O
�

n�
�  c

p

n ln(n�),

for some absolute constant c. Observe that |(P \ Q) \ r| = |P \ r| � |Q \ r|. In particular,
we have that for any range r,

(5.4)
�

�

�

�

|P \ r| � 2 |Q \ r|
�

�

�

�

 c
p

n ln(n�).

Dividing both sides by n = |P| = 2 |Q|, we have that

(5.5)
�

�

�

�

�

|P \ r|
|P| �

|Q \ r|
|Q|

�

�

�

�

�

 ⌧(n) for ⌧(n) = c

r

� ln n
n
.

Namely, a coloring with discrepancy bounded by Corollary 5.32 yields a ⌧(n)-sample.
Intuitively, if n is very large, then Q provides a good approximation to P. However, we
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want an "-sample for a prespecified " > 0. Conceptually, " is a fixed constant while ⌧(n)
is considerably smaller. Namely, Q is a sample which is too tight for our purposes (and
thus too big). As such, we will coarsen (and shrink) Q till we get the desired "-sample
by repeated application of Corollary 5.32. Specifically, we can “chain” together several
approximations generated by Corollary 5.32. This is sometime refereed to as the sketch
property of samples. Informally, as testified by the following lemma, a sketch of a sketch
is a sketch∞.

Lemma 5.33. Let Q ✓ P be a ⇢-sample for P (in some underlying range space S), and
let R ✓ Q be a ⇢0-sample for Q. Then R is a (⇢ + ⇢0)-sample for P.

Proof. By definition, we have that, for every r 2 R,
�

�

�

�

�

|r \ P|
|P| �

|r \ Q|
|Q|

�

�

�

�

�

 ⇢ and
�

�

�

�

�

|r \ Q|
|Q| �

|r \ R|
|R|

�

�

�

�

�

 ⇢0.
By adding the two inequalities together, we get

�

�

�

�

�

|r \ P|
|P| �

|r \ R|
|R|

�

�

�

�

�

=

�

�

�

�

�

|r \ P|
|P| �

|r \ Q|
|Q| +

|r \ Q|
|Q| �

|r \ R|
|R|

�

�

�

�

�

 ⇢ + ⇢0.
⌅

Thus, let P0 = P and P1 = Q. Now, in the ith iteration, we will compute a coloring �i�1
of Pi�1 with low discrepancy, as guaranteed by Corollary 5.32, and let Pi be the points of
Pi�1 colored white by �i�1. Let �i = ⌧(ni�1), where ni�1 = |Pi�1| = n/2i�1. By Lemma 5.33,
we have that Pk is a (

Pk
i=1 �i)-sample for P. Since we would like the smallest set in the

sequence P1,P2, . . . that is still an "-sample, we would like to find the maximal k, such that
(
Pk

i=1 �i)  ". Plugging in the value of �i and ⌧(·), see (5.5), it is su�cient for our purposes
that

k
X

i=1

�i =
k

X

i=1

⌧(ni�1) =
k

X

i=1

c

s

� ln(n/2i�1)
n/2i�1  c1

s

� ln(n/2k�1)
n/2k�1 = c1

s

� ln nk�1

nk�1
 ",

since the above series behaves like a geometric series, and as such its total sum is propor-
tional to its largest element±, where c1 is a su�ciently large constant. This holds for

c1

s

� ln nk�1

nk�1
 " () c2

1
� ln nk�1

nk�1
 "2 () c2

1�

"2 
nk�1

ln nk�1
.

The last inequality holds for nk�1 � 2
c2
1�

"2 ln
c2
1�

"2 , by Lemma 5.13(D). In particular, taking

the largest k for which this holds results in a set Pk of size O
⇣

(�/"2) ln(�/")
⌘

which is an
"-sample for P.

Theorem 5.34 ("-sample via discrepancy). For a range space (X,R) with shattering
dimension at most � and B ✓ X a finite subset and " > 0, there exists a subset C ✓ B, of
cardinality O

⇣

(�/"2) ln(�/")
⌘

, such that C is an "-sample for B.

