
CHAPTER 19

Dimension Reduction – The Johnson-Lindenstrauss (JL)
Lemma

In this chapter, we will prove that given a set P of n points in IRd, one can reduce
the dimension of the points to k = O("�2 log n) such that distances are 1 ± " preserved.
Surprisingly, this reduction is done by randomly picking a subspace of k dimensions and
projecting the points into this random subspace. One way of thinking about this result is
that we are “compressing” the input of size nd (i.e., n points with d coordinates) into size
O(n"�2 log n), while (approximately) preserving distances.

19.1. The Brunn-Minkowski inequality

For a set A ✓ IRd and a point p 2 IRd, let A + p denote the translation of A by p.
Formally, A + p =

⇢

q + p
�

�

�

�

q 2 A
�

.

+ =
Definition 19.1. For two sets A and B in IRn,
let A + B denote the Minkowski sum of A

and B. Formally,

A+B =
⇢

a + b
�

�

�

�

a 2 A, b 2 B
�

=
[

p2A
(p+B).

Remark 19.2. It is easy to verify that
if A0,B0 are translated copies of A,B (that
is, A0 = A + p and B0 = B + q, for
some points p, q 2 IRd) respectively, then
A0 +B0 is a translated copy of A+B. In particular, since volume is preserved under trans-
lation, we have that Vol(A0 +B0) = Vol((A +B) + p + q) = Vol(A +B).

Our purpose here is to prove the following theorem.

Theorem 19.3 (Brunn-Minkowski inequality). Let A and B be two non-empty com-
pact sets in IRn. Then

Vol(A +B)1/n � Vol(A)1/n + Vol(B)1/n.

Definition 19.4. A set A ✓ IRn is a brick set if it is the union of finitely many (close)
axis parallel boxes with disjoint interiors.

It is intuitively clear, by limit arguments, that proving Theorem 19.3 for brick sets will
imply it for the general case.

Lemma 19.5 (Brunn-Minkowski inequality for brick sets). Let A and B be two non-
empty brick sets in IRn. Then

Vol(A +B)1/n � Vol(A)1/n + Vol(B)1/n.
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Proof. We prove by induction on the number k of bricks in A and B. If k = 2, then A

and B are just bricks, with dimensions ↵1, . . . ,↵n and �1, . . . , �n, respectively. In this case,
the dimensions of A +B are ↵1 + �1, . . . ,↵n + �n, as can be easily verified. Thus, we need
to prove that

⇣

Qn
i=1 ↵i

⌘1/n
+

⇣

Qn
i=1 �i

⌘1/n 
⇣

Qn
i=1(↵i + �i)

⌘1/n
. Dividing the left side by the

right side, we have
0

B

B

B

B

B

@

n
Y

i=1

↵i

↵i + �i

1

C

C

C

C

C

A

1/n

+

0

B

B

B

B

B

@

n
Y

i=1

�i

↵i + �i

1

C

C

C

C

C

A

1/n

 1
n

n
X

i=1

↵i

↵i + �i
+

1
n

n
X

i=1

�i

↵i + �i
= 1,

by the generalized arithmetic-geometric mean inequality¨, and the claim follows for this
case.

Now let k > 2 and suppose that the Brunn-Minkowski inequality holds for any pair of
brick sets with fewer than k bricks (together). Let A and B be a pair of sets having k bricks
together. Assume that A has at least two (disjoint) bricks. However, this implies that there
is an axis parallel hyperplane h that separates the interior of one brick of A from the interior
of another brick of A (the hyperplane h might intersect other bricks of A). Assume that h
is the hyperplane x1 = 0 (this can be achieved by translation and renaming of coordinates).

Let A+ = A \ h+ and A� = A \ h�, where h+ and h� are the two open halfspaces
induced by h. Let A+ and A� be the closure of A+ and A�, respectively. Clearly, A+ and
A� are both brick sets with (at least) one fewer brick than A.

Next, observe that the claim is translation invariant (see Remark 19.2), and as such,
let us translate B so that its volume is split by h in the same ratio A’s volume is being
split. Denote the two parts of B by B+ and B�, respectively. Let ⇢ = Vol(A+)/Vol(A) =
Vol(B+)/Vol(B) (if Vol(A) = 0 or Vol(B) = 0, the claim trivially holds).

