
CHAPTER 17

Approximate Nearest Neighbor Search in Low Dimension

17.1. Introduction

Let P be a set of n points in IRd. We would like to preprocess it, such that given
a query point q, one can determine the closest point in P to q quickly. Unfortunately,
the exact problem seems to require prohibitive preprocessing time. (Namely, it requires
computing the Voronoi diagram of P and preprocessing it for point-location queries. This
requires (roughly) O(ndd/2e) time.)

Instead, we will specify a parameter " > 0 and build a data-structure that answers
(1 + ")-approximate nearest neighbor queries.

Definition 17.1. For a set P ✓ IRd and a query point q, we denote by nn(q) = nn(q,P)
the closest point (i.e., nearest neighbor) in P to q. We denote by d(q,P) the distances
between q and its closest point in P; that is, d(q,P) = kq � nn(q)k.

For a query point q and a set P of n points in IRd, a point s 2 P is a (1+")-approximate
nearest neighbor (or just (1 + ")-ANN) if kq � sk  (1 + ")d(q,P). Alternatively, for any
t 2 P, we have kq � sk  (1 + ") kq � tk.

This is yet another instance where solving the bounded spread case is relatively easy.
(We remind the reader that the spread of a point set P, denoted by�(P), is the ratio between
the diameter and the distance of the closest pair of P.)

17.2. The bounded spread case

Let P be a set of n points contained inside the unit hypercube in IRd, and let T be a
quadtree of P, where diam(P) = ⌦(1). We assume that with each (internal) node u of T
there is an associated representative point, repu, such that repu is one of the points of P
stored in the subtree rooted at u.

Let q be a query point and let " > 0 be a parameter. Here our purpose is to find a
(1 + ")-ANN to q in P.

Idea of the algorithm. The algorithm would maintain a set of nodes of T that might
contain the ANN to the query point. Each such node has a representative point associated
with it, and we compute its distance to the query point and maintain the nearest neighbor
found so far. At each stage, the search would be refined by replacing a node by its children
(and computing the distance from the query point to all the new representatives of these
new nodes).

The key observation is that we need to continue searching in a subtree of a node only
if the node can contain a point that is significantly closer to the query point than the current
best candidate found.

We keep only the “promising” nodes and continue this search till there are no more
candidates to check. We claim that we had found the ANN to q, and furthermore the query
time is fast. This idea is depicted in Figure 17.1.

233

234 17. APPROXIMATE NEAREST NEIGHBOR SEARCH IN LOW DIMENSION

rcurr

(1 � "/2)rcurr

x

p
Figure 17.1. Out of the three nodes
currently in the candidate set, only
one of them (i.e., x) has the potential
to contain a better ANN to q than the
current one (i.e., p).

Formally, let p be the current best candidate found so far, and let its distance from q be
rcurr. Now, consider a node w in T, and observe that the point set Pw, stored in the subtree of
w, might contain a “significantly” nearer neighbor to q only if it contains a point s 2 rgw\P
such that kq � sk < (1� "/2)rcurr. A conservative lower bound on the distance of any point
in rgw to q is

�

�

�q � repw

�

�

��diam(2w). In particular, if
�

�

�q � repw

�

�

��diam(2w) > (1�"/2)rcurr,
then we can abort the search for ANN in the subtree of w.

The algorithm. Let A0 = {root(T)}, and let rcurr =
�

�

�q � reproot(T)

�

�

�. The value of rcurr
is the distance to the closest neighbor of q that was found so far by the algorithm.

In the ith iteration, for i > 0, the algorithm expands the nodes of Ai�1 to get Ai.
Formally, for v 2 Ai�1, let Cv be the set of children of v in T and let 2v denote the cell (i.e.,
region) that v corresponds to. For every node w 2 Cv, we compute

rcurr min
⇣

rcurr ,
�

�

�q � repw

�

�

�

⌘

.

The algorithm checks if

(17.1)
�

�

�q � repw

�

�

� � diam(2w) < (1 � "/2)rcurr,

and if so, it adds w to Ai. The algorithm continues in this expansion process till all the
elements of Ai�1 are considered, and then it moves to the next iteration. The algorithm
stops when the generated set Ai is empty. The algorithm returns the point realizing the
value of rcurr as the ANN.