Note that it is not obvious how to turn Theorem 5.34 into an e�cient construction
algorithm of such an "-sample. Nevertheless, this theorem can be turned into a relatively
e�cient deterministic algorithm using conditional probabilities. In particular, there is a

∞Try saying this quickly 100 times.
±Formally, one needs to show that the ratio between two consecutive elements in the series is larger than

some constant, say 1.1. This is easy but tedious, but the well-motivated reader (of little faith) might want to do
this calculation.
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deterministic O
⇣

n�+1
⌘

time algorithm for computing an "-sample for a range space of VC
dimension � and with n points in its ground set using the above approach (see the bibli-
ographical notes in Section 5.7 for details). Inherently, however, it is a far cry from the
simplicity of Theorem 5.26 that just requires us to take a random sample. Interestingly,
there are cases where using discrepancy leads to smaller "-samples; again see bibliograph-
ical notes for details.

5.4.1.1. Faster deterministic construction of "-samples. One can speed up the deter-
ministic construction mentioned above by using a sketch-and-merge approach. To this end,
we need the following merge property of "-samples. (The proof of the following lemma
is quite easy. Nevertheless, we provide the proof in excruciating detail for the sake of
completeness.)

Lemma 5.35. Consider the sets R ✓ P and R0 ✓ P0. Assume that P and P0 are disjoint,
|P| = |P0|, and |R| = |R0|. Then, if R is an "-sample of P and R0 is an "-sample of P0, then
R [ R0 is an "-sample of P [ P0.

Proof. We have for any range r that
�

�

�

�

�

|r \(P [ P0)|
|P [ P0| � |r \(R [ R0)|

|R [ R0|
�

�

�

�

�

=

�

�

�

�

�

|r \ P|
|P [ P0| +

|r \ P0|
|P [ P0| �

|r \ R|
|R [ R0| �

|r \ R0|
|R [ R0|

�

�

�

�

�

=

�

�

�

�

�

|r \ P|
2 |P| +

|r \ P0|
2 |P0| �

|r \ R|
2 |R| �

|r \ R0|
2 |R0|

�

�

�

�

�

=
1
2

�

�

�

�

�

�

 |r \ P|
|P| �

|r \ R|
|R|

!

+

 |r \ P0|
|P0| �

|r \ R0|
|R0|

!

�

�

�

�

�

�

 1
2

�

�

�

�

�

|r \ P|
|P| �

|r \ R|
|R|

�

�

�

�

�

+
1
2

�

�

�

�

�

|r \ P0|
|P0| �

|r \ R0|
|R0|

�

�

�

�

�

 "
2
+
"

2
= ".

⌅

Interestingly, by breaking the given ground sets into sets of equal size and building
a balanced binary tree over these sets, one can speed up the deterministic algorithm for
building "-samples. The idea is to compute the sample bottom-up, where at every node we
merge the samples provided by the children (i.e., using Lemma 5.35), and then we sketch
the resulting set using Lemma 5.33. By carefully fine-tuning this construction, one can get
an algorithm for computing "-samples in time which is near linear in n (assuming " and �
are small constants). We delegate the details of this construction to Exercise 5.6.

This algorithmic idea is quite useful and we will refer to it as sketch-and-merge.

5.4.2. Building "-net via discrepancy. We are given range space (X,R) with shatter-
ing dimension d and " > 0 and the target is to compute an "-net for this range space.

We need to be slightly more careful if we want to use discrepancy to build "-nets, and
we will use Theorem 5.31 instead of Corollary 5.32 in the analysis.

The construction is as before – we set P0 = P, and Pi is all the points colored +1 in
the coloring of Pi�1 by Theorem 5.31. We repeat this till we get a set that is the required
net.

To analyze this construction (and decide when it should stop), let r be a range in a
given range space (X,R) with shattering dimension d, and let

⌫i = |Pi \ r|
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denote the size of the range r in the ith set Pi and let ni = |Pi|, for i � 0. Observer that the
number of points in r colored by +1 and �1 when coloring Pi�1 is

↵i = |Pi \ r| = ⌫i and �i = |Pi�1 \ r| � |Pi \ r| = ⌫i�1 � ⌫i,
respectively. As such, setting mi =

�

�

�R|Pi

�

�

� = O
⇣

nd
i

⌘

, we have, by Theorem 5.31, that the
discrepancy of r in this coloring of Pi�1 is

|↵i � �i| = |⌫i � 2⌫i�1| 
p

2⌫i�1 ln 4mi�1  c
p

d⌫i�1 ln ni�1

for some constant c, since the crossing number #r of a range r\Pi�1 is always bounded by
its size. This is equivalent to

(5.6)
�

�

�2i�1⌫i�1 � 2i⌫i
�

�

�  c2i�1
p

d⌫i�1 ln ni�1.