Observe that X+ = A++B+ ✓ A+B, and X+ lies on one side of h (since h ⌘ (x1 = 0)),
and similarly X� = A�+B� ✓ A+B and X� lies on the other side of h. Thus, by induction
and since A+ +B+ and A� +B� are interior disjoint, we have

Vol(A +B) � Vol(A+ +B+) + Vol(A� +B�)

�
⇣

Vol(A+)1/n + Vol(B+)1/n
⌘n
+

⇣

Vol(A�)1/n + Vol(B�)1/n
⌘n

=


⇢1/n Vol(A)1/n + ⇢1/n Vol(B)1/n
�n

+


(1 � ⇢)1/n Vol(A)1/n + (1 � ⇢)1/n Vol(B)1/n
�n

=
⇣

⇢ + (1 � ⇢)
⌘



Vol(A)1/n + Vol(B)1/n
�n

=


Vol(A)1/n + Vol(B)1/n
�n
,

establishing the claim. ⌅

Proof of Theorem 19.3. Let A1 ✓ A2 ✓ · · · ✓ Ai ✓ · · · be a sequence of finite brick
sets, such that

S

i Ai = A, and similarly let B1 ✓ B2 ✓ · · · ✓ Bi ✓ · · · be a sequence
of finite brick sets, such that

S

i Bi = B. By the definition of volume≠, we have that
limi!1 Vol(Ai) = Vol(A) and limi!1 Vol(Bi) = Vol(B).

¨Here is a proof of the generalized form: Let x1, . . . , xn be n positive real numbers. Consider the quantity
R = x1 x2 · · · xn. If we fix the sum of the n numbers to be equal to �, then R is maximized when all the xis are
equal, as can be easily verified. Thus, npx1 x2 · · · xn  np(�/n)n = �/n = (x1 + · · · + xn)/n.

≠This is the standard definition of volume. The reader unfamiliar with this fanfare can either consult a
standard text on calculus (or measure theory) or take it for granted as this is intuitively clear.
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We claim that limi!1 Vol(Ai+Bi) = Vol(A+B). Indeed, consider any point z 2 A+B,
and let u 2 A and v 2 B be such that u + v = z. By definition, there exists an i, such that
for all j > i we have u 2 A j, v 2 B j, and as such z 2 A j +B j. Thus, A+B ✓ S

j(A j +B j)
and

S

j(A j +B j) ✓ S

j(A +B) ✓ A +B; namely,
S

j(A j +B j) = A +B.
Furthermore, for any i > 0, since Ai and Bi are brick sets, we have

Vol(Ai +Bi)1/n � Vol(Ai)1/n + Vol(Bi)1/n,

by Lemma 19.5. Thus,

Vol(A +B)1/n = lim
i!1Vol(Ai +Bi)1/n � lim

i!1
⇣

Vol(Ai)1/n + Vol(Bi)1/n
⌘

= Vol(A)1/n + Vol(B)1/n. ⌅

Theorem 19.6 (Brunn-Minkowski theorem for slice volumes). Let P be a convex set
in IRn+1, and let A = P \ (x1 = a), B = P \ (x1 = b), and C = P \ (x1 = c) be three slices
of A, for a < b < c. We have Vol(B) � min(Vol(A),Vol(C)).

In fact, consider the function

v(t) = (Vol(P \ (x1 = t)))1/n ,

and let I = [tmin, tmax] be the interval where the hyperplane x1 = t intersects P. Then, v(t)
is concave on I.

Proof. If a or c is outside I, then Vol(A) = 0 or Vol(C) = 0, respectively, and then the
claim trivially holds.

Otherwise, let ↵ = (b � a)/(c � a). We have that b = (1 � ↵) · a + ↵ · c, and by the
convexity of P, we have (1 � ↵)A + ↵C ✓ B. Thus, by Theorem 19.3 we have

v(b) = Vol(B)1/n � Vol((1 � ↵)A + ↵C)1/n � Vol((1 � ↵)A)1/n + Vol(↵C)1/n

=
⇣

(1 � ↵)n Vol(A)
⌘1/n
+

⇣

↵n Vol(C)
⌘1/n

= (1 � ↵) Vol(A)1/n + ↵Vol(C)1/n

= (1 � ↵)v(a) + ↵v(c).

Namely, v(·) is concave on I, and in particular v(b) � min(v(a), v(c)), which in turn implies
that Vol(B) = v(b)n � (min(v(a), v(c)))n = min(Vol(A),Vol(C)), as claimed. ⌅

Corollary 19.7. For A and B compact sets in IRn, Vol((A+B)/2) �
q

Vol(A) Vol(B).