The set Ai is a set of nodes of depth i in the quadtree that the algorithm visits. Note
that all these nodes belong to the canonical grid G2�i of level �i, where every canonical
square has sidelength 2�i. (Thus, nodes of depth i in the quadtree are of level �i. This is
somewhat confusing but it in fact makes the presentation simpler.)

Correctness. Note that the algorithm adds a node w to Ai only if the set Pw might
contain points which are closer to q than the (best) current nearest neighbor the algorithm
found, where Pw is the set of points stored in the subtree of w. (More precisely, Pw might
contain a point which is 1 � "/2 closer to q than any point encountered so far.)

(1 � "2)rcurr

nn(q)

q
r curr

repwConsider the last node w inspected by the algo-
rithm such that nn(q) 2 Pw. Since the algorithm de-
cided to throw this node away, we have, by the triangle
inequality, that

kq � nn(q)k �
�

�

�q � repw

�

�

� � �

�

�repw � nn(q)
�

�

�

� �

�

�q � repw

�

�

� � diam(2w) � (1 � "/2)rcurr.

17.2. THE BOUNDED SPREAD CASE 235

Thus, kq � nn(q)k /(1 � "/2) � rcurr. However, 1/(1 � "/2)  1 + ", for 1 � " > 0, as can
be easily verified. Thus, rcurr  (1 + ")d(q,P), and the algorithm returns (1 + ")-ANN to q.

Cell size
⇡ d(P, q)

Cell size
⇡ "d(P, q)

| {z }

O(1/"d)

Running time analysis. Before barging into a
formal proof of the running time of the above
search procedure, it is useful to visualize the ex-
ecution of the algorithm. It visits the quadtree
level by level. As long as the level’s grid cells
are bigger than the ANN distance r = d(q,P),
the number of nodes visited is a constant (i.e.,
|Ai| = O(1)). (This is not obvious, and at this
stage the reader should take this statement with
due skepticism.) This number “explodes” only
when the cell size become smaller than r, but then the search stops when we reach grid
size O("r). In particular, since the number of grid cells visited (in the second stage) grows
exponentially with the level, we can use the number of nodes visited in the bottom level
(i.e., O(1/"d)) to bound the query running time for this part of the query.

Lemma 17.2. Let P be a set of n points contained inside the unit hypercube in IRd, and
let T be a quadtree of P, where diam(P) = ⌦(1). Let q be a query point, and let " > 0
be a parameter. A (1 + ")-ANN to q can be computed in O

⇣

"�d + log(1/$)
⌘

time, where
$ = d(q,P).

Proof. The algorithm is described above. We are only left with the task of bound-
ing the query time. Observe that if a node w 2 T is considered by the algorithm and
diam(2w) < ("/4)$, then

�

�

�q � repw

�

�

� � diam(2w) � �

�

�q � repw

�

�

� � ("/4)$ � rcurr � ("/4)rcurr � (1 � "/4)rcurr,

which implies that neither w nor any of its children would be inserted into the sets A1, . . .,
Am, where m is the depth T, by (17.1). Thus, no nodes of depth � h =

⌃� lg($"/4)
⌥

are
being considered by the algorithm.

Consider the node u of T of depth i containing nn(q,P). Clearly, the distance between
q and repu is at most `i = $ + diamu = $ +

p
d2�i. As such, in the end of the ith iteration,

we have rcurr  `i, since the algorithm had inspected u.
Thus, the only cells of G2�i�1 that might be considered by the algorithm are the ones in

distance  `i from q. Indeed, in the end of the ith iteration, rcurr  `i. As such, any node
of G2�i�1 (i.e., nodes considered in the (i + 1)st iteration of the algorithm) that is within a
distance larger than rcurr from q cannot improve the distance to the current nearest neighbor
and can just be thrown away if it is in the queue. (We charge the operation of putting a
node into the queue to its parent. As such, nodes that get inserted and deleted in the next
iteration are paid for by their parents.)