We need the following technical claim that states that the size of ⌫k behaves as we
expect; as long as the set Pk is large enough, the size of ⌫k is roughly ⌫0/2k.

Claim 5.36. There is a constant c4 (independent of d), such that for all k with ⌫0/2k �
c4d ln nk, (⌫0/2k)/2  ⌫k  2(⌫0/2k).

Proof. The proof is by induction. For k = 0 the claim trivially holds. Assume that it
holds for i < k. Adding up the inequalities of (5.6), for i = 1, . . . , k, we have that

�

�

�⌫0 � 2k⌫k
�

�

� 
k

X

i=1

c2i�1
p

d⌫i�1 ln ni�1 
k

X

i=1

c2i�1
r

2d
⌫0

2i�1 ln ni�1  c3 2k
r

d
⌫0
2k ln nk,

for some constant c3 since this summation behaves like an increasing geometric series and
the last term dominates the summation. Thus,

⌫0
2k � c3

r

d
⌫0
2k ln nk  ⌫k  ⌫02k + c3

r

d
⌫0
2k ln nk.

By assumption, we have that
r

⌫0
c42k �

p

d ln nk. This implies that

⌫k  ⌫02k + c3

r

⌫0
2k ·

⌫0
c42k =

⌫0
2k

 

1 +
c3p
c4

!

 2
⌫0
2k ,

by selecting c4 � 4c2
3 . Similarly, we have

⌫k � ⌫02k

0

B

B

B

B

B

@

1 � c3
p

d ln nk
p

⌫0/2k

1

C

C

C

C

C

A

� ⌫0
2k

0

B

B

B

B

B

@

1 � c3
p

⌫0/c42k
p

⌫0/2k

1

C

C

C

C

C

A

=
⌫0
2k

 

1 � c3p
c4

!

� ⌫0
2k /2.

⌅

So consider a “heavy” range r that contains at least ⌫0 � "n points of P. To show that
Pk is an "-net, we need to show that Pk \ r , ;. To apply Claim 5.36, we need a k such
that "n/2k � c4d ln nk�1, or equivalently, such that

2nk

ln(2nk)
� 2c4d
"
,

which holds for nk = ⌦
⇣

d
" ln d

"

⌘

, by Lemma 5.13(D). But then, by Claim 5.36, we have that

⌫k = |Pk \ r| � |P \ r|
2 · 2k �

1
2
· "n

2k =
"

2
nk = ⌦

 

d ln
d
"

!

> 0.

We conclude that the set Pk, which is of size ⌦
⇣

d
" ln d

"

⌘

, is an "-net for P.
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Theorem 5.37 ("-net via discrepancy). For any range space (X,R) with shattering
dimension at most d, a finite subset B ✓ X, and " > 0, there exists a subset C ✓ B, of
cardinality O((d/") ln(d/")), such that C is an "-net for B.

5.5. Proof of the "-net theorem

In this section, we finally prove Theorem 5.28.
Let (X,R) be a range space of VC dimension �, and let x be a subset of X of cardinality

n. Suppose that m satisfies (5.3)p71. Let N = (x1, . . . , xm) be the sample obtained by m
independent samples from x (the elements of N are not necessarily distinct, and we treat N
as an ordered set). Let E1 be the probability that N fails to be an "-net. Namely,

E1 =
⇢

9r 2 R
�

�

�

�

|r \ x| � "n and r \ N = ;
�

.

(Namely, there exists a “heavy” range r that does not contain any point of N.) To complete
the proof, we must show that Pr[E1]  '. Let T = (y1, . . . , ym) be another random sample
generated in a similar fashion to N. Let E2 be the event that N fails but T “works”; formally

E2 =
⇢

9r 2 R
�

�

�

�

�

|r \ x| � "n, r \ N = ;, and |r \ T | � "m
2

�

.

Intuitively, since E[|r \ T |] � "m, we have that for the range r that N fails for, it follows
with “good” probability that |r \ T | � "m/2. Namely, E1 and E2 have more or less the
same probability.