Proof. We have that

Vol((A +B)/2)1/n = Vol(A/2 +B/2)1/n � Vol(A/2)1/n + Vol(B/2)1/n

= (Vol(A)1/n + Vol(B)1/n)/2 �
p

Vol(A)1/n Vol(B)1/n

by Theorem 19.3 and since (a + b)/2 � pab for any a, b � 0. The claim now follows by
raising this inequality to the power n. ⌅

19.1.1. The isoperimetric inequality. The following is not used anywhere else and
is provided because of its mathematical elegance. The skip-able reader can thus employ
their special gift and move on to Section 19.2.

The isoperimetric inequality states that among all convex bodies of a fixed surface
area, the ball has the largest volume (in particular, the unit circle is the largest area planar
region with perimeter 2⇡). This problem can be traced back to antiquity; in particular
Zenodorus (200–140 BC) wrote a monograph (which was lost) that seemed to have proved
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the claim in the plane for some special cases. The first formal proof for the planar case was
done by Steiner in 1841. Interestingly, the more general claim is an easy consequence of
the Brunn-Minkowski inequality.

Let K be a convex body in IRn and let b be the n-dimensional ball of radius 1 centered
at the origin. Let S(X) denote the surface area of a compact set X ✓ IRn. The isoperimetric
inequality states that

(19.1)
 

Vol(K)
Vol(b)

!1/n


 

S(K)
S(b)

!1/(n�1)

.

Namely, the left side is the radius of a ball having the
same volume as K, and the right side is the radius of a sphere
having the same surface area as K. In particular, if we scale
K so that its surface area is the same as b, then the above
inequality implies that Vol(K)  Vol(b).

To prove (19.1), observe that Vol(b) = S(b) /nÆ. Also,
observe that K + "b is the body K together with a small “at-
mosphere” around it of thickness ". In particular, the volume
of this “atmosphere” is (roughly) "S(K) (in fact, Minkowski
defined the surface area of a convex body to be the limit stated
next).

Formally, we have

S(K) = lim
"!0+

Vol(K + "b) � Vol(K)
"

� lim
"!0+

⇣

Vol(K)1/n + Vol("b)1/n
⌘n � Vol(K)

"
,

by the Brunn-Minkowski inequality. Now Vol("b)1/n = "Vol(b)1/n, and as such

S(K) � lim
"!0+

Vol(K) +
⇣

n
1

⌘

"Vol(K)
n�1

n Vol(b)
1
n +

⇣

n
2

⌘

"2 h· · ·i + · · · + "n Vol(b) � Vol(K)

"

= lim
"!0+

n"Vol(K)
n�1

n Vol(b)
1
n

"
= n Vol(K)

n�1
n Vol(b)

1
n .

Dividing both sides by S(b) = n Vol(b), we have

S(K)
S(b)

� Vol(K)(n�1)/n

Vol(b)(n�1)/n )
 

S(K)
S(b)

!1/(n�1)

�
 

Vol(K)
Vol(b)

!1/n

,

establishing the isoperimetric inequality.

19.2. Measure concentration on the sphere

Let S(n�1) be the unit sphere in IRn. We assume there is a uniform probability measure
defined over S(n�1), such that its total measure is 1. Surprisingly, most of the mass of this
measure is near the equator. Indeed, consider an arbitrary equator ⇡ on S(n�1) (that it, it
is the intersection of the sphere with a hyperplane passing through the center of the ball
inducing the sphere). Next, consider all the points that are within distance ⇡ `(n) = c/n1/3

from ⇡. The question we are interested in is what fraction of the sphere is covered by this
strip T (depicted in Figure 19.1).

ÆIndeed, Vol(b) =
R 1

r=0 S(b) rn�1dr = S(b) /n.
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Notice that as the dimension increases, the width `(n) of this strip decreases. But
surprisingly, despite its width becoming smaller, as the dimension increases, this strip con-
tains a larger and larger fraction of the sphere. In particular, the total fraction of the sphere
not covered by this (shrinking!) strip converges to zero.

⇡

T

Figure 19.1

Furthermore, counterintuitively, this is true for
any equator. We are going to show that even a stronger
result holds: The mass of the sphere is concentrated
close to the boundary of any set A ✓ S(n�1) such that
Pr[A] = 1/2.

Before proving this somewhat surprising theo-
rem, we will first try to get an intuition about the be-
havior of the hypersphere in high dimensions.

19.2.1. The strange and curious life of the hy-
persphere. Consider the ball of radius r in IRn (de-
noted by r bn), where bn is the unit radius ball cen-
tered at the origin. Clearly, Vol(r bn) = rn Vol(bn).
Now, even if r is very close to 1, the quantity rn might
be very close to zero if n is su�ciently large. Indeed, if r = 1 � �, then rn = (1 � �)n 
exp(��n), which is very small if � � 1/n. (Here, we used 1 � x  ex, for x � 0.) Namely,
for the ball in high dimensions, its mass is concentrated in a very thin shell close to its
surface.