The number of such relevant cells (i.e., cells that the algorithm dequeues and do not
get immediately thrown out) is the number of grid cells of G2�i�1 that intersect a box of
sidelength 2`i centered at q; that is,

ni =

2
&

`i

2�i�1

'!d

= O

0

B

B

B

B

B

B

@

0

B

B

B

B

@

1 +
$ +

p
d2�i

2�i�1

1

C

C

C

C

A

d1
C

C

C

C

C

C

A

= O

✓

1 +
$

2�i�1

◆d
!

= O
✓

1 +
⇣

2i$
⌘d

◆

,

236 17. APPROXIMATE NEAREST NEIGHBOR SEARCH IN LOW DIMENSION

since for any a, b � 0 we have (a + b)d  (2 max(a, b))d  2d
⇣

ad + bd
⌘

. Thus, the total
number of nodes visited is

h
X

i=0

ni = O

0

B

B

B

B

B

B

B

B

@

d� lg($"/4)e
X

i=0

✓

1 +
⇣

2i$
⌘d

◆

1

C

C

C

C

C

C

C

C

A

= O

0

B

B

B

B

B

@

lg
1
$"
+

$

$"/4

!d1
C

C

C

C

C

A

= O

log
1
$
+

1
"d

!

,

and this also bounds the overall query time. ⌅

One can apply Lemma 17.2 to the case for which the input has spread bounded from
above. Indeed, if the distance between the closest pair of points of P is µ = CP(P), then
the algorithm would never search in cells that have diameter  µ/8. Indeed, no such nodes
would exist in the quadtree, to begin with, since the parent node of such a node would
contain only a single point of the input. As such, we can replace $ by µ in the above
argumentation.

Lemma 17.3. Let P be a set of n points in IRd, and let T be a quadtree of P, where
diam(P) = ⌦(1). Given a query point q and 1 � " > 0, one can return a (1 + ")-ANN to q
in O

⇣

1/"d + log�(P)
⌘

time, where �(P) is the spread of P.

A less trivial task is to adapt the algorithm, so that it uses compressed quadtrees. To
this end, the algorithm would still handle the nodes by levels. This requires us to keep a
heap of integers in the range 0,�1, . . . ,� ⌅

lg�(P)
⇧

. This can be easily done by maintaining
an array of size O(log�(P)), where each array cell maintains a linked list of all nodes with
this level. Clearly, an insertion/deletion into this heap data-structure can be handled in
constant time by augmenting it with a hash table. Thus, the above algorithm would work
for this case after modifying it to use this “level” heap instead of just the sets Ai.

Theorem 17.4. Let P be a set of n points in IRd. One can preprocess P in O(n log n)
time and using linear space, such that given a query point q and parameter 1 � " > 0,
one can return a (1 + ")-ANN to q in O

⇣

1/"d + log�(P)
⌘

time. In fact, the query time is
O(1/"d + log(diam(P) /$)), where $ = d(q,P).

17.3. ANN – the unbounded general case

The snark and the unbounded spread case (or a metaphilosophical pretentious
discussion that the reader might want to skip). (The reader might consider this to be
a footnote to a footnote, which finds itself inside the text because of lack of space at the
bottom of the page.) We have a data-structure that supports insertions, deletions, and
approximate nearest neighbor reasonably quickly. The running time for such operations is
roughly O(log�(P)) (ignoring additive terms in 1/"). Since the spread of P in most real
world applications is going to be bounded by a constant degree polynomial in n, it seems
this is su�cient for our purposes, and we should stop now, while we are ahead in the
game. But the nagging question remains: If the spread of P is not bounded by something
reasonable, what can be done?

The rule of thumb is that �(P) can be replaced by n (for this problem, but also in a lot
of other problems). This usually requires some additional machinery, and sometimes this
machinery is quite sophisticated and complicated. At times, the search for the ultimate al-
gorithm that can work for such “strange” inputs looks like the hunting of the snark [Car76]
– a futile waste of energy looking for some imaginary top-of-the-mountain, which has no
practical importance.