Claim 5.38. Pr[E2]  Pr[E1]  2 Pr[E2].

Proof. Clearly, E2 ✓ E1, and thus Pr[E2]  Pr[E1]. As for the other part, note that by
the definition of conditional probability, we have

Pr


E2

�

�

�

�

E1

�

= Pr[E2 \ E1] /Pr[E1] = Pr[E2] /Pr[E1] .

It is thus enough to show that Pr


E2

�

�

�

�

E1

�

� 1/2.
Assume that E1 occurs. There is r 2 R, such that |r \ x| > "n and r \ N = ;. The

required probability is at least the probability that for this specific r, we have |r \ T | � "n2 .
However, X = |r \ T | is a binomial variable with expectation E[X] = pm, and variance
V[X] = p(1 � p)m  pm, where p = |r \ x| /n � ". Thus, by Chebychev’s inequality
(Theorem 27.3p335),

Pr


X <
"m
2

�

 Pr


X <
pm
2

�

 Pr


|X � pm| > pm
2

�

= Pr
"

|X � pm| >
ppm

2
p

pm
#

 Pr
"

|X � E[X]| >
ppm

2

p

V[X]
#


 

2ppm

!2

 1
2
,

since m � 8/" � 8/p; see (5.3)p71. Thus, for r 2 E1, we have
Pr[E2]
Pr[E1]

� Pr
h

|r \ T | � "m2
i

= 1 � Pr


|r \ T | < "m
2

�

� 1
2
.

⌅

Claim 5.38 implies that to bound the probability of E1, it is enough to bound the
probability of E2. Let

E02 =
⇢

9r 2 R
�

�

�

�

�

r \ N = ;, |r \ T | � "m
2

�

.
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Clearly, E2 ✓ E02. Thus, bounding the probability of E02 is enough to prove Theorem 5.28.
Note, however, that a shocking thing happened! We no longer have x participating in our
event. Namely, we turned bounding an event that depends on a global quantity (i.e., the
ground set x) into bounding a quantity that depends only on a local quantity/experiment
(involving only N and T ). This is the crucial idea in this proof.

Claim 5.39. Pr
h

E2
i

 Pr
h

E02
i

 Gd(2m)2�"m/2.

Proof. We imagine that we sample the elements of N [ T together, by picking Z =
(z1, . . . , z2m) independently from x. Next, we randomly decide the m elements of Z that go
into N, and the remaining elements go into T . Clearly,

Pr
h

E02
i

=
X

z2x2m

Pr
h

E02 \(Z = z)
i

=
X

z2x2m

Pr
h

E02 \(Z = z)
i

Pr[Z = z]
· Pr

h

Z = z
i

=
X

z

Pr


E02
�

�

�

�

Z = z
�

Pr
h

Z = z
i

= E


Pr


E02
�

�

�

�

Z = z
��

.

Thus, from this point on, we fix the set Z, and we bound Pr


E02
�

�

�

�

Z
�

. Note that Pr[E02] is
a weighted average of Pr[E02|Z = z], and as such a bound on this quantity would imply the
same bound on Pr[E02].

It is now enough to consider the ranges in the projection space (Z,R|Z) (which has VC
dimension �). By Lemma 5.9, we have

�

�

�R|Z
�

�

�  G�(2m).
Let us fix any r 2 R|Z , and consider the event

Er =
⇢

r \ N = ; and |r \ T | > "m
2

�

.

We claim that Pr[Er]  2�"m/2. Observe that if k = |r \(N [ T )|  "m/2, then the event is
empty, and this claim trivially holds. Otherwise, Pr[Er] = Pr[r \ N = ;]. To bound this
probability, observe that we have the 2m elements of Z, and we can choose any m of them
to be N, as long as none of them is one of the k “forbidden” elements of r \(N [ T ). The
probability of that is

⇣

2m�k
m

⌘

/
⇣

2m
m

⌘

. We thus have

Pr
h

Er
i

 Pr
h

r \ N = ;
i

=

⇣

2m�k
m

⌘

⇣

2m
m

⌘ =
(2m � k)(2m � k � 1) · · · (m � k + 1)

2m(2m � 1) · · · (m + 1)

=
m(m � 1) · · · (m � k + 1)

2m(2m � 1) · · · (2m � k + 1)
 2�k  2�"m/2.