The volume of a ball and the surface area of a hypersphere. Let Vol(rbn) denote
the volume of the ball of radius r in IRn, and let S(rbn) denote the surface area of its
bounding sphere (i.e., the surface area of rS(n�1)). It is known that

Vol(rbn) =
⇡n/2rn

�(n/2 + 1)
and S(rbn) =

2⇡n/2rn�1

�(n/2)
,

where the gamma function, �(·), is an extension of the factorial function. Specifically, if
n is even, then �(n/2 + 1) = (n/2)!, and for n odd �(n/2 + 1) =

p
⇡(n!!)/2(n+1)/2, where

n!! = 1 · 3 · 5 · · · n is the double factorial. The most surprising implication of these two
formulas is that, as n increases, the volume of the unit ball first increases (till dimension 5)
and then starts decreasing to zero.

1
xn 1

p 1 � x2
n

Similarly, the surface area of the unit sphere S(n�1)

in IRn tends to zero as the dimension increases. To see the
above explicitly, compute the volume of the unit ball using
an integral of its slice volume, when it is being sliced by a
hyperplane perpendicular to the nth coordinate.

We have (see figure on the right) that

Vol(bn) =
Z 1

xn=�1
Vol

✓

q

1 � x2
n bn�1

◆

dxn = Vol
⇣

bn�1
⌘

Z 1

xn=�1

⇣

1 � x2
n

⌘(n�1)/2
dxn.

Now, the integral on the right side tends to zero as n increases. In fact, for n very large, the
term

⇣

1 � x2
n

⌘(n�1)/2
is very close to 0 everywhere except for a small interval around 0. This

implies that the main contribution of the volume of the ball happens when we consider
slices of the ball created by hyperplanes of the form xn = �, where � is small (roughly, for
|�|  1/

p
n).
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If one has to visualize what such a ball in high dimensions looks like, it might be best
to think about it as a star-like creature: It has very little mass close to the tips of any set of
orthogonal directions we pick, and most of its mass (somehow) lies on hyperplanes passing
close to its center.Ø

19.2.2. Measure concentration on the sphere.

Theorem 19.8 (Measure concentration on the sphere). Let A ✓ S(n�1) be a measurable
set with Pr[A] � 1/2, and let At denote the set of points of S(n�1) within a distance at most
t from A, where t  2. Then 1 � Pr[At]  2 exp

⇣

�nt2/2
⌘

.

Proof. We will prove a slightly weaker bound, with �nt2/4 in the exponent. Let
bA = T (A), where

T (X) =
⇢

↵x
�

�

�

�

x 2 X,↵ 2 [0, 1]
�

✓ bn

and bn is the unit ball in IRn. We have that Pr[A] = µ
⇣

bA
⌘

, where µ
⇣

bA
⌘

= Vol
⇣

bA
⌘

/Vol(bn)∞.
Let B = S(n�1) \At and bB = T (B). We have that ka � bk � t for all a 2 A and b 2 B. By

Lemma 19.9 below, the set
⇣

bA + bB
⌘

/2 is contained in the ball rbn centered at the origin,

where r = 1 � t2/8. Observe that µ(rbn) = Vol(rbn)/Vol(bn) = rn =
⇣

1 � t2/8
⌘n

. As such,
applying the Brunn-Minkowski inequality in the form of Corollary 19.7, we have

 

1 � t2

8

!n

= µ(rbn) � µ
0

B

B

B

B

@

bA + bB
2

1

C

C

C

C

A

�
q

µ
⇣

bA
⌘

µ
⇣

bB
⌘

=
p

Pr[A] Pr[B] � p

Pr[B] /2.

Thus, Pr[B]  2(1 � t2/8)2n  2 exp(�2nt2/8), since 1 � x  exp(�x), for x � 0. ⌅

Lemma 19.9. For anyba 2 bA andbb 2 bB, we have

�

�

�

�

�

�

�

ba +bb
2

�

�

�

�

�

�

�

 1 � t2

8
.

a

b

t/2
{ u

o

h

Proof. Let ba = ↵a and bb = �b, where a 2 A and b 2 B. We
have
(19.2)

kuk =
�

�

�

�

�

a + b
2

�

�

�

�

�

=

s

12 �
�

�

�

�

�

a � b
2

�

�

�

�

�

2


r

1 � t2

4
 1 � t2

8
,

since ka � bk � t. As for ba and bb, assume that ↵  �, and
observe that the quantity

�

�

�

�

ba +bb
�

�

�

�

is maximized when � = 1.
As such, by the triangle inequality, we have

�

�

�

�

�

�

�

ba +bb
2

�

�

�

�

�

�

�

=

�

�

�

�

�

↵a + b
2

�

�

�

�

�


�

�

�

�

�

↵(a + b)
2

�

�

�

�

�

+

�

�

�

�

�

(1 � ↵)
b
2

�

�

�

�

�

 ↵
 

1 � t2

8

!