Solving the bounded spread case can be acceptable in many situations, and it is the
first stop in trying to solve the general case. However, solving the general case provides us

17.3. ANN – THE UNBOUNDED GENERAL CASE 237

with more insight into the problem and in some cases leads to more e�cient solutions than
the bounded spread case.

With this caveat emptor¨ warning duly given, we plunge ahead into solving the ANN
for the unbounded spread case.

Plan of attack. To answer the ANN query in the general case, we will first get a fast
rough approximation. Next, using a compressed quadtree, we will find a constant number
of relevant nodes and apply Theorem 17.4 to those nodes. This will yield the required
approximation. Before solving this problem, we need a minor extension of the compressed
quadtree data-structure.

Extending a compressed quadtree to support cell queries. Let b2 be a canonical
grid cell (we remind the reader that this is a cell of the grid G2i , for some integer i  0).
Given a compressed quadtree bT , we would like to find the single node v 2 bT , such that
P \ b2 = Pv. (Note that the node v might be compressed, and the square associated with it
might be much larger than b2, but its only child w is such that 2w ✓ b2 ✓ 2v. However, the
annulus 2v ✓ 2w contains no input point.) We will refer to such a query as a cell query.

It is not hard to see that the quadtree data-structure can be modified to support cell
queries in logarithmic time (it’s a glorified point-location query), and we omit the easy but
tedious details. See Exercise 2.4p26.

Lemma 17.5. One can perform a cell query in a compressed quadtree bT, in O(log n)
time, where n is the size of bT. Namely, given a query canonical cell b2, one can find, in
O(log n) time, the node w 2 bT such that 2w ✓ b2 and P \ b2 = Pw.

17.3.1. Putting things together – answering ANN queries. Let P be a set of n points
in IRd contained in the unit hypercube. We build the compressed quadtree bT of P, so that it
supports cell queries, using Lemma 17.5. We will also need a data-structure that supports
very rough ANN queries quickly. We describe one way to build such a data-structure in
the next section, and in particular, we will use the following result (see Theorem 17.10).
Note that a similar result can be derived by using a shifted quadtree and a simple point-
location query; see Theorem 11.22p160. Explicitly, we need the following (provided by
Theorem 17.10p240):

Let P be a set of n points in IRd. One can build a data-structure
TR, in O(n log n) time, such that given a query point q 2 IRd,
one can return a (1 + 4n)-ANN of q in P in O(log n) time.

Given a query point q, using TR, we compute a point u 2 P, such that d(q,P) 
ku � qk  (1+4n)d(q,P). Let R = ku � qk and r = ku � qk /(4n+1). Clearly, r  d(q,P) 
R. Next, compute L =

⌃

lg R
⌥

, and let C be the set of cells of G2L that are within a distance
 R from q; that is, C is the set of grid cells of G2L whose union (completely) covers
b(q,R). Clearly, nn(q,P) 2 b(q,R) ✓ S

22C 2. Next, for each cell 2 2 C, we compute the
node v 2 bT such that P \ 2 = Pv, using a cell query (i.e., Lemma 17.5). (Note that if 2
does not contain any point of P, this query would return a leaf or a compressed node whose
region contains 2, and it might contain at most one point of P.) Let V be the resulting set
of nodes of bT .

For each node of v 2 V , we now apply the algorithm of Theorem 17.4 to the com-
pressed quadtree rooted at v. We return the nearest neighbor found.

¨Buyer beware in Latin.

238 17. APPROXIMATE NEAREST NEIGHBOR SEARCH IN LOW DIMENSION

Since |V | = O(1) and diam(Pv) = O(R), for all v 2 V , the query time is
X

v2V
O

1
"d
+ log

diam(Pv)
r

!

= O

0

B

B

B

B

B

@

1
"d
+

X

v2V
log

diam(Pv)
r

1

C

C

C

C

C

A

= O

0

B

B

B

B

B

@

1
"d
+

X

v2V
log

R
r

1

C

C

C

C

C

A

= O

1
"d
+ log n

!

.