Thus,

Pr


E02
�

�

�

�

Z
�

= Pr

2

6

6

6

6

6

6

6

4

[

r2R|Z
Er

3

7

7

7

7

7

7

7

5


X

r2R|Z
Pr[Er]  �

�

�R|Z
�

�

� 2�"m/2  G�(2m)2�"m/2,

implying that Pr
h

E02
i

 G�(2m)2�"m/2. ⌅

Proof of Theorem 5.28. By Claim 5.38 and Claim 5.39, we have that Pr[E1] 
2G�(2m)2�"m/2. It thus remains to verify that if m satisfies (5.3), then 2G�(2m)2�"m/2  '.

Indeed, we know that 2m � 8� (by (5.3)p71) and by Lemma 5.10, G�(2m)  2(2em/�)�,
for � � 1. Thus, it is su�cient to show that the inequality 4(2em/�)�2�"m/2  ' holds. By
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rearranging and taking lg of both sides, we have that this is equivalent to

2"m/2 � 4
'

 

2em
�

!�

=) "m
2
� � lg

2em
�
+ lg

4
'
.

By our choice of m (see (5.3)), we have that "m/4 � lg(4/'). Thus, we need to show that
"m
4
� � lg

2em
�
.

We verify this inequality for m =
8�
"

lg
16
"

(this would also hold for bigger values, as can
be easily verified). Indeed

2� lg
16
"
� � lg

 

16e
"

lg
16
"

!

.

This is equivalent to
 

16
"

!2

� 16e
"

lg
16
"

, which is equivalent to
16
e "
� lg

16
"

, which is

certainly true for 0 < "  1.
This completes the proof of the theorem. ⌅

5.6. A better bound on the growth function

In this section, we prove Lemma 5.10p65. Since the proof is straightforward but te-
dious, the reader can safely skip reading this section.

Lemma 5.40. For any positive integer n, the following hold.

(i) (1 + 1/n)n  e. (ii) (1 � 1/n)n�1 � e�1.

(iii) n! � (n/e)n. (iv) For any k  n, we have
✓n

k

◆k


 

n
k

!


✓ne

k

◆k
.

Proof. (i) Indeed, 1+1/n  exp(1/n), since 1+ x  ex, for x � 0. As such (1+1/n)n 
exp(n(1/n)) = e.

(ii) Rewriting the inequality, we have that we need to prove
⇣

n�1
n

⌘n�1 � 1
e . This is

equivalent to proving e �
⇣

n
n�1

⌘n�1
=
⇣

1 + 1
n�1

⌘n�1
, which is our friend from (i).

(iii) Indeed,
nn

n!

1
X

i=0

ni

i!
= en,

by the Taylor expansion of ex =
P1

i=0
xi

i! . This implies that (n/e)n  n!, as required.
(iv) Indeed, for any k  n, we have n

k  n�1
k�1 , as can be easily verified. As such,

n
k  n�i

k�i , for 1  i  k � 1. As such,
✓n

k

◆k
 n

k
· n � 1

k � 1
· · · n � k + 1

1
=

 

n
k

!

.

As for the other direction, by (iii), we have
 

n
k

!

 nk

k!
 nk

⇣

k
e

⌘k =
✓ne

k

◆k
. ⌅

Lemma 5.10 restated. For n � 2� and � � 1, we have
✓n
�

◆�

 G�(n)  2
✓ne
�

◆�

, where

G�(n) =
�

X

i=0

 

n
i

!

.
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Proof. Note that by Lemma 5.40(iv), we have G�(n) =
�

X

i=0

 

n
i

!