+ (1 � ↵)
1
2
= ⌧,

by (19.2) and since kbk = 1. Now, ⌧ is a convex combination of the two numbers 1/2 and
1 � t2/8. In particular, we conclude that ⌧  max(1/2, 1 � t2/8)  1 � t2/8, since t  2. ⌅

ØIn short, it looks like a Boojum [Car76].
∞This is one of these “trivial” claims that might give the reader a pause, so here is a formal proof. Pick a

random point p uniformly inside the ball bn. Let  be the probability that p 2 bA. Clearly, Vol
⇣

bA
⌘

=  Vol(bn).
So, consider the normalized point q = p/ kpk. Clearly, p 2 bA if and only if q 2 A, by the definition of bA. Thus,
µ
⇣

bA
⌘

= Vol
⇣

bA
⌘

/Vol(bn) =  = Pr
h

p 2 bA
i

= Pr
h

q 2 A
i

= Pr[A], since q has a uniform distribution on the
hypersphere by assumption.
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19.3. Concentration of Lipschitz functions

Consider a function f : S(n�1) ! IR, and imagine that we have a probability density
function defined over the sphere. Let Pr

⇥

f  t
⇤

= Pr
⇢

x 2 S n�1
�

�

�

�

f (x)  t
��

. We define the
median of f , denoted by med( f ), to be sup t, such that Pr

⇥

f  t
⇤  1/2.

We define Pr
⇥

f < med( f )
⇤

= supx<med( f ) Pr
⇥

f  x
⇤

. The following is obvious but
requires a formal proof.

Lemma 19.10. We have Pr
h

f < med( f )
i

 1/2 and Pr
h

f > med( f )
i

 1/2.

Proof. Since
S

k�1(�1,med( f ) � 1/k] = (�1,med( f )), we have

Pr
h

f < med( f )
i

= sup
k�1

Pr
"

f  med( f ) � 1
k

#

 sup
k�1

1
2
=

1
2
.

The second claim follows by a symmetric argument. ⌅

Definition 19.11 (c-Lipschitz). A function f : A ! B is c-Lipschitz if, for any x, y 2
A, we have k f (x) � f (y)k  c kx � yk.

Theorem 19.12 (Lévy’s lemma). Let f : S(n�1) ! IR be 1-Lipschitz. Then for all
t 2 [0, 1], we have

Pr
h

f > med( f ) + t
i

 2 exp
⇣

�t2n/2
⌘

and Pr
h

f < med( f ) � t
i

 2 exp
⇣

�t2n/2
⌘

.

Proof. We prove only the first inequality; the second follows by symmetry. Let

A =
⇢

x 2 S(n�1)
�

�

�

�

f (x)  med( f )
�

.

By Lemma 19.10, we have Pr[A] � 1/2. Consider a point x 2 At, where At is as defined
in Theorem 19.8. Let nn(x) be the nearest point in A to x. We have by definition that
kx � nn(x)k  t. As such, since f is 1-Lipschitz and nn(x) 2 A, we have that

f (x)  f (nn(x)) + knn(x) � xk  med( f ) + t.

Thus, by Theorem 19.8, we get Pr
⇥

f > med( f ) + t
⇤  1 � Pr[At]  2 exp

⇣

�t2n/2
⌘

. ⌅

19.4. The Johnson-Lindenstrauss lemma

Lemma 19.13. For a unit vector x 2 S(n�1), let

f (x) =
q

x2
1 + x2

2 + · · · + x2
k

be the length of the projection of x into the subspace formed by the first k coordinates. Let
x be a vector randomly chosen with uniform distribution from S(n�1). Then f (x) is sharply
concentrated. Namely, there exists m = m(n, k) such that

Pr
h

f (x) � m + t
i

 2 exp(�t2n/2) and Pr
h

f (x)  m � t
i

 2 exp(�t2n/2),

for any t 2 [0, 1]. Furthermore, for k � 10 ln n, we have m � 1
2

p
k/n.