As for the correctness, observe that there is a node w 2 V , such that nn(q,P) 2 Pw. As
such, when we apply the algorithm of Theorem 17.4 to w, it would return us a (1+ ")-ANN
to q.

Theorem 17.6. Let P be a set of n points in IRd. One can construct a data-structure
of linear size, in O(n log n) time, such that given a query point q 2 IRd and a parameter
1 � " > 0, one can compute a (1 + ")-ANN to q in O(1/"d + log n) time.

17.4. Low quality ANN search via the ring separator tree

To perform ANN in the unbounded spread case, all we need is a rough approximation
(i.e., polynomial factor in n) to the distance to the nearest neighbor (note that we need only
the distance). One way to achieve that was described in Theorem 11.22p160, and we present
another alternative construction that uses a more direct argument.

Definition 17.7. A binary tree T having the points of P as leaves is a t-ring tree for
P if every node v 2 T is associated with a ring (hopefully “thick”), such that the ring
separates the points into two sets (hopefully both relatively large) and the interior of the
ring is empty of any point of P.

cv

repv

For a node v of T, let Pv denote the subset of points of P
stored in the subtree of v, and let repv be a point stored in v.
We require that for any node v of T, there is an associated ball
bv = b(cv, rv), such that all the points of Pv

in = Pv\bv are in one
child of T. Furthermore, all the other points of Pv are outside
the interior of the enlarged ball b(cv, (1 + t)rv) and are stored in
the other child of v. (Note that cv might not be a point of P.)

We will also store an arbitrary representative point repv 2
Pv

in in v (repv is not necessarily cv).

To see what the above definition implies, consider a t-ring tree T. For any node v 2 T,
the interior of the ring associated with v (i.e., b(cv, (1 + t)rv) \ b(cv, rv)) is empty of any
point of P. Intuitively, the bigger t is, the better T clusters P. Furthermore, every internal
node v of T has the following quantities associated with it:

(i) rv: radius of the inner ball of the ring of v,
(ii) cv: center of the ring of v (the point cv is not necessarily in P), and

(iii) repv 2 Pv
in: a representative from the point set stored in the inner ball of v (note that

repv might be distinct from cv).

The ANN search procedure. Let q denote the query point. Initially, set v to be the
root of T and rcurr 1. The algorithm answers the ANN query by traversing down T.

During the traversal, we first compute the distance l =
�

�

�q � repv

�

�

�. If this is smaller
than rcurr (the distance to the current nearest neighbor found), then we update rcurr (and
store the point realizing the new value of rcurr).

If kq � cvk  br, we continue the search recursively in the child containing Pv
in, where

br = (1+ t/2)rv is the “middle” radius of the ring centered at cv. Otherwise, we continue the

17.4. LOW QUALITY ANN SEARCH VIA THE RING SEPARATOR TREE 239

search in the subtree containing Pv
out. The algorithm stops when reaching a leaf of T and

returns the point realizing rcurr as the approximate nearest neighbor.

cv

q

q0
br

Intuition. If the query point q is outside the outer ball of a
node v, it is so far from the points inside the inner ball (i.e.,
Pv

in), and we can treat all of them as a single point (i.e., repv).
On the other hand, if the query point q0 is inside the inner ball,
then it must have a neighbor nearby (i.e., a point of Pv

in), and all
the points of Pv

out are far enough away that they can be ignored.
Naturally, if the query point falls inside the ring, the same ar-
gumentation works (with slightly worst constants), using the
middle radius as the splitting boundary in the search. See the
figure on the right.

Lemma 17.8. Given a t-ring tree T, one can answer (1 + 4/t)-approximate nearest
neighbor queries, in O(depth(T)) time.