 1 +
�

X

i=1

✓ne
i

◆i
. This

series behaves like a geometric series with constant larger than 2, since

✓ne
i

◆i
/
✓ ne
i � 1

◆i�1
=

ne
i

 

i � 1
i

!i�1

=
ne
i

 

1 � 1
i

!i�1

� ne
i

1
e
=

n
i
� n
�
� 2,

by Lemma 5.40. As such, this series is bounded by twice the largest element in the series,
implying the claim. ⌅

5.7. Bibliographical notes

The exposition of the "-net and "-sample theorems is roughly based on Alon and
Spencer [AS00] and Komlós et al. [KPW92]. In fact, Komlós et al. proved a somewhat
stronger bound; that is, a random sample of size (�/") ln(1/") is an "-net with constant
probability. For a proof that shows that in general "-nets cannot be much smaller in the
worst case, see [PA95]. The original proof of the "-net theorem is due to Haussler and
Welzl [HW87]. The proof of the "-sample theorem is due to Vapnik and Chervonenkis
[VC71]. The bound in Theorem 5.26 can be improved to O

⇣

�
"2 +

1
"2 log 1

'

⌘

[AB99].
An alternative proof of the "-net theorem proceeds by first computing an ("/4)-sample

of su�cient size, using the "-sample theorem (Theorem 5.26p71), and then computing and
"/4-net for this sample using a direct sample of the right size. It is easy to verify the
resulting set is an "-net. Furthermore, using the “naive” argument (see Section 5.3.2.3)
then implies that this holds with the right probability, thus implying the "-net theorem (the
resulting constants might be slightly worse). Exercise 5.3 deploys similar ideas.

The beautiful alternative proof of both theorems via the usage of discrepancy is due
to Chazelle and Matoušek [CM96]. The discrepancy method is a beautiful topic which is
quite deep mathematically, and we have just skimmed the thin layer of melted water on top
of the tip of the iceberg≤. Two nice books on the topic are the books by Chazelle [Cha01]
and Matoušek [Mat99]. The book by Chazelle [Cha01] is currently available online for
free from Chazelle’s webpage.

We will revisit discrepancy since in some geometric cases it yields better results than
the "-sample theorem. In particular, the random coloring of Theorem 5.31 can be deran-
domized using conditional probabilities. One can then use it to get an "-sample/net by
applying it repeatedly. A faster algorithm results from a careful implementation of the
sketch-and-merge approach. The disappointing feature of all the deterministic construc-
tions of "-samples/nets is that their running time is exponential in the dimension �, since
the number of ranges is usually exponential in �.

A similar result to the one derived by Haussler and Welzl [HW87], using a more geo-
metric approach, was done independently by Clarkson at the same time [Cla87], exposing
the fact that VC dimension is not necessary if we are interested only in geometric applica-
tions. This was later refined by Clarkson [Cla88], leading to a general technique that, in
geometric settings, yields stronger results than the "-net theorem. This technique has nu-
merous applications in discrete and computational geometry and leads to several “proofs
from the book” in discrete geometry.

Exercise 5.5 is from Anthony and Bartlett [AB99].

≤The iceberg is melting because of global warming; so sorry, climate change.
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5.7.1. Variants and extensions. A natural application of the "-sample theorem is to
use it to estimate the weights of ranges. In particular, given a finite range space (X,R),
we would like to build a data-structure such that we can decide quickly, given a query
range r, what the number of points of X inside r is. We could always use a sample of size
(roughly) O("�2) to get an estimate of the weight of a range, using the "-sample theorem.
The error of the estimate of the size |r \ X| is  "n, where n = |X|; namely, the error is
additive. The natural question is whether one can get a multiplicative estimate ⇢, such that
|r \ X|  ⇢  (1 + ") |r \ X|, where |r \ X|.

In particular, a subset A ⇢ X is a (relative) (", p)-sample if for each r 2 R of weight
� pn,

�

�

�

�

�

|r \ A|
|A| �

|r \ X|
|X|

�

�

�

�

�

 " |r \ X|
|X| .

Of course, one can simply generate an "p-sample of size (roughly) O(1/("p)2) by the
"-sample theorem. This is not very interesting when p = 1/

p
n. Interestingly, the depen-

dency on p can be improved.

Theorem 5.41 ([LLS01]). Let (X,R) be a range space with shattering dimension d,
where |X| = n, and let 0 < " < 1 and 0 < p < 1 be given parameters. Then, consider a

random sample A ✓ X of size
c
"2 p

 

d log
1
p
+ log

1
'

!

, where c is a constant. Then, it holds

that for each range r 2 R of at least pn points, we have
�

�

�

�

�

|r \ A|
|A| �

|r \ X|
|X|

�

�

�

�

�

 " |r \ X|
|X| .

In other words, A is a (p, ")-sample for (X,R). The probability of success is � 1 � '.