Proof. The orthogonal projection p : IRn ! IRk given by p(x1, . . . , xn) = (x1, . . . , xk)
is 1-Lipschitz (since projections can only shrink distances; see Exercise 19.3). As such,
f (x) = kp(x)k is 1-Lipschitz, since for any x, y we have

| f (x) � f (y)| =
�

�

�

�

kp(x)k � kp(y)k
�

�

�

�

 kp(x) � p(y)k  kx � yk ,
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by the triangle inequality and since p is 1-Lipschitz. Theorem 19.12 (i.e., Lévy’s lemma)
gives the required tail estimate with m = med( f ).

Thus, we only need to prove the lower bound on m. For a random x = (x1, . . . , xn) 2
S(n�1), we have E

h

kxk2
i

= 1. By linearity of expectations and by symmetry, we have
1 = E

h

kxk2
i

= E
h

Pn
i=1 x2

i

i

=
Pn

i=1 E
h

x2
i

i

= n E
h

x2
j

i

, for any 1  j  n. Thus, E
h

x2
j

i

= 1/n,
for j = 1, . . . , n. Thus,

E
h

( f (x))2
i

= E

2

6

6

6

6

6

6

4

k
X

i=1

x2
i

3

7

7

7

7

7

7

5

=

k
X

i=1
E[xi] =

k
n
,

by linearity of expectation.
We next use that f is concentrated to show that f 2 is also relatively concentrated. For

any t � 0, we have

k
n
= E

h

f 2
i

 Pr
h

f  m + t
i

(m + t)2 + Pr
h

f � m + t
i

· 1  1 · (m + t)2 + 2 exp(�t2n/2),

since f (x)  1, for any x 2 S(n�1). Let t =
p

k/5n. Since k � 10 ln n, we have that
2 exp(�t2n/2)  2/n. We get that

k
n


⇣

m +
p

k/5n
⌘2
+ 2/n,

implying that
p

(k � 2)/n  m +
p

k/5n, which in turn implies that m � p(k � 2)/n �p
k/5n � 1

2

p
k/n. ⌅

Next, we would like to argue that given a fixed vector, projecting it down into a random
k-dimensional subspace results in a random vector such that its length is highly concen-
trated. This would imply that we can do dimension reduction and still preserve distances
between points that we care about.

To this end, we would like to flip Lemma 19.13 around. Instead of randomly picking
a point and projecting it down to the first k-dimensional space, we would like x to be fixed
and randomly pick the k-dimensional subspace we project into. However, we need to pick
this random k-dimensional space carefully. Indeed, if we rotate this random subspace, by
a transformation T , so that it occupies the first k dimensions, then the point T (x) needs to
be uniformly distributed on the hypersphere if we want to use Lemma 19.13.

As such, we would like to randomly pick a rotation of IRn. This maps the standard or-
thonormal basis into a randomly rotated orthonormal space. Taking the subspace spanned
by the first k vectors of the rotated basis results in a k-dimensional random subspace. Such
a rotation is an orthonormal matrix with determinant 1. We can generate such a matrix, by
randomly picking a vector e1 2 S(n�1). Next, we set e1 as the first column of our rotation
matrix and generate the other n � 1 columns, by generating recursively n � 1 orthonormal
vectors in the space orthogonal to e1.

Remark 19.14 (Generating a random point on the sphere). At this point, the reader
might wonder how we pick a point uniformly from the unit hypersphere. The idea is to
pick a point from the multi-dimensional normal distribution Nn(0, 1) and normalize it to
have length 1. Since the multi-dimensional normal distribution has the density function

(2⇡)�n/2 exp
⇣

�(x2
1 + x2

2 + · · · + x2
n)/2

⌘

,

which is symmetric (i.e., all the points at distance r from the origin have the same distribu-
tion), it follows that this indeed generates a point randomly and uniformly on S(n�1).
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Generating a vector with multi-dimensional normal distribution is no more than pick-
ing each coordinate according to the normal distribution; see Lemma 27.11p338. Given a
source of random numbers according to the uniform distribution, this can be done using
O(1) computations per coordinate, using the Box-Muller transformation [BM58]. Overall,
each random vector can be generated in O(n) time.

Since projecting down the n-dimensional normal distribution to the lower-dimensional
space yields a normal distribution, it follows that generating a random projection is no more
than randomly picking n vectors according to the multi-dimensional normal distribution
v1, . . . , vn. Then, we orthonormalize them, using Graham-Schmidt, where bv1 = v1/ kv1k
and bvi is the normalized vector of vi � wi, where wi is the projection of vi to the space
spanned by v1, . . . , vi�1.