Proof. Clearly, the query time is O(depth(T)). As for the quality of approximation,
let ⇡ denote the generated search path in T and let nn(q) denote the nearest neighbor to q
in P. Furthermore, let w denote the last node in the search path ⇡, such that nn(q) 2 Pw.
Clearly, if nn(q) 2 Pw

in but we continued the search in Pw
out, then q is outside the middle

sphere (i.e., kq � cwk � (1 + t/2)rw) and kq � nn(q)k � (t/2)rw (since this is the distance
between the middle sphere and the inner sphere). Thus,

�

�

�q � repw

�

�

�  kq � nn(q)k +
�

�

�nn(q) � repw

�

�

�  kq � nn(q)k + 2rw,

since nn(q) , repw 2 bw = b(cw, rw). In particular,
�

�

�q � repw

�

�

�

kq � nn(q)k 
kq � nn(q)k + 2rw

kq � nn(q)k  1 +
2rw

kq � nn(q)k  1 +
2rw

(t/2)rw
= 1 +

4
t
.

Namely, repw is a (1 + 4/t)-approximate nearest neighbor to q.
Similarly, if nn(q) 2 Pw

out but we continued the search in Pw
in, then (i) kq � nn(q)k �

(t/2)rw, (ii) kq � cwk  (1 + t/2)rw, and (iii)
�

�

�q � repw

�

�

�  kq � cwk +
�

�

�cw � repw

�

�

�  (t/2 +
2)rw. As such, we have that

�

�

�q � repw

�

�

�

kq � nn(q)k 
(t/2 + 2)rw

(t/2)rw
 1 +

4
t
.

Since repw is considered as one of the candidates to be nearest neighbor in the search, this
implies that the algorithm returns a (1 + 4/t)-ANN. ⌅

In low dimensions, there is always a good separating ring (see Lemma 3.28p40), and
we use it in the following construction.

Lemma 17.9. Given a set P of n points in IRd, one can compute a (1/n)-ring tree of P
in O(n log n) time.

Proof. The construction is recursive. Setting t = n, by Lemma 3.28p40, one can
compute, in linear time, a ball b(p, r), such that (i) |b(p, r) \ P| � n/c, (ii) the ring
b(p, r(1 + 1/t)) \ b(p, r) contains no point of P, and (iii) |P \ b(p, r(1 + 1/t))| � n/2.

Let v be the root of the new tree, set Pv
in to be P \ b(p, r) and Pv

out = P \ Pv
in, and

store bv = b(p, r0) and repv = p. Continue the construction recursively on those two sets.
Observe that

�

�

�Pv
in

�

�

� ,
�

�

�Pv
out

�

�

� � n/c, where c is a constant. It follows that the construction time

240 17. APPROXIMATE NEAREST NEIGHBOR SEARCH IN LOW DIMENSION

of the algorithm is T (n) = O(n) + T
⇣

�

�

�Pv
in

�

�

�

⌘

+ T
⇣

�

�

�Pv
out

�

�

�

⌘

= O(n log n), and the depth of the
resulting tree is O(log n). ⌅

Combining the above two lemmas, we get the following result.

Theorem 17.10. Let P be a set of n points in IRd. One can preprocess it in O(n log n)
time, such that given a query point q 2 IRd, one can return a (1 + 4n)-ANN of q in P in
O(log n) time.

17.5. Bibliographical notes

The presentation of the ring tree follows the recent work of Har-Peled and Mendel
[HM06]. Ring trees are probably an old idea. A more elaborate but similar data-structure
is described by Indyk and Motwani [IM98]. Of course, the property that “thick” ring
separators exist is inherently low dimensional, as the regular simplex in n dimensions
demonstrates. One option to fix this is to allow the rings to contain points and to repli-
cate the points inside the ring in both subtrees. As such, the size of the resulting tree is not
necessarily linear. However, careful implementation yields linear (or small) size; see Ex-
ercise 17.1 for more details. This and several additional ideas are used in the construction
of the cover tree of Indyk and Motwani [IM98].

Section 17.2 is a simplification of the work of Arya et al. [AMN+98]. Section 17.3
is also inspired to a certain extent by Arya et al., although it is essentially a simplification
of Har-Peled and Mendel [HM06] data-structure to the case of compressed quadtrees.
In particular, we believe that the data-structure presented is conceptually simpler than in
previously published work.

There is a huge amount of literature on approximate nearest neighbor search, both in
low and high dimensions in the theory, learning and database communities. The reason
for this lies in the importance of this problem on special input distributions encountered
in practice, di↵erent computation models (i.e., I/O-e�cient algorithms), search in high
dimensions, and practical e�ciency.