A similar result is achievable by using discrepancy; see Exercise 5.7.

5.8. Exercises

Exercise 5.1 (Compute clustering radius). Let C and P be two given sets of points in
the plane, such that k = |C| and n = |P|. Let r = maxp2P minc2C kc � pk be the covering
radius of P by C (i.e., if we place a disk of radius r centered at each point of C, all those
disks cover the points of P).
(A) Give an O(n + k log n) expected time algorithm that outputs a number ↵, such that

r  ↵  10r.
(B) For " > 0 a prescribed parameter, give an O(n + k"�2 log n) expected time algorithm

that outputs a number ↵, such that r  ↵  (1 + ")r.

Exercise 5.2 (Some calculus required). Prove Lemma 5.13.

Exercise 5.3 (A direct proof of the "-sample theorem). For the case that the given
range space is finite, one can prove the "-sample theorem (Theorem 5.26p71) directly. So,
we are given a range space S = (x,R) with VC dimension �, where x is a finite set.
(A) Show that there exists an "-sample of S of size O

⇣

�"�2 log log|x|
"

⌘

by extracting an "/3-
sample from an "/9-sample of the original space (i.e., apply Lemma 5.30 twice and
use Lemma 5.33).

(B) Show that for any k, there exists an "-sample of S of size O
✓

�"�2 log log(k) |x|
"

◆

.

(C) Show that there exists an "-sample of S of size O
⇣

�"�2 log 1
"

⌘

.
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Exercise 5.4 (Sauer’s lemma is tight). Show that Sauer’s lemma (Lemma 5.9) is tight.
Specifically, provide a finite range space that has the number of ranges as claimed by
Lemma 5.9.

Exercise 5.5 (Flip and flop). (A) Let b1, . . . , b2m be m binary bits. Let  be the set of
all permutations of 1, . . . , 2m, such that for any� 2  , we have�(i) = i or�(i) = m+i,
for 1  i  m, and similarly, �(m + i) = i or �(m + i) = m + i. Namely, � 2  either
leaves the pair i, i + m in their positions or it exchanges them, for 1  i  m. As such
| | = 2m.

Prove that for a random � 2  , we have

Pr
"

�

�

�

�

�

�

Pm
i=1 b�(i)

m
�

Pm
i=1 b�(i+m)

m

�

�

�

�

�

�

� "
#

 2e�"
2m/2.

(B) Let  0 be the set of all permutations of 1, . . . , 2m. Prove that for a random � 2  0, we
have

Pr
"

�

�

�

�

�

�

Pm
i=1 b�(i)

m
�

Pm
i=1 b�(i+m)

m

�

�

�

�

�

�

� "
#

 2e�C"2m/2,

where C is an appropriate constant. [Hint: Use (A), but be careful.]
(C) Prove Theorem 5.26 using (B).

Exercise 5.6 (Sketch and merge). Assume that you are given a deterministic algorithm
that can compute the discrepancy of Theorem 5.31 in O(nm) time, where n is the size of the
ground set and m is the number of induced ranges. We are assuming that the VC dimension
� of the given range space is small and that the algorithm input is only the ground set X
(i.e., the algorithm can figure out on its own what the relevant ranges are).
(A) For a prespecified " > 0, using the ideas described in Section 5.4.1.1, show how to

compute a small "-sample of X quickly. The running time of your algorithm should
be (roughly) O

⇣

n/"O(�)polylog
⌘

. What is the exact bound on the running time of your
algorithm?

(B) One can slightly improve the running of the above algorithm by more aggressively
sketching the sets used. That is, one can add additional sketch layers in the tree.
Show how by using such an approach one can improve the running time of the above
algorithm by a logarithmic factor.

Exercise 5.7 (Building relative approximations). Prove the following theorem using
discrepancy.

Theorem 5.42. Let (X,R) be a range space with shattering dimension �,
where |X| = n, and let 0 < " < 1 and 0 < p < 1 be given parameters.
Then one can construct a set N ✓ X of size O

⇣

�
"2 p ln �

"p

⌘

, such that, for
each range r 2 R of at least pn points, we have

�

�

�

�

�

|r \ N |
|N | �

|r \ X|
|X|

�

�

�

�

�

 " |r \ X|
|X| .

In other words, N is a relative (p, ")-approximation for (X,R).