Taking those vectors as columns of a matrix generates a matrix A, with determinant
either 1 or �1. We multiply one of the vectors by �1 if the determinant is �1. The resulting
matrix is a random rotation matrix.

We can now restate Lemma 19.13 in the setting where the vector is fixed and the
projection is into a random subspace.

Lemma 19.15. Let x 2 S(n�1) be an arbitrary unit vector. Now, consider a random
k-dimensional subspace F, and let f (x) be the length of the projection of x into F. Then,
there exists m = m(n, k) such that

Pr
h

f (x) � m + t
i

 2 exp
⇣

�t2n/2
⌘

and Pr
h

f (x)  m � t
i

 2 exp
⇣

�t2n/2
⌘

,

for any t 2 [0, 1]. Furthermore, for k � 10 ln n, we have m � 1
2

p
k/n.

Proof. Let vi be the ith orthonormal vector having 1 at the ith coordinate and 0 every-
where else. Let M be a random translation of space generated as described above. Clearly,
for arbitrary fixed unit vector x, the vector Mx is distributed uniformly on the sphere. Now,
the ith column of the matrix M is the random vector ei, and ei =MT vi. As such, we have

hMx, vii = (Mx)T vi = xT MT vi = xT ei = hx, eii .
In particular, treating Mx as a random vector and projecting it on the first k coordinates,
we have that

f (x) =

v

u

t k
X

i=1

hMx, vii2 =
v

u

t k
X

i=1

hx, eii2.

But e1, . . . , ek is just an orthonormal basis of a random k-dimensional subspace. As such,
the expression on the right is the length of the projection of x into a k-dimensional random
subspace. As such, the length of the projection of x into a random k-dimensional subspace
has exactly the same distribution as the length of the projection of a random vector into the
first k coordinates. The claim now follows by Lemma 19.13. ⌅

Definition 19.16. The mapping f : IRn ! IRk is called K-bi-Lipschitz for a subset
X ✓ IRn if there exists a constant c > 0 such that

cK�1 · kp � qk  k f (p) � f (q)k  c · kp � qk ,
for all p, q 2 X.

The least K for which f is K-bi-Lipschitz is called the distortion of f and is denoted
dist( f ). We will refer to f as a K-embedding of X.
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Remark 19.17. Let X ✓ IRm be a set of n points, where m potentially might be much
larger than n. Observe that in this case, since we only care about the inter-point distances of
points in X, we can consider X to be a set of points lying in the a�ne subspace F spanned
by the points of X. Note that this subspace has dimension n � 1. As such, each point of X
can be interpreted as an (n � 1)-dimensional point in F. Namely, we can assume, for our
purposes, that the set of n points in Euclidean space we care about lies in IRn (i.e., IRn�1).

Note that if m < n, we can always pad all the coordinates of the points of X by zeros,
such that the resulting point set lies in IRn.

Theorem 19.18 (Johnson-Lindenstrauss lemma / JL lemma). Let X be an n-point set
in a Euclidean space, and let " 2 (0, 1] be given. Then there exists a (1 + ")-embedding of
X into IRk, where k = O("�2 log n).

Proof. By Remark 19.17, we can assume that X ✓ IRn. Let k = 200"�2 ln n. Assume
k < n, and let F be a random k-dimensional linear subspace of IRn. Let PF : IRn ! F

be the orthogonal projection operator of IRn into F. Let m be the number around which
kPF(x)k is concentrated, for x 2 S(n�1), as in Lemma 19.15.

Fix two points x, y 2 IRn. We prove that
✓

1 � "
3

◆

m kx � yk  kPF(x) � PF(y)k 
✓

1 +
"

3

◆

m kx � yk
holds with probability � 1 � n�2. Since there are

⇣

n
2

⌘

pairs of points in X, it follows that
with constant probability (say > 1/3) this holds for all pairs of points of X. In such a case,
the mapping p is a D-embedding of X into IRk with D  1+"/3

1�"/3  1 + ", for "  1.
Let u = x � y. We have PF(u) = PF(x) � PF(y) since PF(·) is a linear operator. Thus,

the condition becomes
⇣

1 � "
3

⌘

m kuk  kPF(u)k 
⇣

1 + "
3

⌘

m kuk. Again, since projection is
a linear operator, for any ↵ > 0, the condition is equivalent to

⇣

1 � "
3

⌘

m k↵uk  kPF(↵u)k 
⇣

1 + "
3

⌘

m k↵uk .
As such, we can assume that kuk = 1 by picking ↵ = 1/ kuk. Namely, we need to show that

�

�

�

�

kPF(u)k � m
�

�

�

�

 "

3
m.