Liner space. In low dimensions, the seminal work of Arya et al. [AMN+98], men-
tioned above, was the first to o↵er linear size data-structure, with logarithmic query time,
such that the approximation quality is specified with the query. The query time of Arya
et al. is slightly worse than the running time of Theorem 17.6, since they maintain a heap
of cells, always handling the cell closest to the query point. This results in query time
O("�d log n). It can be further improved to O(1/"d log(1/") + log n) by observing that this
heap has only very few delete-mins and many insertions. This observation is due to Duncan
[Dun99].

Instead of having a separate ring tree, Arya et al. rebalance the compressed quadtree
directly. This results in nodes which correspond to cells that have the shape of an annulus
(i.e., the region formed by the di↵erence between two canonical grid cells).

Duncan [Dun99] and some other authors o↵ered a data-structure (called the BAR-
tree) with similar query time, but it seems to be inferior, in practice, to the work of Arya
et al., for the reason that while the regions that the nodes correspond to are convex, they
have higher descriptive complexity, and it is harder to compute the distance of the query
point to a cell.

Faster query time. One can improve the query time if one is willing to specify " dur-
ing the construction of the data-structure, resulting in a trade-o↵ between space and query
time. In particular, Clarkson [Cla94] showed that one can construct a data-structure of

17.5. BIBLIOGRAPHICAL NOTES 241

(roughly) size O(n/"(d�1)/2) and query time O("�(d�1)/2 log n). Chan simplified and cleaned
up this result [Cha98] and also presented some other results.

Details on faster query time. A set of points Q is
p
"-far from a query point q if

the kq � cQk � diam(Q) /
p
", where cQ is some point of Q. It is easy to verify that if we

partition space around cQ into cones with central angle O
⇣p
"
⌘

(this requires O(1/"(d�1)/2)
cones), then the most extreme point of Q in such a cone , furthest away from cQ, is the
(1+")-approximate nearest neighbor for any query point inside which is

p
"-far. Namely,

we precompute the ANN inside each cone if the point is far enough away. Furthermore,
by careful implementation (i.e., grid in the angles space), we can decide, in constant time,
which cone the query point lies in. Thus, using O(1/"(d�1)/2) space, we can answer (1+ ")-
ANN queries for q if the query point is

p
"-far, in constant time.

Next, construct this data-structure for every set Pv, for v 2 bT (P), where bT (P) is a
compressed quadtree for P. This results in a data-structure of size O(n/"(d�1)/2). Given a
query point q, we use the algorithm of Theorem 17.6 and stop for a node v as soon Pv isp
"-far, and then we use the secondary data-structure for Pv. It is easy to verify that the

algorithm would stop as soon as diam(2v) = O
⇣p
"d(q,P)

⌘

. As such, the number of nodes
visited would be O(log n + 1/"d/2), and the bound on the query time is identical.

Note that we omitted the construction time (which requires some additional work to be
done e�ciently), and our query time is slightly worse than the best known. The interested
reader can check out the work by Chan [Cha98], which is somewhat more complicated
than what is outlined here.

Even faster query time. The first to achieve O(log(n/")) query time (using near lin-
ear space) was Har-Peled [Har01b], using space roughly O(n"�d log2 n). This was later
simplified and improved by Arya and Malamatos [AM02], who presented a data-structure
with the same query time and of size O(n/"d). These data-structure relies on the notion of
computing approximate Voronoi diagrams and performing point-location queries in those
diagrams. By extending the notion of approximate Voronoi diagrams, Arya, Malamatos,
and Mount [AMM02] showed that one can answer (1 + ")-ANN queries in O(log(n/"))
time, using O(n/"(d�1)) space. On the other end of the spectrum, they showed that one
can construct a data-structure of size O(n) and query time O(log n + 1/"(d�1)/2) (note that
for this data-structure " > 0 has to be specified in advance). In particular, the later result
breaks a space/query time trade-o↵ that all other results su↵er from (i.e., the query time
multiplied by the construction time has dependency of 1/"d on ").

Practical considerations. Arya et al. [AMN+98] implemented their algorithm. For
most inputs, it is essentially a kd-tree. The code of their library was carefully optimized
and is very e�cient. In particular, in practice, the author would expect it to beat most of
the algorithms mentioned above. The code of their implementation is available online as a
library [AM98].

Higher dimensions. All our results have exponential dependency on the dimension,
in query and preprocessing time (although the space can probably be made subexponential
with careful implementation). Getting a subexponential algorithm requires a completely
di↵erent technique and is discussed in detail later (see Theorem 20.20p276).

Stronger computation models. If one assume that the points have integer coordi-
nates in the range [1,U], then approximate nearest neighbor queries can be answered in
(roughly) O(log log U+1/"d) time [AEIS99] or even O(log log(U/")) time [Har01b]. The

242 17. APPROXIMATE NEAREST NEIGHBOR SEARCH IN LOW DIMENSION

algorithm of Har-Peled [Har01b] relies on computing a compressed quadtree of height
O(log(U/")) and performing a fast point-location query in it. This only requires using the
floor function and hashing (note that the algorithm of Theorem 17.6 uses the floor function
and hashing during the construction, but it is not used during the query). In fact, if one is
allowed to slightly blow up the space (by a factor U�, where � > 0 is an arbitrary constant),
the ANN query time can be improved to constant [HM04].

By shifting quadtrees and creating d+1 quadtrees, one can argue that the approximate
nearest neighbor must lie in the same cell (and this cell is of the “right” size) of the query
point in one of those quadtrees. Next, one can map the points into a real number, by using
the natural space filling curve associated with each quadtree. This results in d + 1 lists of
points. One can argue that a constant approximate neighbor must be adjacent to the query
point in one of those lists. This can be later improved into (1 + ")-ANN by spreading 1/"d

points. This simple algorithm is due to Chan [Cha02].
The reader might wonder why we bothered with a considerably more involved algo-

rithm. There are several reasons: (i) This algorithm requires the numbers to be integers of
limited length (i.e., O(log U) bits), (ii) it requires shu✏ing of bits on those integers (i.e., for
computing the inverse of the space filling curve) in constant time, and (iii) the assumption
is that one can combine d such integers into a single integer and perform exclusive-or on
their bits in constant time. The last two assumptions are not reasonable when the input is
made out of floating point numbers.

Further research. In low dimensions, the ANN problem seems to be essentially
solved both in theory and practice (such proclamations are inherently dangerous and should
be taken with a considerable amount of healthy skepticism). Indeed, for " > 1/ log1/d n,
the current data structure of Theorem 17.6 provides logarithmic query time. Thus, " has
to be quite small for the query time to become bad enough that one would wish to speed it
up.

The main directions for further research seem to be on this problem in higher dimen-
sions and solving it in other computation models.

Surveys. A survey on the approximate nearest neighbor search problem in high di-
mensions is by Indyk [Ind04]. In low dimensions, there is a survey by Arya and Mount
[AM05].

17.6. Exercises

Exercise 17.1 (Better ring tree). Let P be a set of n points in IRd. Show how to build
a ring tree, of linear size, that can answer O(log n)-ANN queries in O(log n) time. [Hint:
Show that there is always a ring containing O(n/ log n) points, such that it is of width w
and its interior radius is O(w log n). Next, build a ring tree, replicating the points in both
children of this ring node. Argue that the size of the resulting tree is linear, and prove the
claimed bound on the query time and quality of approximation.]

Exercise 17.2 (k-ANN from ANN). In the k-approximate nearest neighbor problem
one has to preprocess a point set P, such that given a query point q, one needs to return
k distinct points of P such that their distance from q is at most (1 + ")`, where ` is the
distance from q to its kth nearest neighbor in P.

Show how to build O(k log n) ANN data-structures, such that one can answer such a
k-ANN query using O(k log n) “regular” ANN queries in these data-structures and the result
returned is correct with high probability. (Prove that your data-structure indeed returns k
distinct points.)