Let f (u) = kPF(u)k. By Lemma 19.13 (exchanging the random space with the random
vector), for t = "m/3, we have that the probability that this does not hold is bounded by

Pr
⇥| f (u) � m| � t

⇤  4 exp
 

� t2n
2

!

= 4 exp
 �"2m2n

18

!

 4 exp
 

�"
2k

72

!

< n�2,

since m � 1
2

p
k/n and k = 200"�2 ln n. ⌅

19.5. Bibliographical notes

Our presentation follows Matoušek [Mat02]. The Brunn-Minkowski inequality is a
powerful inequality which is widely used in mathematics. A nice survey of this inequality
and its applications is provided by Gardner [Gar02]. Gardner says, “In a sea of mathemat-
ics, the Brunn-Minkowski inequality appears like an octopus, tentacles reaching far and
wide, its shape and color changing as it roams from one area to the next.” However, Gard-
ner is careful in claiming that the Brunn-Minkowski inequality is one of the most powerful
inequalities in mathematics since, as a wit put it, “The most powerful inequality is x2 � 0,
since all inequalities are in some sense equivalent to it.”

A striking application of the Brunn-Minkowski inequality is the proof that in any par-
tial ordering of n elements, there is a single comparison that, knowing its result, reduces
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the number of linear extensions that are consistent with the partial ordering, by a constant
fraction. This immediately implies (the uninteresting result) that one can sort n elements in
O(n log n) comparisons. More interestingly, it implies that if there are m linear extensions
of the current partial ordering, we can always sort it using O(log m) comparisons. A nice
exposition of this surprising result is provided by Matoušek [Mat02, Section 12.3].

There are several alternative proofs of the Johnson-Lindenstrauss lemma (i.e., JL
lemma); see [IM98] and [DG03]. Interestingly, it is enough to pick each entry in the
dimension-reducing matrix randomly out of �1, 0, 1. This requires a more involved proof
[Ach01]. This is useful when one cares about storing this dimension reduction transforma-
tion e�ciently. In particular, recently, there was a flurry of work on making the JL lemma
both faster to compute (per point) and sparser. For example, Kane and Nelson [KN10]
show that one can compute a matrix for dimension reduction with O("�1 log n) non-zero
entries per column (the target dimension is still O("�2 log n)). See [KN10] and references
therein for more details.

Magen [Mag07] observed that the JL lemma preserves angles, and in fact can be used
to preserve any “k-dimensional angle”, by projecting down to dimension O(k"�2 log n). In
particular, Exercise 19.4 is taken from there.

Surprisingly, the random embedding preserves much more structure than distances
between points. It preserves the structure and distances of surfaces as long as they are low
dimensional and “well behaved”; see [AHY07] for some results in this direction.

Dimension reduction is crucial in computational learning, AI, databases, etc. One
common technique that is being used in practice is to do PCA (i.e., principal component
analysis) and take the first few main axes. Other techniques include independent compo-
nent analysis and MDS (multi-dimensional scaling). MDS tries to embed points from high
dimensions into low dimension (d = 2 or 3), while preserving some properties. Theoret-
ically, dimension reduction into really low dimensions is hopeless, as the distortion in the
worst case is ⌦(n1/(k�1)), if k is the target dimension [Mat90].

19.6. Exercises

Exercise 19.1 (Boxes can be separated). (Easy) Let A and B be two axis parallel
boxes that are interior disjoint. Prove that there is always an axis parallel hyperplane that
separates the interior of the two boxes.

Exercise 19.2 (Brunn-Minkowski inequality, slight extension). Prove the following
claim.

Corollary 19.19. For A and B compact sets in IRn, we have for any
� 2 [0, 1] that Vol(�A + (1 � �)B) � Vol(A)� Vol(B)1��.

Exercise 19.3 (Projections are contractions). (Easy) Let F be a k-dimensional a�ne
subspace, and let PF : IRd ! F be the projection that maps every point x 2 IRd to its
nearest neighbor on F. Prove that PF is a contraction (i.e., 1-Lipschitz). Namely, for any
p, q 2 IRd, we have that kPF(p) � PF(q)k  k p � q k.

Exercise 19.4 (JL lemma works for angles). Show that the Johnson-Lindenstrauss
lemma also (1 ± ")-preserves angles among triples of points of P (you might need to in-
crease the target dimension however by a constant factor). [Hint: For every angle, con-
struct an equilateral triangle whose edges are being preserved by the projection (add the
vertices of those triangles (conceptually) to the point set being embedded). Argue that this
implies that the angle is being preserved.]


